王立舒,白 龍,2,房俊龍,李欣然,李 闖,董宇擎
基于雙曲正切函數(shù)的光伏/溫差自適應(yīng)MPPT控制策略研究
王立舒1,白 龍1,2,房俊龍1※,李欣然1,李 闖1,董宇擎1
(1. 東北農(nóng)業(yè)大學(xué)電氣與信息學(xué)院,哈爾濱 150030;2. 牡丹江師范學(xué)院物理與電子工程學(xué)院,牡丹江 157011)
為了提高光伏/溫差聯(lián)合發(fā)電系統(tǒng)的效率,需要進(jìn)行最大功率點(diǎn)跟蹤(Maximum Power Point Tracking,MPPT)控制。針對(duì)傳統(tǒng)電導(dǎo)增量法步長(zhǎng)固定不變導(dǎo)致跟蹤速度慢和穩(wěn)態(tài)誤差大的缺點(diǎn),該研究提出一種恒定電壓法和雙曲正切型自適應(yīng)變步長(zhǎng)算法結(jié)合的MPPT控制策略。該策略利用雙曲正切函數(shù)單調(diào)遞增、變化速度快的特點(diǎn),使步長(zhǎng)可以根據(jù)光強(qiáng)等外界環(huán)境條件的變化,自適應(yīng)地快速調(diào)整,同時(shí)利用恒定電壓法加快追蹤的響應(yīng)速度。Matlab/Simulink軟件仿真和硬件試驗(yàn)表明,該研究所提方法在光照強(qiáng)度劇烈變化時(shí),系統(tǒng)能夠在15 ms內(nèi)快速跟蹤到最大功率點(diǎn),同時(shí)穩(wěn)態(tài)誤差低于0.3%,實(shí)現(xiàn)了MPPT控制在跟蹤速度和穩(wěn)態(tài)精度方面的同步優(yōu)化。
光伏;溫差;自適應(yīng);雙曲正切函數(shù);MPPT
隨著溫室內(nèi)傳感器等裝置的增多,傳統(tǒng)供電方式安裝復(fù)雜、維護(hù)不便、性?xún)r(jià)比低的弊端日益顯現(xiàn),環(huán)保、便捷的太陽(yáng)能逐漸受到人們重視[1-3]。但是光伏電池的發(fā)電效率會(huì)隨著工作溫度的升高而大幅降低[4-6],為了解決這個(gè)問(wèn)題,Vorobiev等[7]提出了光伏/溫差聯(lián)合發(fā)電技術(shù),將光伏電池產(chǎn)生的多余熱量作為溫差發(fā)電系統(tǒng)的熱源,實(shí)現(xiàn)二次發(fā)電,從而提高整個(gè)系統(tǒng)的發(fā)電效率。然而在實(shí)際使用中,需要光伏/溫差聯(lián)合發(fā)電系統(tǒng)盡可能工作在最大功率點(diǎn),使系統(tǒng)發(fā)揮最大潛力。
目前,常用的MPPT算法包括恒定電壓法[8](Constant Voltage Tracking,CVT)、擾動(dòng)觀察法[9](Perturbation and Observation Method,P&O)和電導(dǎo)增量法[10-11](Incremental Conductance,INC)等,此外,一些智能啟發(fā)式算法也被應(yīng)用到最大功率點(diǎn)跟蹤控制之中,例如:模糊控制[12]、人工神經(jīng)網(wǎng)絡(luò)[13]、粒子群算法[14]等。其中,電導(dǎo)增量法原理簡(jiǎn)單、實(shí)現(xiàn)容易,但該方法有著比較明顯的缺陷,即采用固定步長(zhǎng),選擇不當(dāng)會(huì)導(dǎo)致算法無(wú)法及時(shí)找到最大功率點(diǎn)或發(fā)生振蕩。針對(duì)這個(gè)問(wèn)題,文獻(xiàn)[15]將粒子群算法與電導(dǎo)增量法相結(jié)合,首先利用粒子群算法預(yù)測(cè)最大功率點(diǎn)附近電壓和電流,然后利用電導(dǎo)增量法根據(jù)這兩個(gè)值來(lái)尋找最大功率點(diǎn),取得較好的跟蹤效果。