李 琳,付海林,譚義海,裴建生,張 軍
新型異向流沉沙池泥沙沉降特性試驗(yàn)與機(jī)理分析
李 琳1,2,付海林1,2,譚義海1,2,裴建生3,張 軍1,2
(1. 新疆農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,烏魯木齊 830052;2. 新疆水利工程安全與水災(zāi)害防治重點(diǎn)實(shí)驗(yàn)室,烏魯木齊 830052;3. 新疆水利水電規(guī)劃設(shè)計(jì)管理局,烏魯木齊 830099)
為了探明二級(jí)泥沙處理設(shè)施——新型異向流沉沙池的泥沙沉降特性及其沉沙機(jī)理,該研究開展了不同流量和不同含沙濃度的系列試驗(yàn),并對(duì)泥沙運(yùn)動(dòng)過程進(jìn)行了力學(xué)分析,建立并求解了新型異向流沉沙池雙向傾斜薄板上泥沙運(yùn)動(dòng)的一階非線性微分方程。研究結(jié)果表明,對(duì)于中值粒徑為0.021 mm的細(xì)顆粒泥沙的含沙水流,長(zhǎng)96 cm、寬10 cm、高110 cm的新型異向流沉沙池對(duì)流量為45~360 L/h的泥沙截除率為40%~88.53%,約為相同體積的底板傾斜和底板水平的條形沉沙池的1.2~2倍;單位時(shí)間沉降至集沙箱的泥沙量是底板傾斜條形沉沙池的1.3~2.3倍;不同時(shí)刻雙向傾斜薄板上的泥沙運(yùn)動(dòng)速度和加速度均大于單向傾斜斜板,傾角為銳角時(shí),角度越大,速度越大。工程設(shè)計(jì)時(shí),若地形高差滿足要求,雙向傾斜薄板的傾角(<90°)越大越有利于提高沉降效率,若高差不滿足,傾角應(yīng)不小于泥沙休止角。研究結(jié)果可為新型異向流沉沙池結(jié)構(gòu)優(yōu)化及應(yīng)用提供參考。
沉降作用;試驗(yàn);沉沙池;水沙兩相流;異向流動(dòng)
在西北內(nèi)陸地區(qū)的多沙河流域,常常需要在灌區(qū)引水干渠、農(nóng)田灌溉系統(tǒng)首部設(shè)置沉沙池[1-2],對(duì)進(jìn)入滴灌帶前的灌溉水源進(jìn)行沉沙處理。傳統(tǒng)沉沙池按形式可分為直線形沉沙池和曲線形沉沙池,其結(jié)構(gòu)簡(jiǎn)單,施工方便,而且造價(jià)低廉,排沙效果良好。但受汛期河道來水量大、含沙濃度高、泥沙顆粒粒徑小的影響,傳統(tǒng)沉沙池對(duì)懸移質(zhì)泥沙的處理效果不明顯,仍會(huì)造成微灌[3-4]和過濾系統(tǒng)的堵塞[5-7],加重后續(xù)灌溉過濾設(shè)備[8-10](如過濾器、灌水器流道等)的運(yùn)行負(fù)擔(dān),阻礙微灌技術(shù)的推廣應(yīng)用[11-12]。另外,由傳統(tǒng)沉沙池的設(shè)計(jì)理論[13-15]可知,沉沙效果往往受其長(zhǎng)寬比影響較大,泥沙顆粒粒徑越小,沉沙池的長(zhǎng)度就越長(zhǎng),占地面積就越大,但在實(shí)際農(nóng)田灌溉首部,很少有充足的場(chǎng)地去建設(shè)大比尺的沉沙池,因此,尋求一種占地面積小且對(duì)懸移質(zhì)泥沙沉沙效率高的新型沉沙池尤為迫切。
國(guó)內(nèi)外許多研究人員以提高高濃度含細(xì)沙水流中細(xì)顆粒泥沙的沉降效率、減小占地面積為目標(biāo),陸續(xù)提出了復(fù)合形沉沙池、翼片式沉沙池、分離鰓、梭錐管和多級(jí)斜板式水沙分離裝置等新泥沙處理設(shè)施。為了使這些處理設(shè)施應(yīng)用于實(shí)際工程中,前人通過試驗(yàn)研究和理論分析對(duì)其泥沙沉降特性開展了相應(yīng)研究。He等[16-17]通過試驗(yàn)證明了由于渦流區(qū)、環(huán)流區(qū)的存在使翼片式沉沙池沉降效率高于條形沉沙池。Wang等[18]利用光學(xué)儀器對(duì)斜管重力沉淀池沉降過程進(jìn)行了深入研究。董玉萍等[19-20]研究了多級(jí)斜板式水沙分離裝置中泥沙在渾水中的沉速以及斜板間的截留速度。嚴(yán)躍成等[21-23]對(duì)分離鰓、梭錐管內(nèi)泥沙的滑移運(yùn)動(dòng)進(jìn)行了力學(xué)和軌跡分析。但目前關(guān)于斜板類除沙裝置的研究,比較缺乏對(duì)斜板上泥沙運(yùn)動(dòng)情況的探討,且均未建立泥沙運(yùn)動(dòng)方程,無法求出泥沙滑移運(yùn)動(dòng)速度和固壁邊界幾何參數(shù)對(duì)運(yùn)動(dòng)速度的影響,阻礙了該類沉沙池的應(yīng)用及推廣。
新型異向流沉沙池[24](專利號(hào):ZL 202011376457.4,簡(jiǎn)稱新型沉沙池)是本課題組發(fā)明的一種二級(jí)泥沙處理設(shè)施,前期研究表明,其區(qū)別于傳統(tǒng)沉沙池,具有細(xì)顆粒泥沙沉降效率高、排沙耗水率低、占地面積相對(duì)小的特點(diǎn),但其泥沙沉降特性及高效沉降機(jī)理尚未進(jìn)行深入研究。為此,本文擬通過系統(tǒng)試驗(yàn)對(duì)新型異向流沉沙池的泥沙沉降特性進(jìn)行研究,并與條形沉沙池沉降特性進(jìn)行對(duì)比,同時(shí)從泥沙顆粒運(yùn)動(dòng)過程中的受力特性出發(fā),建立并求解泥沙的一階非線性運(yùn)動(dòng)微分方程,討論新型沉沙池高效沉降泥沙的機(jī)理及固壁邊界幾何參數(shù)對(duì)其運(yùn)動(dòng)的影響,以期為沉沙池的結(jié)構(gòu)優(yōu)化及推廣應(yīng)用提供理論參考。
