• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      擬除蟲(chóng)菊酯類農(nóng)藥的微生物降解及其機(jī)制研究進(jìn)展

      2021-09-26 02:02趙葉子陳智坤王錚吳桐張穎萍徐倩
      江蘇農(nóng)業(yè)科學(xué) 2021年17期

      趙葉子 陳智坤 王錚 吳桐 張穎萍 徐倩

      摘要:擬除蟲(chóng)菊酯被認(rèn)為是有機(jī)磷農(nóng)藥的安全替代品,因此當(dāng)有機(jī)磷農(nóng)藥被禁限使用時(shí),其應(yīng)用顯著增加。目前,擬除蟲(chóng)菊酯銷(xiāo)量約占世界殺蟲(chóng)劑總額的20%。這類農(nóng)藥的長(zhǎng)期、廣泛使用既帶來(lái)了經(jīng)濟(jì)效益,也造成了環(huán)境污染,危害人類及其他非靶標(biāo)生物。針對(duì)這一問(wèn)題,已開(kāi)發(fā)出多項(xiàng)修復(fù)技術(shù),其中微生物法高效環(huán)保、成本低廉,已成為修復(fù)擬除蟲(chóng)菊酯污染的最優(yōu)方法。筆者綜述了最新分離的擬除蟲(chóng)菊酯降解菌株及其特性;擬除蟲(chóng)菊酯降解酶及其基因;擬除蟲(chóng)菊酯及其代謝產(chǎn)物(間苯氧基苯甲酸等)的降解途徑。此外,還提出了擬除蟲(chóng)菊酯類農(nóng)藥微生物降解研究的發(fā)展趨勢(shì)和需要進(jìn)一步解決的問(wèn)題。

      關(guān)鍵詞:擬除蟲(chóng)菊酯;微生物降解;降解酶;降解途徑;間苯氧基苯甲酸

      中圖分類號(hào):X592? 文獻(xiàn)標(biāo)志碼:A

      文章編號(hào):1002-1302(2021)17-0028-11

      收稿日期:2021-02-01

      基金項(xiàng)目:西安市科技局項(xiàng)目(編號(hào):2017127SF/SF021);。

      作者簡(jiǎn)介:趙葉子(1992—),女,陜西西安人,碩士研究生,主要從事微生物有機(jī)污染修復(fù)研究。E-mail:jzzszyj8943@163.com。

      通信作者:王 錚,博士,副教授,主要從事環(huán)境評(píng)價(jià)與水處理研究。E-mail:Wang_zheng1992@126.com。

      擬除蟲(chóng)菊酯類農(nóng)藥是人工合成的天然除蟲(chóng)菊酯的類似物[1],根據(jù)擬除蟲(chóng)菊酯分子中是否含有氰基,將其分為Ⅰ型和Ⅱ型,Ⅱ型具有氰基及更強(qiáng)的毒性[2,3]。

      擬除蟲(chóng)菊酯通過(guò)開(kāi)放鈉離子通道,實(shí)現(xiàn)殺蟲(chóng)目的[4]。因其高效的殺蟲(chóng)能力,使其在農(nóng)林業(yè)生產(chǎn)中發(fā)揮重要作用[5]。隨著該類農(nóng)藥的大范圍大量使用,其負(fù)面影響被不斷報(bào)道。擬除蟲(chóng)菊酯及其代謝產(chǎn)物在環(huán)境及人體尿液、母乳中普遍檢出,其對(duì)人體神經(jīng)系統(tǒng)、生殖系統(tǒng)造成干擾,可能引起血液癌癥、氧化應(yīng)激及DNA損傷等危害已被證實(shí)[6-11]。因此,世界各國(guó)都制定了農(nóng)產(chǎn)品中擬除蟲(chóng)菊酯類農(nóng)藥殘留的限定標(biāo)準(zhǔn)[12-13]。

      針對(duì)此環(huán)境問(wèn)題,微生物降解是一種環(huán)境及經(jīng)濟(jì)友好的修復(fù)技術(shù),目前研究者已在實(shí)驗(yàn)室獲得大量研究成果,對(duì)這些研究成果的梳理,將有助于農(nóng)藥微生物降解技術(shù)的進(jìn)一步發(fā)展和應(yīng)用。

      本文綜述了已分離的擬除蟲(chóng)菊酯降解菌株,及其生理生化特性、關(guān)鍵功能基因和酶、擬除蟲(chóng)菊酯降解途徑,并重點(diǎn)關(guān)注了其代謝產(chǎn)物間苯氧基苯甲酸(3-phenoxybenzoic acid,簡(jiǎn)稱PBA)等的降解,以期為擬除蟲(chóng)菊酯的安全利用與污染修復(fù)提供參考。

      1 降解菌株及其生理生化、降解特性

      微生物可將有機(jī)污染物降解成更具安全性的產(chǎn)物,甚至完全礦化,廣泛應(yīng)用于環(huán)境污染物的降解中[10,14]。Kaufman等最初描述了芐氯菊酯在土壤中的降解[15]。1988年Maloney等從來(lái)自污水處理廠的樣品中首次得到了能夠有效降解擬除蟲(chóng)菊酯的菌株,共得到3個(gè)菌株,分別為熒光假單胞菌(Pseudomonas fluorescens) SM-1、無(wú)色桿菌屬(Achromobacter sp.) SM-2、蠟樣芽孢桿菌(Bacillus cereus) SM-3[16]。自此,大量可以有效降解擬除蟲(chóng)菊酯的菌種被篩選鑒定。這些菌種大都能以某種擬除蟲(chóng)菊酯作為唯一碳源,進(jìn)行生長(zhǎng)代謝。筆者共整理了來(lái)自45個(gè)不同菌屬的擬除蟲(chóng)菊酯降解菌,包括細(xì)菌26個(gè)菌屬、真菌14個(gè)菌屬、放線菌5個(gè)菌屬,其生理生化、降解特性等詳細(xì)信息見(jiàn)表1。所有菌屬中,芽孢桿菌屬(Bacillus)、蒼白桿菌屬(Ochrobactrum)、假單胞菌屬(Pseudomonas)、沙雷氏菌屬(Serratia)及鏈霉菌屬(Streptomyces)包含了較多菌株。大部分功能菌分離自污染環(huán)境,如污染土壤、污水、活性污泥等,亦有以茶葉、酒曲、動(dòng)植物體,甚至來(lái)自大西洋的海綿等作為分離源的報(bào)道[17-22]。絕大多數(shù)菌株在溫和環(huán)境(pH值=7,30 ℃ 左右)中有較高活性。受益于擬除蟲(chóng)菊酯結(jié)構(gòu)的相似性,篩選所得的菌株,往往具有對(duì)擬除蟲(chóng)菊酯類農(nóng)藥降解的廣譜性,如乙酸鈣不動(dòng)桿菌(Acinetobacter calcoaceticus) MCm5[23]、類短短芽孢桿菌(Brevibacillus parabrevis) FCm9[23]、小鏈小桿菌屬(Catellibacterium sp.) CC-5[24]等。