但該方法計(jì)算復(fù)雜度較高,需要較高的硬件代價(jià);文獻(xiàn)[16]將恒定電壓法和電導(dǎo)增量法相結(jié)合,在起始階段利用恒定電壓法快速定位到最大功率點(diǎn)附近,然后利用電導(dǎo)增量法尋找最大功率點(diǎn),并通過(guò)改變比例因子使步長(zhǎng)可以動(dòng)態(tài)變化。但是該方法僅僅只是利用傳統(tǒng)電導(dǎo)增量法中的步長(zhǎng)最大值對(duì)比例因子進(jìn)行簡(jiǎn)單限制,并沒(méi)有真正實(shí)現(xiàn)自適應(yīng);文獻(xiàn)[17]采取了同樣的控制策略,不同的是比例因子采用試湊法給定,該方法的靈活性和魯棒性較差;文獻(xiàn)[18]提出一種可根據(jù)外界環(huán)境變化自動(dòng)調(diào)整步長(zhǎng)的自適應(yīng)電導(dǎo)增量法,采用了一種新的步長(zhǎng)調(diào)整系數(shù),提高了算法的響應(yīng)速度。但該方法的實(shí)質(zhì)與文獻(xiàn)[16]和文獻(xiàn)[17]相同,只是步長(zhǎng)調(diào)整因子的形式略有些變化,仍然無(wú)法做到真正意義上的自適應(yīng)。
基于上述分析,為了更好的實(shí)現(xiàn)光伏/溫差聯(lián)合發(fā)電系統(tǒng)的最大功率點(diǎn)跟蹤控制,本文提出一種自適應(yīng)變步長(zhǎng)電導(dǎo)增量算法與恒定電壓法結(jié)合的控制策略。該方法利用雙曲正切函數(shù)的特性,使電導(dǎo)增量法的步長(zhǎng)可以真正實(shí)現(xiàn)自適應(yīng)變化,有效提高了算法的跟蹤速度和穩(wěn)態(tài)特性。并通過(guò)實(shí)驗(yàn)證明了該方法的正確性和有效性。
光伏/溫差聯(lián)合發(fā)電系統(tǒng)中,光伏電池與溫差發(fā)電片相連,電池內(nèi)多余的熱量與冷卻系統(tǒng)構(gòu)成一個(gè)溫差裝置,使溫差發(fā)電片持續(xù)產(chǎn)生電能,從而實(shí)現(xiàn)了對(duì)太陽(yáng)能的二次利用,提高系統(tǒng)的輸出效率。光伏/溫差聯(lián)合發(fā)電系統(tǒng)的結(jié)構(gòu)如圖1所示,主要包括:槽式拋物線形聚光器,三角形熱管[19-21](兩側(cè)由內(nèi)向外依次為溫差發(fā)電片組和光伏電池)、熱交換器、流量計(jì)、可調(diào)水泵、MPPT控制器、數(shù)據(jù)采集卡、雙輸入DC-DC變換器(如圖1b所示)和負(fù)載等。如圖1a所示,太陽(yáng)光經(jīng)拋物型聚光器反射到光伏電池上,被光伏電池吸收的光能一部分轉(zhuǎn)換為電能,另一部分轉(zhuǎn)換成熱能傳遞給溫差發(fā)電片組的熱端,溫差發(fā)電片組的冷端經(jīng)熱管中的水冷卻,形成溫差發(fā)電。
如圖1b所示,雙輸入DC-DC變換器電路中,二極管和電容組成電壓倍增器(VM級(jí))與2個(gè)升壓級(jí)集成在輸入端。VM級(jí)用于幫助升壓級(jí)實(shí)現(xiàn)更高的整體電壓增益。電壓轉(zhuǎn)換比率取決于VM級(jí)的數(shù)目和輸入升壓級(jí)的開(kāi)關(guān)占空比。圖1b顯示了所提出的具有4個(gè)VM階段的轉(zhuǎn)換器。為了簡(jiǎn)單和更好的理解,這里解釋具有4個(gè)乘法器階段的變換器的操作。類(lèi)似分析可以擴(kuò)展到級(jí)變換器。