新型異向流沉沙池由有壓進(jìn)水管、進(jìn)水箱、沉沙箱、集沙箱、排沙管和出水池組成(圖1),水平方向長(zhǎng)96 cm,寬10 cm,豎直高110 cm(圖1b)。進(jìn)水箱內(nèi)設(shè)有隔水擋板將進(jìn)水箱和集沙箱分隔開,使泥沙沉降過程不受進(jìn)流干擾。沉沙箱底板沿長(zhǎng)度方向傾斜一定角度(45°),使沉降至底板的泥沙以一定速度滑移而不淤積。沉沙箱內(nèi)布置了9層沿長(zhǎng)度和寬度方向傾斜的薄板,薄板延伸至下游出水池內(nèi),但與出水池下游邊墻間留有1 cm的間距,該間距為各層斜板區(qū)域分離后的“清水”出流通道;自下而上第2層薄板始端與隔水擋板相交,防止集沙箱內(nèi)泥沙二次懸浮。
1.有壓進(jìn)水箱 2.隔水擋板 3.排沙孔 4.沉沙箱 5.無壓出水池 6.溢流槽 7.雙向傾斜薄板 8.泥沙通道 9.排沙閥門 10.排沙管 11.集沙箱 12.有壓進(jìn)水管 13.清水出流通道
注:為薄板沿沉沙池寬度方向的傾角,(°);為薄板沿沉沙池長(zhǎng)度方向的傾角,(°)。
1.Pressurized water inlet tank 2.Water barrier 3.Sand discharging hole 4.Sand settling box 5. Outlet tank without pressure 6.Overflow tank 7.Bi-directional tilt sheet 8.Sediment channel 9.Sand drainage valve 10.Sand drainage pipe 11.Sand collecting box 12.Pressurized inlet pipe 13.Clear water outlet channel
Note:is the inclination angle of the thin plate along the width of the sedimentation tank, (°);andis the inclination angle of the thin plate along the length of the sedimentation tank, (°).
圖1 新型異向流沉沙池結(jié)構(gòu)示意圖
Fig.1 Schematic diagram of the structure of new anisotropic flow sedimentation tank
水沙混合物從有壓進(jìn)水管進(jìn)入有壓進(jìn)水箱后進(jìn)入沉沙箱,在沉沙箱內(nèi)實(shí)現(xiàn)泥沙沉降和水沙分離,分離后的泥沙一部分沿薄板的長(zhǎng)度方向下滑至排沙孔排出,一部分沿薄板的寬度方向下滑至泥沙通道排出,并繼續(xù)沿沉沙池底板下滑,這兩部分泥沙最終匯集于集沙箱中;分離后的“清水”沿薄板的高端與沉沙箱左邊墻形成的溝槽流入出水池,再經(jīng)“清水”出流通道流出。新型異向流沉沙池采用間歇式排沙,當(dāng)集沙箱泥沙淤滿后(即箱內(nèi)淤積高度達(dá)到排沙孔高度時(shí)),打開排沙管的閥門,利用進(jìn)水箱的水頭沖沙,沖沙過程中進(jìn)水管閥門保持開啟,沉沙池持續(xù)運(yùn)行。為防止排沙管堵塞,排沙管選用直徑較粗(2.5 cm)的PVC管道,并在管道上設(shè)置球閥控制管道開關(guān)。由于集沙箱與進(jìn)水箱水頭相同,排沙管在高水頭作用下可實(shí)現(xiàn)快速排沙,不易淤堵。
為探明新型異向流沉沙池的沉降特性,并和常規(guī)的條形沉沙池泥沙沉降效率進(jìn)行對(duì)比,試驗(yàn)首先依據(jù)《水利水電工程沉沙池設(shè)計(jì)規(guī)范》(SL/T 269—2019),針對(duì)泥沙中值粒徑50=0.021 mm、流量為45 L/h的含沙水流設(shè)計(jì)了底板水平的條形沉沙池,其沉沙段的尺寸為:長(zhǎng)100 cm,寬為8.2 cm(為方便加工制作,模型寬度取值為10 cm)、工作高度為28 cm,將其命名為III號(hào)池。為了對(duì)比相同流量和相同待處理泥沙級(jí)配時(shí)新型異向流沉沙池(I號(hào)池)、底板傾斜的條形沉沙池(II號(hào)池)和底板水平的條形沉沙池(III號(hào)池)的沉降效率,各個(gè)沉沙池的沉沙箱外輪廓尺寸均相同,即長(zhǎng)、寬、高分別為100、10和28 cm;有壓進(jìn)水箱和無壓出水池型式和尺寸也均相同,其中,有壓進(jìn)水箱長(zhǎng)20 cm,寬10 cm,高50 cm,集沙箱棱臺(tái)高10 cm,上底和下底邊長(zhǎng)分別為10和2.5 cm的正方形;無壓出水池長(zhǎng)20 cm,寬10 cm,高50 cm;矩形溢流槽布置在出水池頂部,長(zhǎng)6 cm,下底寬2 cm,槽深2 cm。
各個(gè)沉沙池池箱內(nèi)的構(gòu)造有所不同。I號(hào)池內(nèi)布置了雙向傾斜的薄板,采用厚為0.4 cm的PVC板制作,形狀為平行四邊形,短邊長(zhǎng)20 cm,長(zhǎng)邊長(zhǎng)為100 cm(第2層薄板長(zhǎng)邊112 cm),各板與沉沙箱寬度和長(zhǎng)度方向的傾角分別為=60°和=45°。薄板與出水池?fù)醢澹ㄣ暯右缌鞑鄣陌澹┲g構(gòu)成了清水通道,寬1 cm,薄板與沉沙池右邊墻(順?biāo)鞣较驗(yàn)橛疫叄┲g構(gòu)成了泥沙下沉通道,寬1 mm。II號(hào)、III池沉沙箱段均無雙向傾斜薄板,但I(xiàn)I號(hào)池底板沿沉沙池長(zhǎng)度和寬度方向均傾斜一定角度,III號(hào)池底板水平布置。各沉沙池采用透明度良好、厚度為1 cm的有機(jī)玻璃制成。
為了保證試驗(yàn)過程中沉沙池進(jìn)口含沙濃度基本不變,試驗(yàn)中每5 min測(cè)1次攪拌池及進(jìn)水管處的含沙濃度,計(jì)算出所需泥沙質(zhì)量,通過人工均勻投撒入攪拌池中。水沙混合物于攪拌池中攪拌均勻,通過渾水泵輸入沉沙池中,在沉沙箱內(nèi)實(shí)現(xiàn)水沙分離,分離后的泥沙經(jīng)集沙箱和排沙管排入攪拌池,分離后的“清水”則流入無壓出水池經(jīng)溢流槽排入攪拌池內(nèi)。