      具有廣譜、高效、高耐受性、降解徹底特性的菌株是研究者期待獲得的菌株。虞云龍等分離得到具有農(nóng)藥降解廣譜性的菌株產(chǎn)堿菌屬(Alcaligenes) sp. YF11,能夠同時(shí)降解部分?jǐn)M除蟲(chóng)菊酯和一硫代磷酸酯[25]。陳銳等篩選出的草酸青霉(Penicillium oxalicum) SSCL-5,可在24 h內(nèi)降解97%的氯氰菊酯(初始濃度400 mg/L),具有較為突出的降解速率[26]。Chen等從土壤中分離出的Bacillus sp. DG-02,可耐受濃度高達(dá)1 200 mg/L的甲氰菊酯,能有效降解7種擬除蟲(chóng)菊酯,并在土壤修復(fù)中取得較好的效果,證明了其實(shí)際應(yīng)用潛力[27],該研究組之后分離得到的菌株蘇云金芽孢桿菌(Bacillus thuringiensis) ZS-19[28]、黃褐假單胞菌(Pseudomonas fulva) P31[14],亦有廣譜、耐受性強(qiáng)及降解效果好的特點(diǎn),其中Bacillus thuringiensis ZS-19 對(duì)于PBA具有很好的降解效果[28]。研究者通過(guò)構(gòu)建復(fù)合菌系協(xié)同降解的方式使礦化更為徹底,Zhao等將地衣芽孢桿菌(Bacillus licheniformis) B-1 和米曲霉(Aspergillus oryzae) M-4共同培養(yǎng)用于氯氰菊酯的降解[19],相較單一菌種的降解,提高了礦化程度。

      擬除蟲(chóng)菊酯具有1~3個(gè)手型中心,2~8個(gè)立體異構(gòu)體[2-3],因此,菌株對(duì)于擬除蟲(chóng)菊酯的降解顯示出結(jié)構(gòu)選擇性[29-30],Lee等發(fā)現(xiàn)菌株弗氏耶爾森菌(Yersinia frederiksenii)、溫和氣單胞菌(Aeromonas sobria)、 Erwinia carotovora在降解芐氯菊酯過(guò)程中,反式異構(gòu)體相對(duì)順式異構(gòu)體更易被降解[31]。

      除去傳統(tǒng)的富集培養(yǎng)篩選法,研究者也通過(guò)構(gòu)建基因工程菌的方式獲取菌株。Lan等設(shè)計(jì)載體pETDuet,用于同時(shí)表達(dá)2個(gè)目的基因。在共表達(dá)載體上克隆了黃桿菌屬(Flavobacterium sp.)中的有機(jī)磷水解酶基因opd和來(lái)自尖音庫(kù)蚊(Culex pipiens)的酯酶基因B1,實(shí)現(xiàn)了單一微生物同時(shí)降解有機(jī)磷、氨基甲酸酯和擬除蟲(chóng)菊酯殺蟲(chóng)劑的目的[32],為復(fù)配農(nóng)藥的同時(shí)降解提供了新思路。

      目前,所取得的成果多局限于實(shí)驗(yàn)室,在實(shí)際應(yīng)用方面還缺少報(bào)道。構(gòu)建具有優(yōu)越特性的基因工程菌是值得探索的研究方向。

      2 降解擬除蟲(chóng)菊酯的酶及基因

      2.1 降解酶

      在微生物降解有機(jī)污染物過(guò)程中,實(shí)際起作用的是微生物體內(nèi)的各種酶。降解酶往往比產(chǎn)生這種酶的微生物細(xì)胞具有更強(qiáng)的抗逆性及降解效率,特別是在低農(nóng)藥濃度條件下[77]。早在1993年,Maloney等通過(guò)層析技術(shù)從Bcillus cereus SM3中分離獲得1種羧酸酯酶,命名為氯菊酯酶(permethrinase ),并采用離子交換色譜法和凝膠過(guò)濾色譜法進(jìn)行純化,首次實(shí)現(xiàn)了通過(guò)無(wú)細(xì)胞的酶系統(tǒng)降解擬除蟲(chóng)菊酯[78]。類似的,從黑曲霉(Aspergillus niger) ZD11細(xì)胞提取物中提取純化的新型擬除蟲(chóng)菊酯水解酶,分子量為56 ku、pI值(等電點(diǎn))為5.4,當(dāng)溫度為45 ℃、pH值為6.5時(shí)酶活性最佳,該酶優(yōu)先降解對(duì)于哺乳動(dòng)物更具毒害作用的反式異構(gòu)體擬除蟲(chóng)菊酯,人肝臟羧酸酯酶也存在這一特性[79-80]。1993年至今,陸續(xù)有研究者對(duì)擬除蟲(chóng)菊酯降解酶進(jìn)行純化(部分酶信息見(jiàn)表2),多為酯酶。其中大多數(shù)酶為胞內(nèi)酶,而銅綠假單胞菌(Pseudomonas aeruginosa) GF31降解氯氰菊酯過(guò)程中起催化作用的氨肽酶是一種胞外酶[81]。圖1描述了表2所列部分酶之間的進(jìn)化關(guān)系(作圖軟件為MEGA X 64-bit,蛋白質(zhì)序列來(lái)自:https://www.ncbi.nlm.nih.gov/protein)。2018年,Gangola等發(fā)現(xiàn)漆酶參與了氯氰菊酯降解過(guò)程,這是首次發(fā)現(xiàn)漆酶作用于擬除蟲(chóng)菊酯降解[45]。漆酶已被發(fā)現(xiàn)可用于多種有機(jī)污染的環(huán)境修復(fù),白腐菌是常見(jiàn)的漆酶生產(chǎn)源,其在食用菌菌渣中也大量存在[82]。這無(wú)疑為菌渣的利用提供了新途徑。

