張雙杰 劉愷源 王偉 高穎 朱慶齊
摘要:為了分析和表征熱成形用的鋁硅鍍層22MnB5高強鋼的熱變形行為,采用Gleeble-3800熱模擬試驗機,在成形溫度750~900 ℃、應變速率0.1~10 s-1試驗條件下實施了鋁硅鍍層22MnB5高強鋼的板材等溫拉伸試驗,采用雙曲正弦型Arrhenius本構(gòu)模型描述鋁硅鍍層22MnB5高強鋼的高溫流變行為,并考慮應變影響構(gòu)建了模型。結(jié)果表明:1)鋁硅鍍層22MnB5高強鋼的真應力隨成形溫度的升高而降低,隨應變速率的增大而升高,在高溫低應變速率條件下(900 ℃,0.1 s-1),峰值應力為134.24 MPa;在低溫高應變速率條件下(750 ℃,10 s-1),峰值應力為381.25 MPa;2)本構(gòu)模型預測值與等溫拉伸試驗值線性擬合的相關(guān)系數(shù)R2為0.978,表明構(gòu)建的本構(gòu)模型在整個應變范圍具有良好的預測精度。研究成果能夠準確表征鋁硅鍍層22MnB5高強鋼的熱變形行為,為其數(shù)值模擬提供材料模型數(shù)據(jù)支持,并為其熱加工工藝研究提供了參考。
關(guān)鍵詞:材料力學;鋁硅鍍層;22MnB5;高強鋼;高溫拉伸性能;本構(gòu)模型
中圖分類號:TG115;TG142文獻標識碼:ADOI: 10.7535/hbgykj.2021yx04001
Elevated temperature tensile properties and constitutive model of
Al-Si coated 22MnB5 high-strength steel
ZHANG Shuangjie1,2,3, LIU Kaiyuan1, WANG Wei1,2, GAO Ying1,2,4, ZHU Qingqi5
(1. School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang,Hebei 050018, China; 2. Hebei Key Laboratory of Material Near-net Forming Technology, Shijiazhuang, Hebei 050018, China; 3. Hebei Engineering Technology Research Center of Precision Punching Process and Die, Cangzhou, Hebei 061500, China; 4. Hebei Industrial Technology Research Institute of Mechanical and Electrical Parts, Cangzhou, Hebei 061500, China; 5. Baoding Exquisite Auto Mould Technology Company Limited, Baoding, Hebei 071000, China.)
Abstract:In order to analyze and characterize the hot deformation behavior of Al-Si coated 22MnB5 high strength steel for hot forming, Gleeble-3800 thermal simulation machine was used to conduct isothermal tensile tests of Al-Si coated 22MnB5 high strength steel under the test conditions of forming temperature 750~900 ℃ and strain rate 0.1~10 s-1. The Arrhenius constitutive model with hyperbolic sinusoidal form was used to describe the elevated temperature rheological behavior of Al-Si coated 22MnB5 high strength steel. In addition, the model considering the influence of strain was constructed. The results indicate that:1) the true stress of Al-Si coated 22MnB5 high strength steel decreases with the increase of forming temperature and increases with the increase of strain rate. At high temperature and low strain rate (900 ℃, 0.1 s-1), the peak stress is 134.24? MPa. At low temperature and high strain rate (750 ℃, 10 s-1), the peak stress is 381.25 MPa; 2)the correlation coefficient R2 of the linear fitting between the predicted values of the constitutive model and the experimental values of isothermal tensile is 0.978, which indicates that the constructed constitutive model has good prediction accuracy in the whole strain range. The results can accurately characterize the thermal deformation behavior of Al-Si coated 22MnB5 high strength steel, provide material model data support for the numerical simulation and a reference for the further study of the hot processing technology of this kind of material.
