張春濤,張彬,王慶偉
(中國水產(chǎn)科學(xué)研究院漁業(yè)機械儀器研究所,上海 200092)
我國海洋捕撈機動漁船傳統(tǒng)水動力設(shè)計是對船體型線、螺旋槳、舵分別考慮,難以達到整體能效最優(yōu),能耗嚴重。常規(guī)船舶設(shè)計中由于艉部船體外板曲率變化較大,水流經(jīng)過艉部和螺旋槳時,兩者相互作用會造成一部分能量損失,導(dǎo)致螺旋槳推進效率降低。而由螺旋槳設(shè)計本身提升效率的空間越來越小,為此,多種節(jié)能裝置應(yīng)運而生,通過增加附體結(jié)構(gòu)改善船尾的流場分布,提高螺旋槳推進效率[1]。舵球就是其中一種簡單有效的節(jié)能裝置,已經(jīng)在散貨船、集裝箱船和油船等運輸船舶中廣泛運用,但在機動漁船中鮮有應(yīng)用。結(jié)合39.8 m遠洋圍網(wǎng)漁船的節(jié)能設(shè)計任務(wù),考慮采用計算流體動力學(xué)軟件STAR-CCM+[2-3]和移動參考系法(MRF),對該漁船舵槳進行數(shù)值模擬,分析適合漁船尺寸的螺旋槳與舵之間的相互作用,分析舵球+槳轂不同組合形式與常規(guī)平板舵方案的水動力性能,以及艉流場和螺旋槳表面的壓力分布,探討節(jié)能機理,驗證舵球在漁船上應(yīng)用的可行性。
數(shù)值分析中將舵和螺旋槳作為一個整體來對待,分析有舵球的螺旋槳的推進效率,與無舵球的原方案相比,評估其節(jié)能效果。
控制方程采用雷諾時均Navier-Stokes方程(簡稱RANS方法)[4],該方法視流場為不可壓縮、黏性的三維流動,其連續(xù)方程和動量方程為
?μi/?xi=0
(1)
(2)
同時考慮到螺旋槳的旋轉(zhuǎn),在旋轉(zhuǎn)坐標系下有:
(3)
湍流模式采用兩方程RANS SSTk-ω模型。
在槳和舵表面存在一個速度梯度變化的邊界層。因此在STAR-CCM+軟件中采用標準壁面函數(shù)模擬邊界層近壁面附近的流場。引入位置無量綱參數(shù)y+。
(4)
近壁第一個網(wǎng)格點到壁面的距離y+控制在30~500之間,準確模擬近壁面流動。
1.3.1 槳、舵三維模型的建立
對39.98 m遠洋圍網(wǎng)漁船,采用MAU4-55螺旋槳,相關(guān)參數(shù)見表1;舵葉采用NACA0015翼型,參數(shù)見表2。
表1 所選用的MAU4-50螺旋槳主要參數(shù)
表2 舵主要參數(shù)
建模后的螺旋槳(螺旋槳旋向為右旋)、舵、和舵球幾何模型見圖1。
圖1 螺旋槳、舵和舵球的三維幾何模型
1.3.2 計算域及邊界條件設(shè)定
采用螺旋槳敞水計算中計算域的一般取法,在不影響精度的條件下盡可能地減小計算域,從而減少網(wǎng)格數(shù)量。將整個計算域設(shè)置為圓柱形區(qū)域,圓柱與螺旋槳中軸線一致。將計算域分為兩部分:靜止域和旋轉(zhuǎn)域,旋轉(zhuǎn)域用來模擬螺旋槳旋轉(zhuǎn)。如圖2所示,旋轉(zhuǎn)域邊界略大于螺旋槳幾何,直徑為1.1D(D為螺旋槳直徑),長度為螺旋槳盤面前0.1D到螺旋槳盤面后0.1D,靜止域與旋轉(zhuǎn)域以交界面的方式連接。計算域中,入口邊界為速度入口,距離螺旋槳盤面中心為9D;出口邊界為壓力出口,距槳盤面中心距離為12D;計算域柱面邊界距槳盤面中心距離為4D,計算域柱面邊界、螺旋槳表面和舵表面設(shè)置為無滑移的壁面邊界條件[5-6]。
圖2 計算域及邊界條件
1.3.3 網(wǎng)格劃分
整個計算域采用非結(jié)構(gòu)化網(wǎng)格。為在保證計算精度的前提下節(jié)省網(wǎng)格數(shù)量,合理分配網(wǎng)格數(shù)量。由于螺旋槳幾何模型較為復(fù)雜,附近流場也較為復(fù)雜,因此在螺旋槳的葉梢、槳轂連接處及其附近區(qū)域進行加密,y+值控制在30~500之間;距螺旋槳較遠區(qū)域流場受影響較小,網(wǎng)格布置較稀疏;兩者之間的區(qū)域由密到稀均勻過渡。網(wǎng)格數(shù)量:靜止域170萬,旋轉(zhuǎn)域36萬,見圖3。
圖3 網(wǎng)格劃分
螺旋槳水動力性能特征參數(shù)計算式如下。
(5)
(6)
式中:ΤR為舵在螺旋槳軸線上的水動力;ΤB為舵球在螺旋槳軸線上的水動力。