      2.2 降解基因

      隨著基因工程技術(shù)的進(jìn)步,對(duì)于擬除蟲(chóng)菊酯降解酶的研究已發(fā)展到基因?qū)用妗?006年,Wu等通過(guò)構(gòu)建基因文庫(kù),從Klebsiella sp. ZD112中得到擬除蟲(chóng)菊酯水解酶基因EstP,基因全長(zhǎng)1 924 bp,編碼637個(gè)氨基酸,該酯酶不但可以降解擬除蟲(chóng)菊酯,還可以催化降解其他底物,如有機(jī)磷農(nóng)藥,這是關(guān)于擬除蟲(chóng)菊酯降解基因的首次報(bào)道[80]。Hu等從擬除蟲(chóng)菊酯降解菌Bacillus cereus BCC01的基因組文庫(kù)中篩選并鑒定了關(guān)鍵的擬除蟲(chóng)菊酯水解酶基因EstA,該酶的Ser94位于固定的五肽基序列Gly-X-Ser-X-Gly中,形成了一個(gè)凹形的活性中心,用于氯氰菊酯的生物降解,這是酯酶的典型特征[46]。絲氨酸在酶的催化位點(diǎn)參與?;磻?yīng)具有類似的情況,已在幾種擬除蟲(chóng)菊酯水解酶中發(fā)現(xiàn),如Sys410[86]、PytY[87]、Pye3[83]和Est684[91]。

      隨著基因?qū)用嫜芯康纳钊?,宏基因組技術(shù)作為一種輔助工具幫助研究者更具方向性地達(dá)到科研目的。Hong等將甲基對(duì)硫磷降解基因mpd引入能夠降解甲氰菊酯的菌株Sphingobium sp. JQL4-5的染色體中,成功構(gòu)建出能夠同時(shí)降解2種污染物的菌株[93]。目前此類研究成果相對(duì)有限,是未來(lái)期待發(fā)展的方向。

      3 降解途徑

      在不同報(bào)道中,擬除蟲(chóng)菊酯降解途徑有相似性,但在中間過(guò)程及產(chǎn)物方面存在差異,這些差異可能是由于微生物的種類、擬除蟲(chóng)菊酯的結(jié)構(gòu)及培養(yǎng)條件差異造成的。

      3.1 酯鍵的斷裂

      擬除蟲(chóng)菊酯微生物降解機(jī)制的核心部分是酯鍵的斷裂,將原農(nóng)藥分解為羧酸和醇[44]。此步驟通常為降解過(guò)程的的第1步,以O(shè)chrobactrum tritici pyd-1降解甲氰菊酯為例,酯鍵斷裂后甲氰菊酯分解為間苯氧基氰基芐醇(3-phenoxybenzyl alcohol,PBAlc)和2,2,3,3-四甲基環(huán)丙烷甲酸(圖2)[54]。類似過(guò)程中,多數(shù)情況下含環(huán)丙烷基團(tuán)的降解產(chǎn)物為酸,含間苯氧基基團(tuán)的產(chǎn)物為醇。也存在特殊情況,如在Brevibacterium aureum降解三氟氯氰菊酯過(guò)程中,原農(nóng)藥首先被分解為2,2,3,3-四甲基環(huán)丙烷甲醇和4-氟代-3-苯氧基苯甲酸(圖3)[48]。

      大多數(shù)微生物對(duì)擬除蟲(chóng)菊酯的降解遵循上述規(guī)律,也存在特例,如Lysinibacillus sphaericus FLQ-11-1降解氟氯氰菊酯過(guò)程中,第1步并非打開(kāi)酯鍵[52]。

      3.2 常見(jiàn)代謝產(chǎn)物及其轉(zhuǎn)化關(guān)系

      “3.1”節(jié)相關(guān)降解案例中出現(xiàn)的PBAlc,以及間苯氧基芐醛(3-Phenoxybenzaldehyde,PBAld)和PBA是擬除蟲(chóng)菊酯降解過(guò)程中最常見(jiàn)的代謝物,相比母體它們具有更強(qiáng)的毒性[94-95]。如PBA半衰期長(zhǎng)達(dá)180 d[96],具有雌性激素特性,是一種內(nèi)分泌米干擾物,對(duì)人體具有一定毒性[97-98]。

      大多數(shù)擬除蟲(chóng)菊酯降解過(guò)程中都會(huì)出現(xiàn)這些常見(jiàn)的中間產(chǎn)物,特別是結(jié)構(gòu)中包括間苯氧基基團(tuán)的擬除蟲(chóng)菊酯,而氟氯氰菊酯、聯(lián)苯菊酯、丙烯菊酯等不包括典型間苯氧基基團(tuán)的擬除蟲(chóng)菊酯在降解過(guò)程中生成其他產(chǎn)物,但依然遵循酯鍵斷裂生成醇和酸的規(guī)律。如Acidomonas sp. 降解烯丙菊酯過(guò)程中生成一個(gè)烯丙酮醇[33],聯(lián)苯菊酯的微生物降解過(guò)程中,檢測(cè)到2-甲基-3-聯(lián)苯甲醇[69]。

      在擬除蟲(chóng)菊酯代謝過(guò)程中,PBAlc、PBAld及PBA三者之間常常相互轉(zhuǎn)化,Bacillus licheniformis CY-012[99]、Pseudomonas fluorescens SM-1[16]可氧化PBAlc為PBA,Acinetobacter baumannii ZH-14[34]轉(zhuǎn)化PBAlc為PBAld,進(jìn)一步氧化為PBA。而Microsphaeropsis sp. CBMAI1675[22]可將PBAld轉(zhuǎn)化為PBAlc,在Aspergillus oryzae M-4[100]降解目標(biāo)物過(guò)程中,可觀察到PBAlc與PBA的相互轉(zhuǎn)換。