試驗(yàn)在新疆農(nóng)業(yè)大學(xué)水力學(xué)及水工實(shí)驗(yàn)室內(nèi)(室溫條件下)進(jìn)行,所用儀器有錐形瓶、精密電子秤、臺(tái)秤、秒表。用蒸餾水嚴(yán)格率定錐形瓶體積,應(yīng)用率定后的錐形瓶分別在進(jìn)水口和溢流口采集水樣,用精度為0.001 g的精密電子秤稱出水樣質(zhì)量,應(yīng)用置換法原理[25]計(jì)算出進(jìn)水口和溢流口的含沙濃度S、S(kg/m3),根據(jù)文獻(xiàn)[25]計(jì)算沉沙池泥沙截除率s(%)。將米尺貼于集沙箱右側(cè),并保持其0刻度線與集沙箱底板處于同一高度,試驗(yàn)運(yùn)行1 h后通過水準(zhǔn)儀讀出泥沙淤積高度,待集沙箱中泥沙淤至排沙孔時(shí),記下此時(shí)的試驗(yàn)運(yùn)行時(shí)長(zhǎng)(即排沙周期)。為避免試驗(yàn)偶然誤差,每組試驗(yàn)數(shù)據(jù)采集3次,取平均值。
式中為渾水含沙濃度,kg/m3;瓶為錐形瓶的體積,m3;瓶+渾水為錐形瓶和渾水的質(zhì)量,kg;瓶+水為錐形瓶和蒸餾水的質(zhì)量,kg;s為泥沙密度,kg/m3;w為蒸餾水密度,kg/m3。
為比較I號(hào)沉沙池區(qū)別于傳統(tǒng)沉沙池的沉降特性,運(yùn)用控制變量法,對(duì)I、II和III號(hào)沉沙池在相同濃度、相同流量工況下開展系列渾水試驗(yàn),考慮到南疆地區(qū)河流發(fā)洪水時(shí)含沙濃度可達(dá)5~30 kg/m3,因此,結(jié)合工程實(shí)際,試驗(yàn)渾水含沙濃度分別取5、11 kg/m3;通過初步試驗(yàn),I號(hào)池的可處理流量范圍為45~360 L/h,故按照設(shè)計(jì)進(jìn)流量(45 L/h)的2、4、6、8倍選擇了試驗(yàn)工況流量,分別為45、90、180、270、360 L/h。試驗(yàn)工況組合數(shù)為30組。
工程實(shí)踐[26-27]表明,對(duì)于高濃度含細(xì)顆粒泥沙(粒徑小于0.05 mm)較多的河流而言,其流域內(nèi)的灌區(qū)即使在修建了沉沙池的情況下,引水灌溉渠道內(nèi)仍然會(huì)產(chǎn)生比較嚴(yán)重的淤積,無法保證后續(xù)節(jié)水灌溉設(shè)備安全運(yùn)行。因此,為探明新型異向流沉沙池處理實(shí)際工程中粒徑小于0.075 mm的細(xì)顆粒泥沙的效果,試驗(yàn)采用黃土作為模型沙進(jìn)行試驗(yàn),其中粒徑小于0.051 mm的顆粒占87.7%,小于0.025 mm的顆粒占56%,小于0.011 mm的顆粒占28.7%,小于0.005 6 mm的顆粒占15.1%,小于0.001 6 mm的顆粒占4.6%,顆粒中值粒徑50=0.021 mm,泥沙顆粒累計(jì)分布為90%的粒徑90=0.054 mm。
圖2是根據(jù)試驗(yàn)現(xiàn)象繪制的各沉沙池的水沙流動(dòng)現(xiàn)象的概化圖。圖3是濃度為5 kg/m3、流量為45 L/h工況下I號(hào)沉沙池的水沙分離試驗(yàn)現(xiàn)象。
在試驗(yàn)過程中觀察到,I號(hào)沉沙池中,含沙水流由有壓進(jìn)水箱進(jìn)入沉沙箱后,沉沙箱內(nèi)的雙向傾斜薄板將沉降區(qū)分成了多個(gè)淺層沉降區(qū)間,水沙混合物隨流體向上運(yùn)動(dòng)過程中,部分泥沙自由沉降,降落至斜板后與落在斜板上的其他顆粒聚集成團(tuán),該泥沙團(tuán)沿著薄板長(zhǎng)度和寬度方向均有向薄板始端(上游端)和薄板低端滑動(dòng)的速度分量,泥沙沿其合速度方向滑向薄板低端,一部分泥沙經(jīng)薄板低端與右邊墻(順?biāo)鞣较?,右邊為右邊墻)形成的泥沙通道(定義其為1號(hào)泥沙通道)以貼壁流的方式流入沉沙箱底部(圖2a),后沿薄板滑落至集沙箱中,該沉降過程可觀察到大部分泥沙在1號(hào)泥沙通道處形成了明顯的“沙簾”(圖3a);少量泥沙經(jīng)排沙孔跌落集沙箱中;“清水”則沿著斜板高端與左邊墻形成的銳角溝槽流入無壓出水池中排出(圖3b)。從圖3可明顯看出左邊墻一側(cè)比右邊墻一側(cè)的水流含沙濃度低。
II號(hào)和III號(hào)沉沙池內(nèi)的水沙運(yùn)動(dòng)過程概化如圖2b和2c所示。在II號(hào)沉沙池內(nèi),含沙水流進(jìn)入進(jìn)水箱后流入無薄板布置的沉沙箱區(qū),部分泥沙未來得及沉降就隨水流經(jīng)溢流槽流出,部分泥沙自由沉降至沉沙箱底板,并沿底板下滑至集沙箱,在集沙箱的下游壁面上也可以看到與圖3b類似的“沙簾”現(xiàn)象。但在試驗(yàn)運(yùn)行1 h后,沉沙箱左、右邊墻處觀察到的水流渾濁程度一致,整個(gè)沉沙池會(huì)出現(xiàn)模糊的清渾交界面。III號(hào)池內(nèi)水沙運(yùn)動(dòng)現(xiàn)象與II號(hào)基本一致,但由于其底板水平,泥沙自由沉降至底板后幾乎保持靜止不動(dòng),故無“沙簾”現(xiàn)象。
通過觀察和分析試驗(yàn)現(xiàn)象可知,泥沙在I號(hào)沉沙池中的運(yùn)動(dòng)過程主要分為泥沙落到傾斜薄板之前的自由沉降運(yùn)動(dòng)和泥沙沉降至薄板后沿薄板表面的滑移運(yùn)動(dòng)。由于多層傾斜薄板將沉降空間劃分為若干沉降距離(薄板豎向間距)較短的沉降區(qū)域,泥沙經(jīng)過短時(shí)間自由沉降后便開始沿薄板的滑移運(yùn)動(dòng),故重點(diǎn)分析泥沙沉降至薄板后的滑移運(yùn)動(dòng),通過建立泥沙滑移運(yùn)動(dòng)方程,來探討其高效沉降泥沙的機(jī)理。