當(dāng)通過(guò)VM級(jí)給電容器充電時(shí),電荷逐漸從輸入轉(zhuǎn)移到輸出,1兩端電源可近似為0。
電容1和2兩端電壓如公式(2)和(3)。
式中1和2分別為場(chǎng)效應(yīng)管1和2的開(kāi)關(guān)占空比,V3和V4為電容1和2兩端電壓,V。由式(2)和式(3)可得四VM級(jí)變換器的電容器電壓如公式(4)所示。
由式(2)可得輸出電壓如公式(5)所示。
類(lèi)似分析可以推廣到具有個(gè)VM 級(jí)的變換器,因此VM級(jí)電容器電壓如公式(6)所示。
具有個(gè)VM級(jí)變換器的輸出電壓方程如公式(7)所示。
電導(dǎo)增量法誕生之初,由于算法性能非常依賴(lài)于電壓和電流檢測(cè)的精度和速度[22-24],因此使用的較少。但是隨著微電子、集成電路以及傳感技術(shù)的飛速發(fā)展,高速、高精度數(shù)模轉(zhuǎn)換器和高性能DSP等大量出現(xiàn),使得電導(dǎo)增量法的推廣使用成為可能[25-27]。
如果為情況②,則
定義如下的雙曲正切型函數(shù):
其特性曲線如圖3所示。
如此一來(lái),在系統(tǒng)輸出功率遠(yuǎn)離最大功率點(diǎn)時(shí),幾乎以最大步長(zhǎng)進(jìn)行調(diào)整;而當(dāng)輸出功率接近最大功率點(diǎn)時(shí),又能快速減小步長(zhǎng)。同時(shí)追蹤啟動(dòng)時(shí),利用恒定電壓法快速定位到最大功率點(diǎn)附近,從而使系統(tǒng)的跟蹤特性和穩(wěn)態(tài)誤差同時(shí)取得較好效果。結(jié)合了恒定電壓法的自適應(yīng)變步長(zhǎng)電導(dǎo)增量法的實(shí)現(xiàn)流程如圖4所示。
為了檢驗(yàn)本文所提自適應(yīng)變步長(zhǎng)電導(dǎo)增量法在光伏/溫差聯(lián)合發(fā)電系統(tǒng)最大功率點(diǎn)跟蹤控制中的性能,利用Matlab/Simulink軟件平臺(tái)組建仿真模型,對(duì)算法進(jìn)行仿真試驗(yàn),并從首次跟蹤到最大功率點(diǎn)所需時(shí)間(啟動(dòng)時(shí)間)、環(huán)境(輻照度)劇烈變化時(shí)再次跟蹤到最大功率點(diǎn)所需時(shí)間、系統(tǒng)輸出功率的平均值和穩(wěn)態(tài)誤差等方面進(jìn)行算法優(yōu)劣性分析。光伏/溫差發(fā)電部分仿真結(jié)構(gòu)如圖 5所示,本文采用的光伏電池仿真模型為晶澳公司的JAMG-6-60-250/SI型光伏組件,其部分主要參數(shù)如表1所示。溫差發(fā)電片仿真模型為星河公司的F40550,其部分主要參數(shù)如表2所示[28]。
表2 溫差發(fā)電片主要參數(shù)
由圖6可知,本文所提變步長(zhǎng)電導(dǎo)增量法的跟蹤性能最佳。對(duì)于固定步長(zhǎng)電導(dǎo)增量法,光照突然升高時(shí),小步長(zhǎng)和大步長(zhǎng)的系統(tǒng)調(diào)節(jié)時(shí)間分別為46.3和24.2 ms;光照突然降低時(shí),系統(tǒng)調(diào)節(jié)時(shí)間分別為34.8和13.5 ms;光照強(qiáng)度在1 000 W/m2穩(wěn)定時(shí),系統(tǒng)平均輸出功率分別為317.4和324.7 W。由此可見(jiàn),當(dāng)步長(zhǎng)較大時(shí),算法的啟動(dòng)速度和動(dòng)態(tài)響應(yīng)時(shí)間明顯較好,但相應(yīng)的穩(wěn)態(tài)誤差較大,輸出功率振蕩明顯,導(dǎo)致系統(tǒng)的整體效率降低。