      3.3 常見(jiàn)代謝產(chǎn)物的降解途徑

      相比擬除蟲(chóng)菊酯本身,針對(duì)其代謝產(chǎn)物如何降解的研究較少,但此類研究同樣具有重要意義。其中,被討論較多的代謝產(chǎn)物是PBA[10]。

      早期的相關(guān)研究?jī)H限于細(xì)菌范疇,特別是Pseudomonas sp.菌株。1990年Engesser等首次分離得到1株不能完全降解PBA的菌株類產(chǎn)堿假單胞菌(Pseudomonas pseudoalcaligenes) POB310[101],并在后續(xù)研究中構(gòu)建了基因工程菌Pseudomonas sp. B13-D5及Pseudomonas sp. B13-ST1,新菌株同時(shí)具有降解氯酚的能力[96]。亦有研究者進(jìn)行了Micrococcus sp.[53]、Sphingobium sp.[64,84]、Bacillus sp.[27]、Sphingobium sp.[39,102]及Stenotrophomonas sp.[66]等細(xì)菌菌屬針對(duì)PBA降解的研究。

      針對(duì)PBA降解的真菌領(lǐng)域研究起步較晚。首次報(bào)道是在2012年,袁懷瑜等篩選得到可在22 h內(nèi)完全降解100 mg/L PBA的菌株Aspergillus niger YAT1[103-104]。Eurotium cristatum ET1亦為PBA的有效降解真菌菌株,其代謝產(chǎn)物包括苯酚和鄰苯二酚[17]。Aspergillus oryzae M-4降解PBA的產(chǎn)物食子酸為有毒代謝物[100],該菌株無(wú)法單獨(dú)代謝,加入Bacillus licheniformis B-1共培養(yǎng)可降解沒(méi)食子酸,實(shí)現(xiàn)無(wú)毒化[19],真菌中常有的木質(zhì)素降解酶漆酶、LiP和MnP也與PBA的降解相關(guān)[94],它們?cè)谑秤镁斜黄毡闄z測(cè)到[82]。

      綜上所述,并非所有的擬除蟲(chóng)菊酯降解研究均實(shí)現(xiàn)了完全礦化、無(wú)毒化。構(gòu)建復(fù)合菌系可以幫助實(shí)現(xiàn)這一目標(biāo)。

      4 結(jié)論與展望

      隨著世界范圍內(nèi)人們環(huán)保意識(shí)的增強(qiáng),研究者們就微生物修復(fù)農(nóng)藥污染開(kāi)展了大量研究,其中關(guān)于擬除蟲(chóng)菊酯的降解也取得了較好的研究成果。筆者主要從降解菌株、降解基因及酶、降解機(jī)制幾個(gè)方面對(duì)擬除蟲(chóng)菊酯類農(nóng)藥的微生物降解的現(xiàn)有研究進(jìn)行了綜述。首次對(duì)涉及45個(gè)菌屬的擬除蟲(chóng)菊酯降解菌株信息進(jìn)行了總結(jié)歸納;對(duì)擬除蟲(chóng)菊酯的降解基因及酶進(jìn)行了信息總結(jié),著重降解特性及分類;通過(guò)對(duì)微生物降解擬除蟲(chóng)菊酯的不同案例進(jìn)行歸納整理,總結(jié)出了擬除蟲(chóng)菊酯降解途徑的一般性規(guī)律,及可能存在的特殊情況;并著重分析了代謝產(chǎn)物PBA的降解,較為全面地對(duì)1990年至今的相關(guān)研究成果進(jìn)行了總結(jié)。

      現(xiàn)有研究成果為將來(lái)擬除蟲(chóng)菊酯類農(nóng)藥的降解及微生物環(huán)境修復(fù)相關(guān)研究提供了思路:(1)現(xiàn)有的大量研究成果,為利用基因工程技術(shù),人為構(gòu)建更為高效、廣譜、抗逆的基因工程菌提供了良好基礎(chǔ);(2)構(gòu)建多功能復(fù)合菌系,是以較低成本實(shí)現(xiàn)高效礦化有機(jī)污染物的途徑,現(xiàn)有微生物降解擬除蟲(chóng)菊酯研究極少涉及這一領(lǐng)域;(3)土壤環(huán)境降解的研究有利于克服實(shí)際應(yīng)用過(guò)程中的復(fù)雜環(huán)境因素,現(xiàn)有研究在土壤環(huán)境降解研究方面較為薄弱;(4)擬除蟲(chóng)菊酯的常見(jiàn)代謝產(chǎn)物PBA等,具有相比原農(nóng)藥更強(qiáng)的毒性及半衰期,但針對(duì)性的環(huán)境修復(fù)研究較少,此類研究具有重要意義;(5)隨著萃取技術(shù)的優(yōu)化,低抗性、易降解的天然除蟲(chóng)菊酯大量應(yīng)用具有了可行性[105],推進(jìn)此過(guò)程或開(kāi)發(fā)更為高效、環(huán)保的新型菊酯,并進(jìn)行相關(guān)微生物降解研究,亦有利于降低擬除蟲(chóng)菊酯造成的環(huán)境負(fù)擔(dān)。

      參考文獻(xiàn):

      [1]Smith T M,Stratton G W. Effects of synthetic pyrethroid insecticides on nontarget organisms[J]. Residue Reviews,1986,97:93-120.

      [2]Kaviraj A,Gupta A. Biomarkers of type Ⅱ synthetic pyrethroid pesticides in freshwater fish[J]. BioMed Research International,2014(9):928063.

      [3]Laskowski D A. Physical and chemical properties of pyrethroids[J]. Reviews of Environmental Contamination and Toxicology,2002,174:49-170.

      [4]Chrustek A,Holyńska-Iwan I,Dziembowska I,et al. Current research on the safety of pyrethroids used as insecticides[J]. Medicina,2018,54(4):61.

      [5]Kuivila K M,Hladik M L,Ingersoll C G,et al. Occurrence and potential sources of pyrethroid insecticides in stream sediments from seven U.S. metropolitan areas[J]. Environmental Science & Technology,2012,46(8):4297-4303.

      [6]Gammon D W,Liu Z,Chandrasekaran A,et al. Pyrethroid neurotoxicity studies with bifenthrin indicate a mixed type Ⅰ/Ⅱ mode of action[J]. Pest Management Science,2019,75(4):1190-1197.