Keywords:mechanics of materials; Al-Si coating; 22MnB5; high-strength steel; elevated temperature tensile properties; constitutive model
近年來,為滿足汽車輕量化和安全性的雙重要求,熱成形高強度鋼被廣泛用于制造車身的結(jié)構(gòu)件[1-2],如A/B柱、防撞梁和各縱梁等。國內(nèi)外學者針對熱成形高強鋼的CCT曲線[3]、相變溫度[4]、熱成形性能[5-7]及成形極限[8]、熱沖壓數(shù)值模擬及工藝參數(shù)優(yōu)化[9-13]等方面開展了一系列研究。
在22MnB5熱成形高強鋼的研究中,高溫變形行為及高溫本構(gòu)模型是重要的研究內(nèi)容,其在熱成形的數(shù)值模擬、工藝制定及參數(shù)優(yōu)化等方面具有基礎(chǔ)性作用。許多學者針對無鍍層的22MnB5高強鋼開展了大量研究,肖碧媛[14]采用Gleeble-1500研究了22MnB5高強鋼在成形溫度500~900 ℃、應變速率0.01~1 s-1條件下的熱變形行為,將結(jié)果用于熱沖壓工藝的有限元仿真分析,但并未構(gòu)建22MnB5高強鋼的本構(gòu)模型。曹淑芬等[15]采用Gleeble-1500,研究了成形溫度500~950 ℃、應變速率0.01~1 s-1條件下22MnB5高強鋼的熱變形行為,基于峰值應力,采用包含Zener-Hollomon因子的蠕變方程,建立了溫度700~950 ℃、應變速率0.1~1 s-1變形條件下的本構(gòu)方程。王祥等[16]采用單向熱拉伸試驗,研究了22MnB5高強鋼在成形溫度500~800 ℃、應變速率0.01~1.0 s-1條件下的熱變形行為,基于井上勝郎模型和Norton-Hoff模型的改進模型建立了22MnB5高強鋼的塑性本構(gòu)方程。童坤等[17]采用Gleeble-1500D,研究了成形溫度550~850 ℃、應變速率0.1~5 s-1條件下22MnB5(Nb&V)高強鋼的高溫流變力學行為,采用Johnson-Cook模型予以描述,將建立的本構(gòu)模型應用于熱沖壓的數(shù)值模擬中。
目前,對于鋁硅鍍層22MnB5高強鋼的研究集中在鍍層性能[18-19]和焊接性能方面[20-21],鮮有其熱變形行為和本構(gòu)關(guān)系的研究。因此,本文以鋁硅鍍層22MnB5高強鋼為研究對象,以其典型應用(汽車B柱的熱成形)為研究背景,根據(jù)其實際熱沖壓成形工藝參數(shù),分析其在成形溫度750~900 ℃、應變速率0.1~10 s-1條件下的熱變形行為??紤]到變形過程中的溫度、應變速率和形變強化等影響因素,采用雙曲正弦型Arrhenius本構(gòu)模型描述其高溫流變行為[22-26],并考慮應變影響構(gòu)建了模型,以進一步提高模型預測精度,以期為鋁硅鍍層22MnB5高強鋼熱成形工藝的研究提供參考。第4期張雙杰,等:鋁硅鍍層22MnB5高強鋼高溫拉伸性能及本構(gòu)模型河北工業(yè)科技第38卷
1試驗材料及試驗方案
試驗材料為鋁硅鍍層22MnB5高強鋼,板厚為1.4 mm,鍍層代碼為AS60G60G,鍍層質(zhì)量71~74 g/m2,鍍層厚度為20~33 μm。采用Gleeble-3800熱模擬試驗機進行高溫條件下的等溫拉伸試驗,拉伸試件如圖1所示,標距為50 mm。拉伸試驗前,將熱電偶焊接于試件表面,試件加熱前,將試驗艙抽真空并通入氬氣,防止試件發(fā)生高溫氧化。
根據(jù)汽車B柱的熱沖壓工藝參數(shù),制定等溫拉伸試驗方案。首先以15 ℃/s將試件加熱至930 ℃,保溫180 s,使試件充分奧氏體化,再以40 ℃/s分別降溫至拉伸溫度750,800,850和900 ℃,保溫5 s使試件溫度均勻化,分別在0.1,1和10 s-1應變速率下進行等溫拉伸試驗[27]。另外,在實際汽車結(jié)構(gòu)件的熱成形中,為避免發(fā)生貝氏體轉(zhuǎn)變,制件的冷卻速率必須大于27 ℃/s,以確保熱沖壓件為全馬氏體組織[3-4],因此拉伸試驗結(jié)束后,試件以40 ℃/s冷卻至室溫。