文獻(xiàn)[18]算法的性能要明顯好于固定步長(zhǎng)電導(dǎo)增量法。該方法使步長(zhǎng)具有一定的自適應(yīng)能力,光照突變時(shí)系統(tǒng)調(diào)節(jié)時(shí)間分別為22.7和23.1 ms,光照強(qiáng)度為1 000 W/m2時(shí),系統(tǒng)平均輸出功率為317.8 W,可見(jiàn)算法對(duì)系統(tǒng)的跟蹤速度和穩(wěn)態(tài)精度都有一定程度的改善。
本文所提變步長(zhǎng)電導(dǎo)增量法在光照突變時(shí)的調(diào)節(jié)時(shí)間分別為12.5和12.1 ms,系統(tǒng)平均輸出功率在光照強(qiáng)度為1 000 W/m2時(shí)保持在316.4 W左右,無(wú)論相比較與固定電導(dǎo)增量法還是文獻(xiàn)[18]的變步長(zhǎng)電導(dǎo)增量法,系統(tǒng)跟蹤速度和穩(wěn)態(tài)精度都有很大程度的提高。這主要由于本文算法令步長(zhǎng)按照雙曲正切形式連續(xù)變化,使算法真正實(shí)現(xiàn)了快速、自適應(yīng)跟蹤實(shí)際的最大功率點(diǎn),因此算法的性能最優(yōu)。
為了更為具體的比較本文算法和文獻(xiàn)[18]算法的優(yōu)劣,將光照變化時(shí)算法步長(zhǎng)的變化情況給出,如圖7所示。可以明顯看出,無(wú)論是光照強(qiáng)度突然升高還是突然降低,文獻(xiàn)[18]算法的步長(zhǎng)變化都較為凌亂,步長(zhǎng)時(shí)大時(shí)小,沒(méi)有向著一個(gè)方向連續(xù)變化,說(shuō)明調(diào)節(jié)過(guò)程中存在調(diào)節(jié)過(guò)大的情況,而且即使系統(tǒng)輸出穩(wěn)定后,也時(shí)而存在步長(zhǎng)不為0的情形。而本文算法在光照突然升高和降低時(shí),步長(zhǎng)變化趨勢(shì)一致,調(diào)節(jié)迅速,在系統(tǒng)輸出功率穩(wěn)定后步長(zhǎng)一直保持為0,非常好的實(shí)現(xiàn)了最大功率點(diǎn)跟蹤控制。
2020年10月,在東北農(nóng)業(yè)大學(xué)進(jìn)行了最大功率點(diǎn)跟蹤試驗(yàn),試驗(yàn)裝置如圖8所示。控制器采用的是TI公司的TMS320LF2407A。JXBS-3001-ZFS太陽(yáng)輻射傳感器測(cè)量輻照度,測(cè)量范圍0~1 500 W/m2,RS485輸出。PZEM-031直流多功能表測(cè)量輸出電壓與輸出電流,計(jì)量精度1.0級(jí),電壓測(cè)量范圍6.5~100 V,電流測(cè)量范圍0~20 A。負(fù)載為阻值150 Ω的大功率電阻。多晶硅光伏電池尺寸制定為700 mm×60 mm×2.3 mm,開(kāi)路電壓4.44 V,短路電流1.81 A,溫差發(fā)電部分采用14個(gè)型號(hào)為SP1848-27145的溫差發(fā)電片進(jìn)行串聯(lián),并根據(jù)變步長(zhǎng)電導(dǎo)增量法控制策略產(chǎn)生相應(yīng)的PWM實(shí)現(xiàn)MPPT控制。