      [7]Ye X Q,Pan W Y,Zhao S L,et al. Relationships of pyrethroid exposure with gonadotropin levels and pubertal development in Chinese Boys[J]. Environmental Science & Technology,2017,51(11):6379-6386.

      [8]Navarrete-Meneses M,Pérez-Vera P. Pyrethroid pesticide exposure and hematological cancer:epidemiological,biological and molecular evidence[J]. Reviews on Environmental Health,2019,34(2):197-210.

      [9]Zepeda-Arce R,Rojas-García A E,Benitez-Trinidad A,et al. Oxidative stress and genetic damage among workers exposed primarily to organophosphate and pyrethroid pesticides[J]. Environmental Toxicology,2017,32(6):1754-1764.

      [10]Huang Y C,Xiao L J,Li F Y,et al. Microbial degradation of pesticide residues and an emphasis on the degradation of cypermethrin and 3-phenoxy benzoic acid:a review[J]. Molecules,2018,23(9):2313.

      [11]夏曉華,張林霞,司松波,等. 高效氯氟氰菊酯對(duì)泥鰍的急性毒性及生理毒性[J]. 江蘇農(nóng)業(yè)科學(xué),2013,41(6):270-272.

      [12]國(guó)家衛(wèi)生健康委員會(huì),中華人民共和國(guó)農(nóng)業(yè)農(nóng)村部,國(guó)家市場(chǎng)監(jiān)督管理總局. 食品安全國(guó)家標(biāo)準(zhǔn) 食品中農(nóng)藥最大殘留限量:GB 2763—2019[S]. 北京:中國(guó)標(biāo)準(zhǔn)出版社,2019.

      [13]EU. Amending annexes Ⅱ,Ⅲ and Ⅴ to regulation (EC):396/2005[S]. EU,2005.

      [14]Yang J J,F(xiàn)eng Y M,Zhan H,et al. Characterization of a pyrethroid-degrading Pseudomonas fulva strain P31 and biochemical degradation pathway of d-phenothrin[J]. Frontiers in Microbiology,2018,9:1003.

      [15]Kaufman D D,Haynes S C,Jordan E G,et al. Permethrin degradation in soil and microbial cultures[J]. American Chemical Society,1977,42:147-161.

      [16]Maloney S E,Maule A,Smith A R. Microbial transformation of the pyrethroid insecticides:permethrin,deltamethrin,fastac,fenvalerate,and fluvalinate[J]. Applied and Environmental Microbiology,1988,54(11):2874-2876.

      [17]Hu K D,Deng W Q,Zhu Y T,et al. Simultaneous degradation of β-cypermethrin and 3-phenoxybenzoic acid by Eurotium cristatum ET1,a novel “golden flower fungus” strain isolated from Fu Brick Tea[J]. Microbiology Open,2018,8(7):e776.

      [18]孫麗娜,黃開(kāi)華,高新華,等. 具氯氰菊酯降解功能的植物內(nèi)生細(xì)菌分離鑒定及降解特性研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2020,39(1):70-77.

      [19]Zhao J Y,Chi Y L,Xu Y C,et al. Co-metabolic degradation of β-cypermethrin and 3-phenoxybenzoic acid by co-culture of Bacillus licheniformis B-1 and Aspergillus oryzae M-4[J]. PLoS One,2016,11(11):e0166796.

      [20]Tian J W,Long X F,Zhang S,et al. Screening cyhalothrin degradation strains from locust epiphytic bacteria and studying Paracoccus acridae SCU-M53 cyhalothrin degradation process[J]. Environmental Science and Pollution Research International,2018,25(12):11505-11515.

      [21]王若瑜,曹 明,陳晶瑜.大曲中氯氟氰菊酯降解菌的分離篩選及特性研究[J]. 中國(guó)釀造,2020,39(3):21-25.

      [22]Birolli W G,Alvarenga N,Seleghim M H,et al. Biodegradation of the pyrethroid pesticide esfenvalerate by Marine-Derived fungi[J]. Marine Biotechnology,2016,18(4):511-520.

      [23]Akbar S,Sultan S,Kertesz M. Determination of cypermethrin degradation potential of soil bacteria along with plant growth-promoting characteristics[J]. Current Microbiology,2015,70(1):75-84.

      [24]Zhao H,Geng Y,Chen L,et al. Biodegradation of cypermethrin by a novel Catellibacterium sp. strain CC-5 isolated from contaminated soil[J]. Canadian Journal of Microbiology,2013,59(5):311-317.

      [25]虞云龍,宋鳳鳴,鄭 重,等. 一株廣譜性農(nóng)藥降解菌(Alcaligenes sp.)的分離與鑒定[J]. 浙江農(nóng)業(yè)大學(xué)學(xué)報(bào),1997(2):3-7.

      [26]陳 銳,瞿 佳,孫曉宇,等. 氯氰菊酯降解菌草酸青霉SSCL-5分離鑒定及降解特性[J]. 生物技術(shù)通報(bào),2020,36(6):120-127.

      [27]Chen S H,Deng Y Y,Chang C Q,et al. Fenpropathrin biodegradation pathway in Bacillus sp. DG-02 and its potential for bioremediation of pyrethroid-contaminated soils[J]. Journal of Agricultural and Food Chemistry,2014,62(10):2147-2157.

      [28]Chen S H,Deng Y Y,Chang C Q,et al. Pathway and kinetics of cyhalothrin biodegradation by Bacillus thuringiensis strain ZS-19[J]. Scientific Reports,2015,5(1):8784.

      [29]Pérez-Fernández V,García M A,Marina M L. Characteristics and enantiomeric analysis of chiral pyrethroids[J]. Journal of Chromatography A,2010,1217(7):968-989.

      [30]張亞杰,李劭彤,李朝陽(yáng),等. 菊酯農(nóng)藥微生物降解的異構(gòu)體選擇性特征[J]. 江蘇農(nóng)業(yè)科學(xué),2019,47(10):278-280,290.

      [31]Lee S,Gan J Y,Kim J S,et al. Microbial transformation of pyrethroid insecticides in aqueous and sediment phases[J]. Environmental Toxicology and Chemistry,2004,23(1):1-6.

      [32]Lan W S,Gu J D,Zhang J L,et al. Coexpression of two detoxifying pesticide-degrading enzymes in a genetically engineered bacterium[J]. International Biodeterioration & Biodegradation,2006,58(2):70-76.