2拉伸性能及應力-應變延伸
高溫拉伸縮頸前的數(shù)據(jù)是有效且可靠的,因此需去除縮頸階段的試驗數(shù)據(jù),得到鋁硅鍍層22MnB5高強鋼在不同溫度、不同應變速率下的真應力-應變曲線,如圖2中的點實線所示。通過分析圖2中的點實線發(fā)現(xiàn),鋁硅鍍層22MnB5高強鋼在高溫拉伸過程中具有較寬的塑性變形區(qū),并且在塑性區(qū)應力較低,其高溫拉伸性能符合典型鋼鐵材料的高溫變形行為,即相同應變速率時,隨著溫度的升高,真應力呈降低趨勢;相同變形溫度時,隨著應變速率的升高,真應力呈上升趨勢。在高溫低應變速率條件下(900 ℃,0.1 s-1),峰值應力為134.24 MPa;在低溫高應變速率條件下(750 ℃,10 s-1),峰值應力為381.25 MPa??估瓘姸纫嗑哂邢嗤淖兓?guī)律。
由于各試驗方案發(fā)生縮頸時的應變不同,為充分利用縮頸前的試驗數(shù)據(jù),獲得能夠描述所有試驗方案縮頸前應力-應變關(guān)系的本構(gòu)模型,采用下述方法對試驗所得的應力-應變曲線進行延伸[28]。
1)選擇參照曲線觀察試驗數(shù)據(jù)曲線,拉伸溫度為850 ℃、應變速率為10 s-1時的拉伸試件發(fā)生縮頸前應變量最大,因此以850 ℃,10 s-1的應力-應變曲線為參照,對其它試驗曲線予以延伸。
2)確定延伸區(qū)間及平移距離以變形溫度為750 ℃、應變速率為10 s-1時的應力-應變曲線為例,確定發(fā)生縮頸時的應變值ε1和應力值σ1,應力-應變曲線中ε≥ε1的部分即為延伸區(qū)間。通過線性插值法,確定參照曲線中應變?yōu)棣?處的應力值σ2,σ2-σ1即為平移距離。
3)平移延伸將參照曲線中ε≥ε1的部分復制并平移σ2-σ1的距離,取代750 ℃,10 s-1條件下真應力-應變曲線中產(chǎn)生縮頸后的部分,實現(xiàn)應力-應變曲線的延伸。
采用相同方法,將其它試驗條件下的真應力-應變曲線進行延伸,如圖2中虛線所示。
3鋁硅鍍層22MnB5高強鋼本構(gòu)模型
3.1Arrhenius本構(gòu)模型
采用雙曲正弦型Arrhenius本構(gòu)模型描述鋁硅鍍層22MnB5高強鋼的熱變形行為,如式(1)所示。
ε·=A[sinh(ασ)]nexp(-QRT)。(1)
對式(1)進行Tayler級數(shù)展開,得到適用于不同應力條件下的本構(gòu)關(guān)系,如式(2)—式(4)所示。
Z=f(σ)=A1σn1,ασ<0.8,(2)
Z=f(σ)=A2exp(βσ),ασ>1.2, (3)
Z=f(σ)=A[sinh(ασ)]n,for all σ 。 (4)
式(1)—式(4)中ε·為應變速率,s-1;σ為流變應力,MPa;R為氣體常數(shù),取8.314 J·mol-1·K-1;T為變形溫度,℃;A,α,n,Q,A1,n1,A2和β均是與應變量有關(guān)的材料常數(shù),α,β和n1之間滿足式(5)。
α=β/n1 。(5)
將式(1)與式(3)聯(lián)立,可得式(6)。
σ=ln ε·β-ln A2β+QβRT。 (6)
由式(6)可知,σ與ln ε·之間符合線性關(guān)系,斜率為1/β,取應變?yōu)?.2時各變形溫度和應變速率的真應力值,繪制σ與ln ε·的線性擬合曲線,如圖3所示,求得β的值為0.041 31。
將式(1)與式(2)聯(lián)立,可得式(7)。
ln σ=ln ε·n1-ln A1n1+Qn1RT。? (7)
由式(7)可知,ln σ與ln ε·之間符合線性關(guān)系,斜率為1/n1。取應變?yōu)?.2時各變形溫度和應變速率的真應力值,繪制ln σ與ln ε·的線性擬合曲線,如圖4所示,求得n1的值為8.867 2。將β和n1的值代入式(5),求得α的值為4.659 1×10-3。