為了驗(yàn)證本文算法具有較強(qiáng)的實(shí)用性,能夠適應(yīng)不同的環(huán)境條件,因而選擇光照度和溫度逐漸增強(qiáng)和基本不變的2個(gè)時(shí)間段[29-30]A(8:00~9:00)、B(12:00~13:00)進(jìn)行電壓和電流的數(shù)據(jù)采集以及跟蹤試驗(yàn),分別在A、B兩個(gè)時(shí)間段的第1 min、第31 min和第60 min,每隔1 ms采集一個(gè)電壓電流數(shù)據(jù),將采集到的數(shù)據(jù)進(jìn)行功率計(jì)算,并計(jì)算結(jié)果的平均值,試驗(yàn)測(cè)得結(jié)果如表3所示。2個(gè)時(shí)間段本文自適應(yīng)電導(dǎo)增量法首次跟蹤到最大功率點(diǎn)所用的時(shí)間分別為13.8和13.4 ms;平均輸出功率為71.5和96.58 W,與系統(tǒng)理論輸出功率相差7%左右,主要因?yàn)樵囼?yàn)采用的多晶硅電池純度不高,測(cè)量?jī)x器存在一定的誤差導(dǎo)致。但試驗(yàn)結(jié)果趨勢(shì)與仿真結(jié)果基本相符,能夠達(dá)到提高跟蹤速度與系統(tǒng)穩(wěn)定同步優(yōu)化的目的。可以看出,利用本文算法進(jìn)行MPPT控制后,當(dāng)光照強(qiáng)度變化時(shí),步長(zhǎng)變化趨勢(shì)一致,功率輸出波動(dòng)更小,調(diào)節(jié)速度快,自適應(yīng)性好,系統(tǒng)可在15 ms內(nèi)快速追蹤并穩(wěn)定在最大功率點(diǎn),且系統(tǒng)穩(wěn)態(tài)誤差低于0.3%。
1.拋物型聚光器 2.光伏溫差混合發(fā)電系統(tǒng) 3.輻照度測(cè)試儀 4.DC-DC變換器 5.數(shù)據(jù)采集卡 6.負(fù)載 7.USB轉(zhuǎn)485模塊 8.直流多功能表 9.計(jì)算機(jī) 10.DSP
表3 硬件試驗(yàn)數(shù)據(jù)對(duì)比
本文重點(diǎn)研究光伏/溫差聯(lián)合發(fā)電系統(tǒng)的最大功率點(diǎn)跟蹤控制。針對(duì)傳統(tǒng)電導(dǎo)增量法步長(zhǎng)固定選取的缺點(diǎn),提出了一種采用雙曲正切形式漸變步長(zhǎng)的自適應(yīng)步長(zhǎng)電導(dǎo)增量法與恒定電壓法相結(jié)合的控制策略。并分別進(jìn)行了仿真和硬件試驗(yàn),由試驗(yàn)結(jié)果可得到以下結(jié)論:
1)相比于傳統(tǒng)固定步長(zhǎng)電導(dǎo)增量法,本文提出的自適應(yīng)變步長(zhǎng)電導(dǎo)增量法可以有效降低系統(tǒng)啟動(dòng)時(shí)間,在光照突變時(shí),系統(tǒng)可以在15 ms內(nèi)快速追蹤到最大功率點(diǎn),響應(yīng)速度明顯提升;
2)本文提出的自適應(yīng)變步長(zhǎng)電導(dǎo)增量法在系統(tǒng)動(dòng)態(tài)跟蹤速度和穩(wěn)態(tài)精度之間取得了很好的平衡,系統(tǒng)響應(yīng)速度提高的同時(shí),穩(wěn)態(tài)誤差低于0.3%,系統(tǒng)穩(wěn)定性更優(yōu);
3)本文采用的雙曲正切型步長(zhǎng)變化規(guī)律,能夠使步長(zhǎng)快速、自適應(yīng)變化,從而使系統(tǒng)輸出可以快速跟蹤最大功率點(diǎn)。算法原理簡(jiǎn)單,硬件消耗小,非常適宜在DSP、FPGA等硬件上實(shí)現(xiàn),可以較快的應(yīng)用于實(shí)踐之中。
[1] 楊亞林,朱德蘭,李丹,等. 積灰和光照強(qiáng)度對(duì)光伏組件輸出功率的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(5):203-211.