      [33]Paingankar M,Jain M,Deobagkar D. Biodegradation of allethrin,a pyrethroid insecticide,by an Acidomonas sp.[J]. Biotechnology Letters,2005,27(23/24):1909-1913.

      [34]Zhan H,Wang H S,Liao L S,et al. Kinetics and novel degradation pathway of permethrin in Acinetobacter baumannii ZH-14[J]. Frontiers in Microbiology,2018,9(2):98.

      [35]Tang J,Hu Q,Lei D,et al. Characterization of deltamethrin degradation and metabolic pathway by co-culture of Acinetobacter junii LH-1-1 and Klebsiella pneumoniae BPBA052[J]. AMB Express,2020,10(1):106.

      [36]Ma Y,Chen L S,Qiu J G. Biodegradation of beta-cypermethrin by a novel Azoarcus indigens strain HZ5[J]. Journal of Environmental Science and Health,2013,48(10):851-859.

      [37]黃文文,劉晶晶,葉美玲,等. 甲氰菊酯降解菌Z1-3的分離鑒定及講解特性[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2010(10):103-109,114.

      [38]Sundaram S,Das M T,Thakur I S. Biodegradation of cypermethrin by Bacillus sp.in soil microcosm and in-vitro toxicity evaluation on human cell line[J]. International Biodeterioration & Biodegradation,2013,77(1):39-44.

      [39]Liu F F,Chi Y L,Wu S,et al. Simultaneous degradation of cypermethrin and its metabolite,3-phenoxybenzoic acid,by the cooperation of Bacillus licheniformis B-1 and Sphingomonas sp. SC-1[J]. Journal of Agricultural and Food Chemistry,2014,62(33):8256-8262.

      [40]Akbar S,Sultan S,Kertesz M. Bacterial community analysis of cypermethrin enrichment cultures and bioremediation of cypermethrin contaminated soils[J]. Journal of Basic Microbiology,2015,55(7):819-829.

      [41]Tiwary M,Dubey A K. Cypermethrin bioremediation in presence of heavy metals by a novel heavy metal tolerant strain,Bacillus sp. AKD1[J]. International Biodeterioration & Biodegradation,2016,108(3):42-47.

      [42]Panka J,Sharma A,Gangola S,et al. Novel pathway of cypermethrin biodegradation in a Bacillus sp. strain SG2 isolated from cypermethrin-contaminated agriculture field[J]. 3 Biotech,2016,6(1):45.

      [43]Lee Y S,Lee J H,Hwang E J,et al. Characterization of biological degradation cypermethrin by Bacillus amyloliquefaciens AP01[J]. Journal of Applied Biological Chemistry,2016,59(1):9-12.

      [44]蘇宏南,陳切希,趙甲元,等. 微生物共培養(yǎng)降解β-氯氰菊酯的適宜條件[J]. 食品與發(fā)酵工業(yè),2018,44(7):8-12.

      [45]Gangola S,Sharma A,Bhatt P,et al. Presence of esterase and laccase in Bacillus subtilis facilitates biodegradation and detoxification of cypermethrin[J]. Scientific Reports,2018,8(1):12755.

      [46]Hu W,Lu Q Q,Zhong G H,et al. Biodegradation of pyrethroids by a hydrolyzing carboxylesterase EstA from Bacillus cereus BCC01[J]. Applied Sciences-Basel,2019,9(3):e414-e477.

      [47]Tang J,Liu B,Chen T T,et al. Screening of a beta-cypermethrin-degrading bacterial strain Brevibacillus parabrevis BCP-09 and its biochemical degradation pathway[J]. Biodegradation,2018,29(6):525-541.

      [48]Chen S H,Dong Y H,Chang C Q,et al. Characterization of a novel cyfluthrin-degrading bacterial strain Brevibacterium aureum and its biochemical degradation pathway[J]. Bioresource Technology,2013,132(1):16-23.

      [49]Zhang S B,Yin L B,Liu Y,et al. Cometabolic biotransformation of fenpropathrin by Clostridium species strain ZP3[J]. Biodegradation,2011,22(5):869-875.

      [50]廖 敏,張海軍,謝曉梅.擬除蟲(chóng)菊酯類農(nóng)藥殘留降解菌產(chǎn)氣腸桿菌的分離、鑒定及降解特性研究[J]. 環(huán)境科學(xué),2009,30(8):2445-2451.

      [51]張松柏,張德詠,羅香文,等. 一株高效降解氯氰菊酯細(xì)菌的分離鑒定及降解特性[J]. 中國(guó)農(nóng)學(xué)通報(bào),2009,25(3):265-270.

      [52]Hu G P,Zhao Y,Song F Q,et al. Isolation,identification and cyfluthrin-degrading potential of a novel Lysinibacillus sphaericus strain,F(xiàn)LQ-11-1[J]. Research in Microbiology,2014,165(2):110-118.

      [53]Tallur P N,Megadi V B,Ninnekar H Z. Biodegradation of cypermethrin by Micrococcus sp. strain CPN 1[J]. Biodegradation,2008,19(1):77-82.

      [54]Wang B Z,Ma Y,Zhou W Y,et al. Biodegradation of synthetic pyrethroids by Ochrobactrum tritici strain pyd-1[J]. World Journal of Microbiology & Biotechnology,2011,27(10):2315-2324.

      [55]Chen S H,Hu M Y,Liu J J,et al. Biodegradation of beta-cypermethrin and 3-phenoxybenzoic acid by a novel Ochrobactrum lupini DG-S-01[J]. Journal of Hazardous Materials,2011,187(1/2/3):433-440.

      [56]Saikia N,Das S K,Patel B K,et al. Biodegradation of beta-cyfluthrin by Pseudomonas stutzeri strain S1[J]. Biodegradation,2005,16(6):581-589.

      [57]Zhang C,Wang S H,Yan Y C. Isomerization and biodegradation of beta-cypermethrin by Pseudomonas aeruginosa CH7 with biosurfactant production[J]. Bioresource Technology,2011,102(14):7139-7146.

      [58]Selvam A,Thatheyus J,Vidhya R. Biodegradation of the synthetic pyrethroid,fenvalerate by Pseudomonas viridiflava[J]. American Journal of Microbiological Research,2013,1(2):32-38.