假定Q和T無關(guān),對式(1)兩側(cè)分別取對數(shù)可得式(8)。
ln ε·=ln A+nln[sinh(ασ)]-QRT。 (8)
由式(8)可知,通過ln[sinh(ασ)]和ln ε·線性擬合曲線的斜率即可求得n值。采用應變?yōu)?.2時的真應力值,對ln[sinh(ασ)]和ln ε·進行線性擬合,如圖5所示,求得n的值為6.667 4。
將式(8)變換后,可得式(9)。
ln[sinh(ασ)]=QnR×1T+ln ε·-ln An 。(9)
由式(9)可知,ln[sinh(ασ)]和1/T關(guān)系曲線的斜率為Q/nR,截距為(ln ε·-ln A)/n,即可求解變形激活能Q和材料常數(shù)A。假設斜率為k,截距為h,則應變能Q和材料參數(shù)A可以由式(10)和式(11)求得。
Q=knR,(10)
ln A=ln ε·-nh。 (11)
將ln[sinh(ασ)]與1/T進行線性回歸,如圖6所示,求得的變形激活能Q和材料常數(shù)A的值分別為Q=133 767.196 J/mol,ln A=18.579 6。
將求得的各材料常數(shù)帶入式(1),得到鋁硅鍍層22MnB5高強鋼的本構(gòu)模型為
σ=10.004 659 1×
arcsinh[exp(ln ε·-18.579 6+133 767.196/(8.314T)6.667 4)]。(12)
3.2考慮應變影響的本構(gòu)模型
上述Arrhenius本構(gòu)模型,采用了應變?yōu)?.2時的數(shù)據(jù),并未考慮應變變化的影響,因此使用上述方法,分別求解不同應變時α,n,Q和ln A的值構(gòu)建考慮應變影響的本構(gòu)模型。以應變?yōu)樽宰兞?,各參?shù)為因變量,進行多項式擬合,得到各參數(shù)與應變的多項式函數(shù)模型,采用應變?yōu)?.1,0.15,0.2,0.25,0.3,0.35,0.4和0.45(應變間隔0.05)時的數(shù)據(jù)求解各參數(shù),并采用式(13)—式(16)所示的7階多項式函數(shù)進行擬合,擬合曲線如圖7所示,7階多項式的系數(shù)列于表1。
α=B0+B1ε+B2ε2+B3ε3+B4ε4+B5ε5+B6ε6+B7ε7 , (13)
n=C0+C1ε+C2ε2+C3ε3+C4ε4+C5ε5+C6ε6+C7ε7,(14)
Q=D0+D1ε+D2ε2+D3ε3+D4ε4+D5ε5+D6ε6+D7ε7 ,(15)
ln A=E0+E1ε+E2ε2+E3ε3+E4ε4+E5ε5+E6ε6+E7ε7 。(16)
3.3本構(gòu)模型精度分析
使用考慮應變影響的本構(gòu)模型計算應力的預測值,并與等溫拉伸試驗得到的試驗值進行對比,如圖8 a)—c)所示,并將預測值與試驗值進行線性回歸,如圖8 d)所示,線性擬合的相關(guān)系數(shù)R2為0.978,對比分析結(jié)果表明,構(gòu)建的本構(gòu)模型在整個應變范圍具有較好的預測精度,能夠較好地描述鋁硅鍍層22MnB5高強鋼的高溫本構(gòu)關(guān)系。
4結(jié)語
針對鋁硅鍍層22MnB5高強鋼應用越發(fā)廣泛的現(xiàn)狀,筆者采用雙曲正弦型Arrhenius本構(gòu)模型描述鋁硅鍍層22MnB5高強鋼的高溫流變行為,并構(gòu)建了考慮應變影響的本構(gòu)模型。根據(jù)研究結(jié)果,得出以下結(jié)論。
1)鋁硅鍍層22MnB5高強鋼在高溫拉伸過程中具有較寬的塑性變形區(qū),并且其應力在塑性區(qū)較低,其高溫拉伸性能及抗拉強度符合典型鋼鐵材料的高溫變形行為,即相同應變速率時,隨著溫度的升高,真應力呈降低趨勢;相同變形溫度時,隨著應變速率的升高,真應力呈上升趨勢,在高溫低應變速率條件下(900 ℃,0.1 s-1),峰值應力為381.25 MPa;在低溫高應變速率條件下(750 ℃,10 s-1),峰值應力為134.24 MPa。