由于本試驗(yàn)采用的泥沙粒徑較細(xì)并含有一定量的黏土顆粒,在動(dòng)水沉降過程中細(xì)顆粒之間相互碰撞容易產(chǎn)生絮凝而形成微小的絮凝團(tuán)[28-29],故此處泥沙的力學(xué)分析研究對(duì)象為直徑為的泥沙絮團(tuán)。泥沙絮團(tuán)沿斜面滑移運(yùn)動(dòng)時(shí)主要受到水流拖曳力D、有效重力和摩檫力f[30],各力的單位均為N,其計(jì)算方法見式(3)~式(5)。根據(jù)牛頓第二定律,泥沙絮團(tuán)沿薄板上任意軌跡A1B1下滑的運(yùn)動(dòng)方程見式(6)。
式中為泥沙下滑跡線與平面的夾角,(°);D為阻力系數(shù);為泥沙絮團(tuán)粒徑,mm;為水的密度,kg/m3;為水流與泥沙的相對(duì)運(yùn)動(dòng)速度[31],mm/s;p和q分別為I號(hào)沉沙池中水流的運(yùn)動(dòng)速度和泥沙絮團(tuán)在雙向傾斜薄板上的滑移速度,mm/s;s和分別為泥沙絮團(tuán)的干容重和水的容重,N/m3;為流體流速與直線A1B1的夾角,(°);為泥沙在動(dòng)水條件下的休止角[31],(°);為泥沙絮團(tuán)的質(zhì)量,kg。
式(6)中,取最大值時(shí),加速度最大,泥沙絮團(tuán)所受慣性力最大,故泥沙絮團(tuán)在斜板上的運(yùn)動(dòng)跡線必為與水平面夾角最大的直線。根據(jù)圖4a可將表示為
為了求出泥沙絮團(tuán)在雙向傾斜薄板上的運(yùn)動(dòng)速度,將式(3)~式(5)代入式(6),將其改寫成式(9)。
令
式(9)可寫為
因此,泥沙絮團(tuán)沿A1B1的運(yùn)動(dòng)速度為
當(dāng)≠0、≠0時(shí),聯(lián)立式(8)、式(10)、式(11)、式(16)可求出新型異向流沉沙池不同時(shí)刻雙向傾斜薄板上的泥沙運(yùn)動(dòng)速度;當(dāng)=0、≠0或≠0、=0時(shí),聯(lián)立各式可求解普通斜板沉沙池內(nèi)單向傾斜薄板上的泥沙運(yùn)動(dòng)速度。由于本文的新型沉沙池模型的泥沙通道寬度為1 mm,為保證其正常工作,不被堵塞,其能處理的泥沙或絮團(tuán)最大直徑不超過1 mm(本試驗(yàn)沙形成的絮凝體有效粒徑約為0.026 mm[32])。故以粒徑=1 mm為例運(yùn)用公式(16)計(jì)算傾角不同時(shí)的運(yùn)動(dòng)速度隨時(shí)間的變化。同時(shí),為說明公式(16)對(duì)不同粒徑泥沙的適用性,又選擇了試驗(yàn)沙的90=0.054 mm(小于此粒徑的顆粒體積含量占全部顆粒的90%)進(jìn)行了計(jì)算,泥沙濕密度s=1 990 kg/m3、=1 mm和0.054 mm的動(dòng)水休止角分別為=30°和29°[33],結(jié)果如圖5。從圖中可以看出,泥沙粒徑不同時(shí),雙向傾斜薄板上泥沙的運(yùn)動(dòng)速度均大于單向傾斜斜板。如≥0.1 s時(shí),=60°、=45°時(shí)=1和0.054 mm的泥沙運(yùn)動(dòng)速度均為單向傾斜斜板=0°、=45°的1.6倍;=0.01 s時(shí),前者加速度是后者的2和1.6倍。對(duì)于雙向傾斜薄板而言,或一定時(shí),或越大運(yùn)動(dòng)速度越大(0<90°,0<90°),沉降效率越高,如=60°、=85°時(shí)=1 mm的泥沙運(yùn)動(dòng)速度和加速度分別是=60°、=35°的1.4、1.5倍;=0.054 mm的泥沙運(yùn)動(dòng)速度和加速度均分別是=60°、=35°的1.4倍。因此,在工程設(shè)計(jì)時(shí)若地形落差滿足要求時(shí),和越大越有利于提高沉降效率(0<90°,0<90°);若地形不滿足要求,和至少應(yīng)大于泥沙休止角。
通過分析泥沙沉降機(jī)理可知,泥沙能否高效沉降取決于進(jìn)流量、傾角和的大小。將新型異向流沉沙池應(yīng)用于工程實(shí)際時(shí),實(shí)際工程沉沙池的沉沙條件應(yīng)和試驗(yàn)?zāi)P捅3忠恢?,即模型與實(shí)際工程中雙向傾斜薄板間的流速相同、和角也應(yīng)分別相同。實(shí)際工程沉沙池的規(guī)??梢罁?jù)需處理的泥沙粒徑,根據(jù)模型相似理論計(jì)算泥沙所需要的沉沙池尺寸和處理流量。試驗(yàn)室與實(shí)際工程之間,以流速相同為基本準(zhǔn)則。例如:實(shí)際工程流量為試驗(yàn)室流量的100倍,則實(shí)際工程的沉砂池過水面積亦為試驗(yàn)室沉砂池過水面積的100倍。沉砂池的長(zhǎng)度受到泥沙級(jí)配的影響,不同的泥沙級(jí)配,沉砂池長(zhǎng)度不盡相同,需要進(jìn)行相關(guān)模型試驗(yàn)確定出合理的沉砂池長(zhǎng)度。
圖6為不同進(jìn)流量、不同進(jìn)流含沙濃度時(shí)I、II和III號(hào)沉沙池泥沙截除率對(duì)比結(jié)果。由圖可知,相同進(jìn)流量和含沙濃度下各池的截除率由大到小的順序?yàn)椋篒、II、III。隨進(jìn)流量和含沙濃度的增大,三者的截除率均隨之降低。各池的截除率曲線縱向間距有隨著處理流量的增大而增大的趨勢(shì),即處理流量越大,I號(hào)池的沉沙效果優(yōu)勢(shì)越明顯。當(dāng)處理流量為45 L/h、進(jìn)流含沙濃度為5 kg/m3時(shí),I、II、III號(hào)池的泥沙截除率分別為88.53%、76.94%和74.38%;而當(dāng)進(jìn)流含沙濃度保持不變,處理流量增大8倍至360 L/h時(shí),I號(hào)池泥沙截除率仍可超過40%,而II號(hào)III號(hào)池的泥沙截除率僅約為I號(hào)池的58%和50%。在5種流量工況下,I號(hào)池的泥沙截除率約為II號(hào)III號(hào)池的1.2~2倍。