      [59]Song H H,Zhou Z R,Liu Y X,et al. Kinetics and mechanism of fenpropathrin biodegradation by a newly isolated Pseudomonas aeruginosa sp. strain JQ-41[J]. Current Microbiology,2015,71(3):326-332.

      [60]Zhang X Q,Hao X X,Huo S S,et al. Isolation and identification of the Raoultella ornithinolytica-ZK4 degrading pyrethroid pesticides within soil sediment from an abandoned pesticide plant[J]. Archives of Microbiology,2019,201(9):1207-1217.

      [61]Zhang C,Jia L,Wang S H,et al. Biodegradation of beta-cypermethrin by two Serratia spp. with different cell surface hydrophobicity[J]. Bioresource Technology,2010,101(10):3423-3429.

      [62]Cycoń M,Z·mijowska A,Piotrowska-Seget Z. Enhancement of deltamethrin degradation by soil bioaugmentation with two different strains of Serratia marcescens[J]. International Journal of Environmental Science and Technology,2014,11(5):1305-1316.

      [63]Prashar P. Isolation and identification of cypermethrin degrading Serratia nematodiphila from cauliflower rhizosphere[J]. International Journal of Pharmtech Research,2015,7(1):217-230.

      [64]Guo P,Wang B Z,Hang B J,et al. Pyrethroid-degrading Sphingobium sp. JZ-2 and the purification and characterization of a novel pyrethroid hydrolase[J]. International Biodeterioration & Biodegradation,2009,63(8):1107-1112.

      [65]崔志峰,汪 華,王渭霞,等. 氯氰菊酯降解菌CY22-7的分離鑒定及降解特性研究[J]. 環(huán)境污染與防治,2009,31(11):35-38,43.

      [66]Chen S H,Yang L,Hu M Y,et al. Biodegradation of fenvalerate and 3-phenoxybenzoic acid by a novel Stenotrophomonas sp. strain ZS-S-01 and its use in bioremediation of contaminated soils[J]. Applied Microbiology and Biotechnology,2011,90(2):755-767.

      [67]Saikia N,Gopal M. Biodegradation of beta-cyfluthrin by fungi[J]. Journal of Agricultural and Food Chemistry,2004,52(5):1220-1223.

      [68]秦 坤,朱魯生,王金花.氯氰菊酯降解真菌的篩選及其降解特性研究[J]. 環(huán)境工程學(xué)報(bào),2010,4(4):950-954.

      [69]Chen S H,Luo J J,Hu M Y,et al. Microbial detoxification of bifenthrin by a novel yeast and its potential for contaminated soils treatment[J]. PLoS One,2012,7(2):e30862.

      [70]Chen S H,Hu Q B,Hu M Y,et al. Isolation and characterization of a fungus able to degrade pyrethroids and 3-phenoxybenzaldehyde[J]. Bioresource Technology,2011,102(17):8110-8116.

      [71]Palmer-Brown W,de Melo S P,Murphy C D. Cyhalothrin biodegradation in Cunninghamella elegans[J]. Environmental Science and Pollution Research International,2019,26(2):1414-1421.

      [72]張久剛,閆艷春. 一株氯氰菊酯降解菌16S rDNA,gyrB和GyrB的系統(tǒng)發(fā)育分析[J]. 生物信息學(xué),2008,6(2):55-58.

      [73]張玲玲,崔德杰,洪永聰,等. 氯氰菊酯降解放線菌的分離與篩選[J]. 青島農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2008,25(4):280-284.

      [74]Lin Q S,Chen S H,Hu M Y,et al. Biodegradation of cypermethrin by a newly isolated actinomycetes HU-S-01 from wastewater sludge[J]. International Journal of Environmental Science and Technology,2011,8(1):45-56.

      [75]Chen S H,Lai K P,Li Y A,et al. Biodegradation of deltamethrin and its hydrolysis product 3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-01[J]. Applied Microbiology and Biotechnology,2011,90(4):1471-1483.

      [76]Chen S H,Geng P,Xiao Y,et al. Bioremediation of β-cypermethrin and 3-phenoxybenzaldehyde contaminated soils using Streptomyces aureus HP-S-01[J]. Applied Microbiology and Biotechnology,2012,94(2):505-515.

      [77]Arbeli Z,F(xiàn)uentes C L. Accelerated biodegradation of pesticides:an overview of the phenomenon,its basis and possible solutions and a discussion on the tropical dimension[J]. Crop Protection,2007,26(12):1733-1746.

      [78]Maloney S E,Maule A,Smith A R. Purification and preliminary characterization of permethrinase from a pyrethroid-transforming strain of Bacillus cereus[J]. Applied and Environmental Microbiology,1993,59(7):2007-2013.

      [79]Liang W Q,Wang Z Y,Li H,et al. Purification and characterization of a novel pyrethroid hydrolase from Aspergillus niger ZD11[J]. Journal of Agricultural and Food Chemistry,2005,53(19):7415-7420.

      [80]Wu P C,Liu Y H,Wang Z Y,et al. Molecular cloning,purification,and biochemical characterization of a novel pyrethroid-hydrolyzing esterase from Klebsiella sp. strain ZD112[J]. Journal of Agricultural and Food Chemistry,2006,54(3):836-842.

      [81]Tang A X,Liu H,Liu Y Y,et al. Purification and characterization of a novel β-Cypermethrin-degrading aminopeptidase from Pseudomonas aeruginosa GF31[J]. Journal of Agricultural and Food Chemistry,2017,65(43):9412-9418.

      [82]Rajavat A S,Rai S,Pandiyan K,et al. Sustainable use of the spent mushroom substrate of Pleurotus Florida for production of lignocellulolytic enzymes[J]. Journal of Basic Microbiology,2020,60(2):173-184.

      [83]Li G,Wang K,Liu Y H. Molecular cloning and characterization of a novel pyrethroid-hydrolyzing esterase originating from the Metagenome[J]. Microbial Cell Factories,2008,7(1):38.

      [84]Wang B Z,Guo P,Hang B J,et al. Cloning of a novel Pyrethroid-Hydrolyzing carboxylesterase gene from Sphingobium sp. strain JZ-1 and characterization of the gene product[J]. Applied and Environmental Microbiology,2009,75(17):5496-5500.