2)本文建立了考慮應變影響的鋁硅鍍層22MnB5高強鋼的Arrhenius本構(gòu)模型,模型預測值與等溫拉伸試驗值線性擬合的相關(guān)系數(shù)R2為0.978,表明模型在整個應變范圍具有較好的預測精度,能夠較好地描述鋁硅鍍層22MnB5高強鋼的高溫本構(gòu)關(guān)系。該模型不僅豐富了鋁硅鍍層22MnB5高強鋼本構(gòu)關(guān)系的表征,而且其熱變形條件是基于實際的熱沖壓成形工藝參數(shù)確定的,因此模型更加貼近高強鋼實際熱沖壓成形工況。
本文從力學角度研究了鋁硅鍍層22MnB5高強鋼的熱變形行為并構(gòu)建了模型,但未分析鋁硅鍍層22MnB5高強鋼熱變形過程微觀組織的演變,后續(xù)還需通過對鋁硅鍍層22MnB5高強鋼微觀組織的分析,探索不同熱變形條件對其微觀組織演變的影響規(guī)律。
參考文獻/References:
[1]張宜生,王子健,王梁.高強鋼熱沖壓成形工藝及裝備進展[J].塑性工程學報,2018,25(5):11-23.
ZHANG Yisheng,WANG Zijian,WANG Liang. Progress in hot stamping process and equipment for high strength steel sheet[J]. Journal of Plasticity Engineering,2018,25(5):11-23.
[2]孟炬, 朱彬, 張宜生, 等. 高強鋼熱沖壓成形過程宏微觀數(shù)值模擬綜述[J]. 河北工業(yè)科技, 2015, 32(3): 272-276.
MENG Ju, ZHU Bin, ZHANG Yisheng, et al. Review on macro-and micro-modeling of high strength steel hot stamping process[J]. Hebei Journal of Industrial Science and Technology, 2015, 32(3): 272-276.
[3]BARCELLONA A,PALMERI D. Effect of plastic hot deformation on the hardness and continuous cooling transformations of 22MnB5 microalloyed Boron steel[J]. Metallurgical and Materials Transactions, 2009,40(5):1160-1174.
[4]MERKLEIN M,LECHLER J. Investigation of the thermo-mechanical properties of hot stamping steels[J]. Journal of Materials Processing Technology,2006,177(1/2/3):452-455.
[5]MIN Junying,LIN Jianpin,TIAN Haobin,et al.Investigation on uniaxial tensile instability of USIBOR1500 steel sheets at elevated temperature[J].Chinese Journal of Mechanical Engineering,2010,23(1):94-99.
[6]馬寧,申國哲,張宗華,等.高強度鋼板熱沖壓材料性能研究及在車身設計中的應用[J].機械工程學報,2011,47(8):60-65.
MA Ning,SHEN Guozhe,ZHANG Zonghua,et al.Material performance of hot-forming high strength steel and its application in vehicle body[J].Journal of Mechanical Engineering,2011,47(8):60-65.