圖7為不同進(jìn)流量、不同進(jìn)流含沙濃度下I、II和III號(hào)沉沙池試驗(yàn)運(yùn)行1 h后集沙箱內(nèi)泥沙淤積厚度對(duì)比結(jié)果。由圖7可知,相同含沙濃度和進(jìn)流量下各池運(yùn)行1 h后集沙箱內(nèi)泥沙的淤積厚度從大到小順序?yàn)椋篒、II、III進(jìn)流量越大,I與II和III號(hào)池泥沙淤積厚度的差值越大,單位時(shí)間內(nèi)I號(hào)池的泥沙淤積厚度越高,其沉降效率優(yōu)于II、III號(hào)沉沙池,如流量為45~360 L/h時(shí),I號(hào)池的泥沙淤積厚度分別是II和III號(hào)池的1.3~2.3倍和5~16倍。進(jìn)流量較小,如處理流量為45、90 L/h時(shí),含沙濃度為5 kg/m3時(shí),I與II相差不大,這是因?yàn)榇藭r(shí)池中流速較小,II號(hào)池中的泥沙絮團(tuán)接近自由沉降。而在不同進(jìn)流量和含沙濃度下,III始終較小,與I和II不同,III號(hào)池集沙箱內(nèi)的泥沙主要來自集沙箱上方的含沙水流中的泥沙自由沉降。由圖7b可知,進(jìn)流含沙濃度為11 kg/m3時(shí),相同流量下,隨單位體積內(nèi)的泥沙含量增大,相同時(shí)間泥沙淤積厚度增大,I、II、III號(hào)池內(nèi)泥沙的淤積厚度比含沙濃度5 kg/m3時(shí)分別增加了2.3~3.3、2.1~3.5和1.4~2.0倍。
圖8分別為不同進(jìn)流量、不同進(jìn)流含沙濃度下I和II號(hào)沉沙池排沙周期(集沙箱淤滿所用時(shí)間)對(duì)比結(jié)果。由于III號(hào)沉沙池底板水平,泥沙沉降至沉沙箱底板后不會(huì)向上游運(yùn)動(dòng)至集沙箱,故圖中未列出III號(hào)沉沙池的排沙周期。由圖可知,相同含沙濃度和進(jìn)流量下排沙周期從大到小順序?yàn)椋篒I、I。排沙周期越長(zhǎng),表明此時(shí)集沙箱淤滿所需要的時(shí)間越長(zhǎng),沉沙池沉降效率越低。當(dāng)處理流量為270 L/h、進(jìn)流含沙濃度為5 kg/m3時(shí),I號(hào)池的排沙周期僅僅是II號(hào)池的50%,表明I號(hào)池的泥沙沉降效率是II號(hào)池的2倍。由圖8還可以看出,進(jìn)流量越大,排沙周期越短,當(dāng)進(jìn)流含沙濃度增大到11 kg/m3時(shí),相同流量下排沙周期是含沙濃度5 kg/m3時(shí)的30%~50%,時(shí)間縮減了50%~70%。
本文通過系列物理模型試驗(yàn)研究了新型異向流沉沙池的泥沙沉降特性,并將其與底板傾斜和底板水平的條形沉沙池沉降特性進(jìn)行了對(duì)比。通過理論分析和數(shù)值方法建立并求解了新型異向流沉沙池雙向傾斜薄板上泥沙運(yùn)動(dòng)的一階非線性微分方程。主要得到以下結(jié)論:
1)在處理含最大粒徑小于0.075 mm,中值粒徑為0.021 mm的細(xì)顆粒泥沙的含沙水流時(shí),長(zhǎng)度96 cm、寬度10 cm、高110 cm的新型異向流沉沙池處理流量為45~360 L/h時(shí)泥沙截除率為40%~88.53%,約為相同體積的底板傾斜和底板水平條形沉沙池的1.2~2倍。
2)相同運(yùn)行時(shí)間時(shí)新型異向流沉沙池集沙箱內(nèi)泥沙淤積厚度是底板傾斜和底板水平條形沉沙池的1.8和26倍,排沙周期為底板傾斜條形沉沙池的50%,表明其相比底板傾斜和底板水平的條形沉沙池具有更高的泥沙沉降效率。
3)不同時(shí)刻泥沙的運(yùn)動(dòng)速度結(jié)果顯示泥沙在雙向傾斜薄板上的運(yùn)動(dòng)速度是單向傾斜薄板上的1.6倍。在雙向傾斜薄板中,大傾角(薄板沿沉沙池寬度方向的傾角=60°,薄板沿沉沙池長(zhǎng)度方向的傾角=85°)斜板上的的泥沙運(yùn)動(dòng)速度和加速度是小傾角(=60°、=35°)斜板上的1.4、1.5倍。證明了雙向傾斜薄板上的泥沙運(yùn)動(dòng)速度和加速度均大于單向傾斜薄板,傾角越大,運(yùn)動(dòng)速度越大。在工程設(shè)計(jì)時(shí)若地形落差滿足要求時(shí),薄板沿沉沙池寬度方向的傾角和薄板沿沉沙池長(zhǎng)度方向的傾角越大越有利于提高沉降效率(0<90°,0<90°),若地形不滿足要求時(shí),和至少應(yīng)大于泥沙休止角。
[1] 張軍,侍克斌,高亞平,等. “圓中環(huán)”沉沙排沙池渾水沉沙特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(13):86-93.
Zhang Jun, Shi Kebin, Gao Yaping, et al. Turbid water desilting characteristics of circular-ring desilting and sediment ejection basin[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(13): 86-93. (in Chinese with English abstract)
[2] 陶洪飛,楊海華,馬英杰,等. 流量對(duì)河水滴灌重力沉沙過濾池內(nèi)流速分布的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(1):131-137.
Tao Hongfei, Yang Haihua, Ma Yingjie, et al. Influence of flow rate on flow velocity distribution in gravity sinking and filter tank for drip irrigation with river water[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(1): 131-137. (in Chinese with English abstract)