      [85]Zhai Y,Li K,Song J L,et al. Molecular cloning,purification and biochemical characterization of a novel pyrethroid-hydrolyzing carboxylesterase gene from Ochrobactrum anthropi YZ-1[J]. Journal of Hazardous Materials,2012,221-222(4):206-212.

      [86]Fan X J,Liu X L,Huang R,et al. Identification and characterization of a novel thermostable pyrethroid-hydrolyzing enzyme isolated through metagenomic approach[J]. Microbial Cell Factories,2012,11(1):33.

      [87]Ruan Z Y,Zhai Y,Song J L,et al. Molecular cloning and characterization of a newly isolated pyrethroid-degrading esterase gene from a genomic library of Ochrobactrum anthropi YZ-1[J]. PLOS One,2013,8(10):e77329.

      [88]Chen S H,Lin Q S,Xiao Y,et al. Monooxygenase,a novel beta-cypermethrin degrading enzyme from Streptomyces sp.[J]. PLoS One,2013,8(9):e75450.

      [89]Wei T,F(xiàn)eng S X,Shen Y L,et al. Characterization of a novel thermophilic pyrethroid-hydrolyzing carboxylesterase from Sulfolobus tokodaii into a new family[J]. Journal of Molecular Catalysis B-Enzymatic,2013,97(1):225-232.

      [90]Cai X H,Wang W,Lin L,et al. Autotransporter domain-dependent enzymatic analysis of a novel extremely thermostable carboxylesterase with high biodegradability towards pyrethroid pesticides[J]. Scientific Reports,2017,7(1):3461.

      [91]Fan X J,Liang W Q,Li Y F,et al. Identification and immobilization of a novel cold-adapted esterase,and its potential for bioremediation of pyrethroid-contaminated vegetables[J]. Microbial Cell Factories,2017,16(1):149.

      [92]Luo X W,Zhang D Y,Zhou X G,et al. Cloning and characterization of a pyrethroid pesticide decomposing esterase gene,Est3385,from Rhodopseudomonas palustris PSB-S[J]. Scientific Reports,2018,8(1):7384.

      [93]Hong Y F,Jin Z,Qing H,et al. Characterization of a fenpropathrin-degreding strain and construction of a genetically engineered microorganism for simultaneous degradation of methyl parathion and fenpropathrin[J]. Journal of Environmental Management,2010,91(11):2295-2300.

      [94]Stratton G W,Corke C T. Toxicity of the insecticide permethrin and some degradation products towards algae and cyanobacteria[J]. Environmental Pollution,1982,29(1):71-80.

      [95]Zhao J Y,Chen X F,Jia D Y,et al. Identification of fungal enzymes involving 3-phenoxybenzoic acid degradation by using enzymes inhibitors and inducers[J]. MethodsX,2020,7(1):100772.

      [96]Halden R U,Tepp S M,Halden B G,et al. Degradation of 3-phenoxybenzoic acid in soil by Pseudomonas pseudoalcaligenes POB310(pPOB) and two modified Pseudomonas strains[J]. Applied and Environmental Microbiology,1999,65(8):3354-3359.

      [97]Dewailly E,F(xiàn)orde M,Robertson L,et al. Evaluation of pyrethroid exposures in pregnant women from 10 Caribbean countries[J]. Environment International,2014,63:201-206.

      [98]Sun H,Chen W,Xu X L,et al. Pyrethroid and their metabolite,3-phenoxybenzoic acid showed similar (anti)estrogenic activity in human and rat estrogen receptor α-mediated reporter gene assays[J]. Environmental Toxicology and Pharmacology,2014,37(1):371-377.

      [99]Tang J,Liu B,Shi Y,et al. Isolation,identification,and fenvalerate-degrading potential of Bacillus licheniformis CY-012[J]. Biotechnology & Biotechnological Equipment,2018,32(3):574-582.

      [100]Zhu Y T,Li J L,Yao K,et al. Degradation of 3-phenoxybenzoic acid by a filamentous fungus Aspergillus oryzae M-4 strain with self-protection transformation[J]. Applied Microbiology and Biotechnology,2016,100(22):9773-9786.

      [101]Engesser K H,F(xiàn)ietz W,F(xiàn)ischer P,et al. Dioxygenolytic cleavage of aryl ether bonds:1,2-dihydro-1,2-dihydroxy-4-carboxybenzophenone as evidence for initial 1,2-dioxygenation in 3-and 4-carboxy biphenyl ether degradation[J]. FEMS Microbiology Letters,1990,57(3):317-321.

      [102]Zhang J,Lang Z F,Zheng J W,et al. Sphingobium jiangsuense sp. nov.,a 3-phenoxybenzoic acid-degrading bacterium isolated from a wastewater treatment system[J]. International Journal of Systematic and Evolutionary Microbiology,2012,62(4):800-805.

      [103]袁懷瑜.黑曲霉YAT1降解氯氰菊酯及3-苯氧基苯甲酸特性和途徑的初步研究[D]. 雅安:四川農(nóng)業(yè)大學(xué),2012:1-14.

      [104]Deng W Q,Lin D R,Yao K,et al. Characterization of a novel β-cypermethrin-degrading Aspergillus niger YAT strain and the biochemical degradation pathway of β-cypermethrin[J]. Applied Microbiology and Biotechnology,2015,99(19):8187-8198.

      [105]徐 冉,魏 寧,黃 虹,等. 天然除蟲(chóng)菊酯與擬除蟲(chóng)菊酯的對(duì)比及發(fā)展建議[J]. 環(huán)境污染與防治,2019,41(9):1114-1119.

      信宜市| 安顺市| 威海市| 潍坊市| 乐昌市| 泰来县| 浮梁县| 贵阳市| 沈阳市| 宿松县| 文水县| 齐齐哈尔市| 亳州市| 通城县| 南部县| 德庆县| 周口市| 兖州市| 洛阳市| 南投县| 承德县| 汉寿县| 正蓝旗| 任丘市| 团风县| 喀喇沁旗| 彭山县| 宕昌县| 房山区| 清徐县| 湘潭市| 且末县| 高淳县| 镇平县| 通化市| 涪陵区| 永兴县| 子洲县| 城口县| 荣成市| 安康市|