[7]孫世清. 梁文瑞. 張楠. 9Cr5MoV鋼的磁性分析與深冷處理[J]. 河北科技大學學報. 2013, 34(1): 75-78.
SUN Shiqing, LIANG Wenrui, ZHANG Nan. Magnetic analysis and deep cryogenic treatment of 9Cr5Mov steel[J]. Journal of Hebei University of Science and Technology, 2013, 34(1):75-78.
[8]胡平,史棟勇,盈亮,等.高強度鋼板的熱塑性成形極限[J].北京理工大學學報,2014,34(sup1):128-132.
HU Ping,SHI Dongyong,YING Liang,et al.Thermoplastic forming limit of high strength steel[J].Transactions of Beijing Institute of Technology,2014,34(sup1):128-132.
[9]GARCIA A L,CHASTEL Y,F(xiàn)ERNANDEZ P J,et al. Experiments and simulation of the hot stamping of quenchable steels[J].Advanced Technology of Plasticity,2002,12(7):1135-1140.
[10]包軍,邢忠文,楊玉英,等.超高強度硼鋼板熱彎曲數(shù)值模擬[J].材料科學與工藝,2009,17(3):326-328.
BAO Jun,XING Zhongwen,YANG Yuying,et al.Numerical simulation of hot bending with ultra high strength boron steel[J]. Materials Science and Technology,2009,17(3):326-328.
[11]曹向茹,崔海亭,蔣靜智.泡沫金屬相變材料凝固傳熱過程的數(shù)值分析[J].河北工業(yè)科技﹐2011,28(1):1-4.
CAO Xiangru, CUI Haiting, JIANG Jingzhi. Numerical simulation on heat transfer of phase change in heat storage ball filled with metal foam[J]. Hebei Journal of Industrial Science and Technology, 2011, 28(1): 1-4.
[12]林建平,王立影,田浩彬,等.超高強度鋼板熱沖壓成形研究與進展[J].熱加工工藝,2008,37(21):140-144.
LIN Jianping,WANG Liying,TIAN Haobin,et al.Research and progress of hot stamping of ultrahigh strength steel[J].Hot Working Technology,2008,37(21):140-144.
[13]賀連芳,趙國群,李輝平,等.基于響應曲面方法的熱沖壓硼鋼B1500HS淬火工藝參數(shù)優(yōu)化[J].機械工程學報,2011,47(8):77-82.
HE Lianfang,ZHAO Guoqun,LI Huiping,et al.Optimization of quenching parameters for hot stamping boron steel B1500HS based on response surface methodology[J].Journal of Mechanical Engineering,2011,47(8):77-82.
[14]肖碧媛.22MnB5高強度鋼熱變形行為及沖壓工藝仿真研究[D].長沙:湖南大學,2013.
XIAO Biyuan.Study on Hot Deformation Behavior and Hot Stamping Process Simulation of High Strength Steel 22MnB5[D]. Changsha:Hunan University,2013.
[15]曹淑芬,張立強,郭鵬程,等.22MnB5熱變形行為研究及本構(gòu)方程建立[J].中國機械工程,2014,25(9):1256-1261.
CAO Shufen,ZHANG Liqiang,GUO Pengcheng,et al.Study on hot deformation behavior and flow stress constitutive model of 22MnB5 at high temperature[J].China Mechanical Engineering,2014,25(9):1256-1261.
[16]王祥,陳煒,陳瀧,等.高強度鋼熱沖壓塑性本構(gòu)關(guān)系建立及應用[J].熱加工工藝,2015,44(3):107-110.
WANG Xiang,CHEN Wei,CHEN Long,et al. Establishment and application of constitutive relationship of high strength steel during hot stamping[J].Hot Working Technology,2015,44(3):107-110.
[17]童坤,韓先洪,崔振山.新型熱沖壓高強鋼22MnB5(Nb&V)的熱變形本構(gòu)關(guān)系[J].塑性工程學報,2019,26(6):256-262.
TONG Kun,HAN Xianhong,CUI Zhenshan.Thermal deformation constitutive relationship of new type high strength hot stamping steel 22MnB5(Nb&V)[J].Journal of Plasticity Engineering,2019,26(6):256-262.