[3] Li Y K, Pan J C, Chen X Z,et al. Dynamic effects of chemical precipitates on drip irrigation system clogging using water with high sediment and salt loads[J]. Agricultural Water Management,2019,213:833-842.
[4] 李久生,栗巖峰,王軍,等. 微灌在中國(guó):歷史、現(xiàn)狀和未來[J]. 水利學(xué)報(bào),2016,47(3):372-381.
Li Jiusheng, Li Yanfeng, Wang Jun, et al. Microirrigation in China: History, current situation and prospects[J]. Journal of Hydraulic Engineering, 2016, 47(3): 372-381. (in Chinese with English abstract)
[5] 周理強(qiáng),韓棟,喻黎明,等. 導(dǎo)流片對(duì)Y型網(wǎng)式過濾器性能的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(12):40-46.
Zhou Liqiang, Han Dong, Yu Liming, et al. Effect of guide vanes on performance of Y-screen filter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(12): 40-46. (in Chinese with English abstract)
[6] 宗全利,楊洪飛,劉貞姬,等. 網(wǎng)式過濾器濾網(wǎng)堵塞成因分析與壓降計(jì)算[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(9):215-222.
Zong Quanli, Yang Hongfei, Liu Zhenjie, et al. Clogging reason analysis and pressure drop calculation of screen filter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 215-222. (in Chinese with English abstract)
[7] Wang J, Kim S C, David Y H. Carbon nanotube penetration through a screen filter: Numerical modeling and comparison with experiments[J]. Aerosol Science and Technology, 2011, 45: 443-452.
[8] 張文倩,牛文全,李學(xué)凱,等. 減緩滴頭堵塞風(fēng)險(xiǎn)的毛管首次沖洗時(shí)間及周期的確定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(7):70-77.
Zhang Wenqian, Niu Wenquan, Li Xuekai, et al. Determination of first flushing time and period to mitigate risk of emitter clogging in drop irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(7): 70-77. (in Chinese with English abstract)
[9] 阿力甫江·阿不里米提,虎膽·吐馬爾白,木拉提·玉賽音,等. 魚雷網(wǎng)式過濾器排污時(shí)間優(yōu)化試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(增刊1):192-199.
Alipujiang·Abulimiti, Hudan·Tumaerbai, Mulati·Yusaiyin, et al. Experimental on optimization on discharge time of torpedo screen filter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(Supp.1): 192-199. (in Chinese with English abstract)
[10] 吳澤廣,張子卓,張珂萌,等. 泥沙粒徑與含沙量對(duì)迷宮流道滴頭堵塞的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(7):99-108.
Wu Zeguang, Zhang Zizhuo, Zhang Kemeng, et al. Influence of particle size and concentration of sediment on clogging of labyrinth channel emitter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(7): 99-108. (in Chinese with English abstract)
[11] Wang J X, Zhu Y Y, Sun T H, et al. Forty years of irrigation development and reform in China[J]. Australian Journal of Agricultural and Resource Economics, 2019, 64(1): 126-149.