首先進行無舵球的螺旋槳/舵系統(tǒng)的水動力數(shù)值模擬分析,作為參照基準,然后再分析安裝舵球后螺旋槳周圍流場的變化以及對螺旋槳效率的影響。在進行有舵球的槳舵系統(tǒng)分析時,調(diào)整舵球直徑[7],得到一組不同D/DH下的敞水效率曲線;再在選用最佳舵球直徑的基礎(chǔ)上調(diào)整舵球與螺旋槳的距離,得到不同槳/舵球間隙下的螺旋槳效率曲線。利用定常MRF模型進行數(shù)值模擬,觀察螺旋槳壓力分布及螺旋槳中心后方流場軸向速度變化,進一步分析舵球與轂渦匹配在消除紊流,提高螺旋槳周向誘導(dǎo)效率的作用效果。
計算時舵球直徑D和螺旋槳槳轂直徑DH的比值(D/DH)分別為:1.0,1.3,1.4,1.5,1.8,2.0,2.25,2.5,3.0。不同D/DH下的系統(tǒng)推進效率,以及不同進速系數(shù)J的螺旋槳/舵/舵球系統(tǒng)定常仿真計算結(jié)果見圖4(圖中D/DH=0表示無舵球);設(shè)計航速工況J=0.45下槳水動力參數(shù)見表3和圖5。
圖4 不同D/DH下的敞水效率
表3 設(shè)計航速工況J=0.45時各方案 螺旋槳敞水性能比較
從圖4中可以看出,在設(shè)計比值范圍內(nèi),不管有無舵球,不管舵球直徑多大,當(dāng)進速系數(shù)J較小時(J<0.2),系統(tǒng)推進效率η基本上沒有變化。隨著進速系數(shù)J的增加,推進效率η增加非常明顯。當(dāng)舵球直徑增加時(D/DH<2.25范圍內(nèi)),舵球直徑越大,系統(tǒng)推進效率越高;D/DH>2.25時,舵球直徑越大,系統(tǒng)推進效率反而越低,這是由于舵球結(jié)構(gòu)體積過大,自身產(chǎn)生的阻力顯著增加,超過了其產(chǎn)生的附加推力。雖然根據(jù)進速系數(shù)J的變化,螺旋槳水動力性能參數(shù)變化不一,但在D/DH=2.25時,推進效率都達到最大,說明匹配槳-舵系統(tǒng)的舵球尺寸有最佳值。最佳直徑下與不帶舵球的螺旋槳性能比較見圖5。
圖5 最佳直徑下的敞水曲線
從圖5可以看出,最佳直徑下,當(dāng)船舶處于設(shè)計航速工況(v=12.5 kn,n=216 r/min)的進速系數(shù)J=0.45時,螺旋槳敞水效率相對于無舵球增加3.34%,推力系數(shù)KT增加4.66%,具有很好的節(jié)能效果。
為滿足工程需要,在選用最佳舵球直徑的基礎(chǔ)上,探討舵球與螺旋槳間隙d對螺旋槳性能的影響,間隙d分別取d=50、100、200 mm進行計算,結(jié)果見圖6。
圖6 不同間隙螺旋槳性能比較
從圖6可以看出,間隙越大,舵球的節(jié)能效果越不明顯,因此,在滿足工程需求的情況下,應(yīng)盡可能減小舵球與螺旋槳之間的間隙。
選用最佳舵球直徑(D/DH=2.25)與無舵球情況進行分析。在進速系數(shù)J=0.75下的螺旋槳壓力云圖及螺旋槳中心后方0.32 m處(舵球與螺旋槳之間)流場軸向速度見圖7、8。
圖7 螺旋槳葉面壓力云圖比較
圖7表明,螺旋槳安裝舵球后,葉面壓力明顯分布均勻,舵球填充了螺旋槳槳轂后端的一小塊低壓空間,能降低螺旋槳水動力噪聲。圖8顯示,槳轂后面的速度流線分布明顯均勻,舵球填充了槳轂中心后方的轂渦區(qū)域,將靠近槳轂后的尾流向外擠壓[8],減少了尾流收縮,使得螺旋槳尾流橫截面積增加,從而使得螺旋槳的效率有所增加。
圖8 螺旋槳切面速度矢量云圖
針對39.98 m遠洋圍網(wǎng)漁船,設(shè)計一個合適的節(jié)能舵球,可使該船的在設(shè)計工況的進速系數(shù)J=0.45獲得約3.34%的節(jié)能效果。
舵球的節(jié)能效果和進速系數(shù)J有很大關(guān)系,對于低速漁船(進速系數(shù)J<0.2),舵球節(jié)能效果不明顯,意義不大;但對速度較高的遠洋漁船(進速系數(shù)J>0.4),增加舵球有很好的節(jié)能效果,舵球可以應(yīng)用于J>0.4的標準化遠洋漁船。
舵球直徑與槳轂直徑的比值是影響舵槳一體推進效率的重要因數(shù)。針對39.98 m遠洋圍網(wǎng)漁船,數(shù)值模擬分析認為當(dāng)D/DH=2.25時,推進效率最佳,該結(jié)果只是針對漁船直線航行狀態(tài),未考慮轉(zhuǎn)舵等操作性要求。
舵球前端距轂帽后端的空隙也是影響推進效率的一個因數(shù),間隙越小,槳轂后方低壓區(qū)被舵球填充,對提高槳效有利。