[18]左源,李琦,紀沙沙,等.22MnB5熱成形鋼鋁硅鍍層的制備工藝及抗氧化性能研究[J].熱加工工藝,2019,48(8):145-148.
ZUO Yuan,LI Qi,JI Shasha,et al.Research on preparing process and oxidation resistance of aluminum silicon coating for 22MnB5 hot forming steel[J].Hot Working Technology,2019,48(8):145-148.
[19]劉浩,譚寧,金鑫焱.變形量對鋁硅鍍層熱沖壓用鋼組織和性能的影響[J].金屬熱處理,2019,44(9):147-151.
LIU Hao,TAN Ning,JIN Xinyan. Effect of deformation on microstructure and mechanical properties of aluminum-silicon coating hot stamping steel[J].Heat Treatment of Metals,2019,44(9):147-151.
[20]王晗.鋁硅鍍層22MnB5激光焊接頭組織與性能研究[D].長春:吉林大學,2020.
WANG Han.Study on Microstructures and Mechanical Properties of Al-Si Coating 22Mnb5 Laser Welded Joints[D]. Changchun:Jilin University,2020.
[21]李賢.對熱浸Al-Si鍍層22MnB5鋼激光焊接及焊接接頭的組織和性能的研究[D].武漢:武漢科技大學,2020.
LI Xian. Study on Microstructure and Properties of Hot-Dip Al-Si Coating 22MnB5 Steel Laser Welded Joint[D].Wuhan:Wuhan University of Science and Technology,2020.
[22]王偉,馬世博,張雙杰,等.20Cr2Ni4A鋼高溫變形行為及物理基參數(shù)本構(gòu)模型[J].塑性工程學報,2018,25(6):147-153.
WANG Wei,MA Shibo,ZHANG Shuangjie,et al. Elevated temperature deformation behavior and physically-based parameter constitutive model of 20Cr2Ni4A steel[J]. Journal of Plasticity Engineering, 2018,25(6):147-153.
[23]CAI Jun,LEI Ying,WANG Kuaishe,et al.A comparative investigation on the capability of modified Zerilli-Armstrong and Arrhenius-Type constitutive models to describe flow behavior of BFe10-1-2 cupronickel alloy at elevated temperature[J]. Journal of Materials Engineering and Performance,2016,25(5):1952-1963.
[24]WU Mengwei,ZHANG Shuangjie,MA Shibo,et al. Hot deformation behavior of Q345 steel and its application in rapid shear connection[J]. Materials,2019,12(13):2186.
[25]ABBASI-BANI A,ZAREI-HANZAKI A,PISHBIN M H,et al. A comparative study on the capability of Johnson-Cook and Arrhenius type constitutive equations to describe the flow behavior of Mg-6Al-1Zn alloy[J]. Mechanics of Materials,2014,71:52-61.
[26]WANG Wei, MA Rui,LI Lianping, et al. Constitutive analysis and dynamic recrystallization behavior of as-cast 40CrNiMo alloy steel during isothermal compression[J]. Journal of Materials Research and Technology, 2020,9(2):1929-1940.
[27]王偉,王波,閆華軍,等.基于等溫壓縮試驗的20Cr2Ni4A鋼Johnson-Cook本構(gòu)模型及熱加工圖[J].熱加工工藝,2020,49(13):103-108.
WANG Wei, WANG Bo, YAN Huajun, et al. Johnson-Cook constitutive model and hot processing map of 20Cr2Ni4A steel based on isothermal compression tests[J]. Hot Working Technology,2020,49(13):103-108.
[28]李輝平,趙國群,賀連芳,等.熱沖壓硼鋼B1500HS高溫本構(gòu)方程的研究[J].機械工程學報,2012,48(8):21-27.
LI Huiping,ZHAO Guoqun,HE Lianfang,et al. Research on the constitutive relationship of hot stamping boron steel B1500HS at high temperature[J].Journal of Mechanical Engineering,2012,48(8):21-27.