[12] 袁壽其,李紅,王新坤. 中國(guó)節(jié)水灌溉裝備發(fā)展現(xiàn)狀、問題、趨勢(shì)與建議[J]. 排灌機(jī)械工程學(xué)報(bào),2015,33(1):78-92.
Yuan Shouqi, Li Hong, Wang Xinkun. Status, problems, trends and suggestions for water-saving irrigation equipment in China[J]. Journal of Drainage and Urrigation Mechanical Engineering, 2015, 33(1): 78-92. (in Chinese with English abstract)
[13] 于婷婷,李騰騰,王瀟. 高含沙洪水期間吉利白坡水廠正常供水方案探究[J]. 人民黃河,2021,43(S1):232-234.
Yu Tingting, Li Tengteng, Wang Xiao. Exploring the normal water supply scheme of Jili Baekpo water plant during high sediment content flood[J]. Yellow River, 2021, 43(S1): 232-234. (in Chinese with English abstract)
[14] 胡松可,李文昊,楊廣,等. 滴灌應(yīng)用的改進(jìn)直線型沉沙池結(jié)構(gòu)優(yōu)化研究[J]. 節(jié)水灌溉,2020(11):68-72,77.
Hu Songke, Li Wenhao, Yang Guang, et al. Research on the structure optimization of improved linear sedimentation basin for drip irrigation application[J]. Water Saving Irrigation, 2020(11): 68-72, 77. (in Chinese with English abstract)
[15] 胡松可,李文昊,楊廣,等. 改進(jìn)直線型沉沙池在農(nóng)業(yè)微灌中的運(yùn)行效果[J]. 排灌機(jī)械工程學(xué)報(bào),2020,38(6):626-631.
Hu Songke, Li Wenhao, Yang Guang, et al. Operation effect of improved straight-line desilting basin in agricultural micro-irrigation[J]. Journal of Drainage and Irrigation Machinery Engineering, 2020, 38(6): 626-631. (in Chinese with English abstract)
[16] He C,Marsalek J. Vortex plate for enhancing particle settling[J]. Journal of Environmental Engineering, 2009, 135(8): 627-635.
[17] Hartloper C, Kinzel M, Rival D E. On the competition between leading-edge and tip-vortex growth for a pitching plate[J]. Experiments in Fluids, 2013, 54(1): 1447.
[18] Wang K, Li Y, Ren S, et al. A case study on settling process in inclined-tube gravity sedimentation tank for drip lrrigation with the yellow river water[J]. Water, 2020, 12(6):1685.
[19] 董玉萍,牟獻(xiàn)友,文恒. 多級(jí)斜板式水沙分離裝置試驗(yàn)[J]. 水利水電科技進(jìn)展,2013,33(5):52-56.
Dong Yuping, Mou Xianyou, Wen Heng. Experimental study on the water-sediment separator with multilevel inclined plates[J]. Advances in Science and Technology of Water Resources, 2013, 33(5): 52-56. (in Chinese with English abstract)
[20] 董玉萍,牟獻(xiàn)友,文恒,等. 斜板式水沙分離裝置中泥沙水力沉速特性研究[J]. 人民黃河,2013,35(8):28-30.
Dong Yuping, Mou Xianyou, Wen Heng, et al. Research on the sediment hydraulic settling velocity feature of the water-sediment separator of inclined plates[J]. Yellow River, 2013, 35(8): 28-30. (in Chinese with English abstract)
[21] 嚴(yán)躍成,邱秀云,張翔,等. 兩相流分離鰓泥沙運(yùn)動(dòng)軌跡及加速滑移的力學(xué)分析[J]. 水利水電科技進(jìn)展,2011,31(5):27-29,42.
Yan Yuecheng, Qiu Xiuyun, Zhang Xiang, et al. Mechanical analysis of sediment motion path and accelerated slip on two-phase flow separation device[J]. Advances in Science and Technology of Water Resources, 2011, 31(5): 27-29, 42. (in Chinese with English abstract)
[22] 楊海華,李琳,靳晟,等. 梭錐管內(nèi)泥沙沉降特性及運(yùn)動(dòng)軌跡研究[J]. 水力發(fā)電學(xué)報(bào),2013,32(2):184-189.
Yang Haihua, Li Lin, Jin Sheng, et al. Study on sediment settling characteristics and movement path in shuttle-conical tube[J]. Journal of Hydroelectric Engineering, 2013, 32(2): 184-189. (in Chinese with English abstract)
[23] 李琳,楊海華,王苗,等. 梭錐管混濁流體分離裝置流場(chǎng)PIV測(cè)試及分析[J]. 水利學(xué)報(bào),2013,44(9):1064-1070.
Li Lin, Yang Haihua, Wang Miao, et al. Test and analysis on flow field in the shuttle-conical tube turbid flow hydraulic separation Device by PIV techniques[J]. Journal of Hydraulic Engineering, 2013, 44(9): 1064-1070. (in Chinese with English abstract)
[24] 新疆農(nóng)業(yè)大學(xué). 一種沉沙池. 中國(guó)專利:202011376457. 4[P],2020-11-30.
[25] 涂啟華,楊賚斐. 泥沙設(shè)計(jì)手冊(cè)[M]. 北京:水利水電出版社,2006.
[26] 侯鵬,肖洋,吳乃陽(yáng),等. 黃河水滴灌系統(tǒng)灌水器結(jié)構(gòu)-泥沙淤積-堵塞行為的相關(guān)關(guān)系研究[J]. 水利學(xué)報(bào),2020,51(11):1372-1382.
Hou Peng, Xiao Yang, Wu Naiyang, et al. Cascade relationship between the emitter structure-sedimentation-clogging behavior in drip irrigation systems with Yellow River water[J]. Journal of Hydraulic Engineering, 2020, 51(11): 1372-1382. (in Chinese with English abstract)
[27] 金镠. 細(xì)顆粒泥沙運(yùn)動(dòng)及灘槽交換對(duì)航道回淤的影響[J]. 水運(yùn)工程,2019(8):111-116.
Jin Liu. Influences of fine sediment transport and transversal sediment transport between shoal and channel on channel siltation[J]. Port & Waterway Engineering, 2019(8): 111-116. (in Chinese with English abstract)
[28] 張瑞瑾. 河流泥沙動(dòng)力學(xué)[M]. 北京:中國(guó)水利水電出版社,2000.
[29] 陳洪松,邵明安. 細(xì)顆粒泥沙的絮凝沉降特性[J]. 土壤通報(bào),2002(10):356-359.
Chen Hongsong, Shao Ming′an. Flocculation and settling properties of fine sediment[J]. Chinese Journal of Soil Science, 2002(10): 356-359. (in Chinese with English abstract)
[30] 李琳,譚義海,楊海華,等. 梭錐管內(nèi)錐圈水沙分離機(jī)理及錐圈設(shè)計(jì)參數(shù)[J]. 水利水電科技進(jìn)展,2013,33(3):5-9.
Li Lin, Tan Yihai, Yang Haihua, et al. Water sediment separation mechanism and design parameters of conical circles in shuttle-conical tubes[J]. Advances in Science and Technology of Water Resources, 2013, 33(3): 5-9. (in Chinese with English abstract)
[31] 錢寧,萬兆惠. 泥沙運(yùn)動(dòng)力學(xué)[M]. 北京:科學(xué)出版社,2003.
[32] 海希,邵宇陽(yáng),張健瑋.動(dòng)水條件下泥沙絮凝體粒徑變化分析實(shí)驗(yàn)研究[J].科學(xué)技術(shù)與工程,2019,19(11) : 262-266.
Hai Xi, Shao Yuyang, Zhang Jianwei. Experimental study on change of sendiment floc particle size under shear flow[J]. Science Technology and Engineering, 2019, 19(11): 262-266. ( in Chinese with English abstract)
[33] 陳立,宋濤,李東鋒,等. 側(cè)向水流作用下均勻沙休止角變化的試驗(yàn)研究[J]. 泥沙研究,2017,42(3):1-6.
Chen Li, Song Tao, Li Dongfeng, et al. Experiment study on repose angle of uniform sand under influence of lateral flow[J]. Journal of Sediment Research, 2017, 42(3): 1-6. (in Chinese with English abstract)
Hydraulic sediment characteristics test and mechanism analysis of a new type of anisotropic flow sedimentation basin
Li Lin1,2, Fu Hailin1,2, Tan Yihai1,2, Pei Jiansheng3, Zhang Jun1,2
(1.,830052,; 2.,830052,; 3.,830099,)
River sediment concentration is often high in the inland area of Northwest China. It is necessary to set up a sediment basin in the main diversion channel of irrigation areas, in order to settle the sediment before the turbid water enters the drip irrigation belts. A new anisotropic flow sedimentation tank can be used as a promising treatment facility for the secondary sediment, due mainly to high sediment settling efficiency, and low ratio of water consumption, particularly on the removal of fine and ultrafine particles. However, a systematic investigation is still lacking on the settling characteristics and mechanism of new type sedimentation tank. In this study, a series of experiments were performed on the new anisotropic flow and bar-shaped sedimentation tank under different treatments of flow rates and sediment concentrations. A new tank was also set with the size of 96 cm length, 10 cm width, and 110 cm height. The results indicated that the settling efficiency of sediment was 40%-88.53% when the flow rate was 45-360 L/h, and the median size of sediment particle was 0.021mm. The settlement efficiency of the new tank was about 1.2-2 times that of a bar-shaped one in the same volume with a slanted or a horizontal floor. The amount of sediment settling to the collection tank per unit time was 1.3-2.3 times that of the bar-shaped one with a slanted floor. The sediment deposit was 1.8 in the new tank, 26 times that of the bar-shaped tank over the same running time. The desilting period of the new tank was only 50% that of the bar-shaped tank, indicating that the new sedimentation tank presented a relatively higher settling efficiency of sediment. An analysis was made on the stress of sediment movement on the plates that inclined in the length and width direction. Among them, the dip angles with the width and length were defined asand, respectively. The first-order nonlinear differential equation was established for the sediment movement on the plates. The velocity and acceleration of particles in different sizes were then calculated along the plates inclined in two-direction and only one direction at different moments. It was found that the velocity of sediment movement on the bidirectionally inclined plate was 1.6 times that on the unidirectional one. Specifically, the velocity and acceleration of particles along with the inclined plate with the great dip (=60°,=85°) were 1.4 and 1.5 times than that with the small dip (=60°,=35°) in the new tank. Additionally, the velocity and acceleration at any moment on the two-direction inclined plate were greater than that of the one-direction one, where both increased with the dips. In mechanism, the settlement efficiency depended mainly on the flow rate,and. It increased withandbut decreased with the increment of flow rate. Furthermore, the greaterandcontributed to better settlement efficiency, particularly whenandwere acute angles if the difference of topographic height was great enough during the engineering design of the new tank. If the height difference was small,andshould not be less than the angle of sediment repose. The findings can provide a sound reference to optimize the structure and design application for a new type of sediment settling basin with the anisotropic flow.
sedimentation; experiments; sedimentation tank; water-sediment two-phase flow; anisotropic flow
李琳,付海林,譚義海,等. 新型異向流沉沙池泥沙沉降特性試驗(yàn)與機(jī)理分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(16):90-98.doi:10.11975/j.issn.1002-6819.2021.16.012 http://www.tcsae.org
Li Lin, Fu Hailin, Tan Yihai, et al. Hydraulic sediment characteristics test and mechanism analysis of a new type of anisotropic flow sedimentation basin[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(16): 90-98. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.16.012 http://www.tcsae.org
2021-05-31
2021-07-20
國(guó)家自然科學(xué)基金項(xiàng)目(52069028);新疆水專項(xiàng)(2020.C006);新疆自治區(qū)研究生科研創(chuàng)新項(xiàng)目(XJ2021G162)
李琳,博士,教授,研究方向?yàn)樗W(xué)及河流動(dòng)力學(xué)。Email:lilin_xjau@163.com
10.11975/j.issn.1002-6819.2021.16.012
S275.6
A
1002-6819(2021)-16-0090-09