Yang Yalin, Zhu Delan, Li Dan, et al. Influence of dust accumulation and light intensity on output power of photovoltaic modules[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(5): 203-211. (in Chinese with English abstract)
[2] 劉天揚(yáng). 兆瓦級(jí)光伏電站并網(wǎng)電壓控制技術(shù)研究[D]. 南京:東南大學(xué),2019.
Liu Tianyang. Research on the Voltage Control in Grid-connect Megawatt-class Photovoltaic Power Station[D]. Nanjing: Southeast University, 2019. (in Chinese with English abstract)
[3] 李欣然,王立舒,李闖,等. 光伏溫差界面熱耦合特性及混合發(fā)電效率[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(1):233-240.
Li Xinran, Wang Lishu, Li Chuang, et al. Thermal coupling characteristics of photovoltaic-thermoelectric interface and efficiencyof hybrid power generation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 233-240. (in Chinese with English abstract)
[4] 湯允鳳. 太陽(yáng)能光伏光熱綜合利用系統(tǒng)研究及優(yōu)化控制[D]. 南寧:廣西大學(xué),2019.
Tang Yunfeng. Research and Optimal Control of Solar Photovoltaic/thermal Comprehensive[D]. Nanning: Guangxi University, 2019. (in Chinese with English abstract)
[5] 劉暢,陳啟卷,陳桂月,等. 光伏-燃料電池混合發(fā)電系統(tǒng)建模與仿真[J]. 太陽(yáng)能學(xué)報(bào),2018,39(11):3113-3119.
Liu Chang, Chen Qijuan, Chen Guiyue, et al. Modeling and simulation of PV-fuel cell hybrid power system[J]. Acta Energiae Solaris Sinica, 2018, 39(11): 3113-3119. (in Chinese with English abstract)
[6] 朱麗,陳薩如拉,楊洋,等. 太陽(yáng)能光伏電池冷卻散熱技術(shù)研究進(jìn)展[J]. 化工進(jìn)展,2017,36(1):10-19.
Zhu Li, Chen Sarula, Yang Yang, et al. Research progress on heat dissipation technology of photovoltaic cells[J]. Chemical Industry and Engineering Progess, 2017, 36(1): 10-19. (in Chinese with English abstract)
[7] Vorobiev Y, Gonzalez H J, Vorobiev P, et al. Thermal-photovoltaic solar energy conversion[J]. Solar Energy, 2006, 80: 170-176.
[8] Jana J, Samanta H, Das Bhattacharya K, et al. Design and development of high efficiency five stagebattery charge controller with improved MPPT performance for solar PV systems[J]. International Journal of Renewable Energy Research, 2018, 8(2): 941-953.
[9] 徐凱,王湘萍. 光伏發(fā)電最大功率點(diǎn)跟蹤的智能集成控制[J]. 太陽(yáng)能學(xué)報(bào),2018,39(2):536-543.
Xu Kai, Wang Xiangping. Intelligent integrated control for maximum powerpoint tracking of PV generation system[J]. Acta Energiae Solaris Sinica, 2018, 39(2): 536-543. (in Chinese with English abstract)
[10] 徐建國(guó),沈建新,王海新. 基于新型變步長(zhǎng)電導(dǎo)增量法的最大功率點(diǎn)跟蹤策略[J]. 可再生能源,2018,36(9):1305-1313.
Xu Jianguo, Shen Jianxin, Wang Haixin, et al. Maxi-mum power point tracking strategy based on novel variable step-size incremental conductance algorithm[J]. Renewable Energy Resources, 2018, 36(9): 1305-1313. (in Chinese with English abstract)
[11] 盧超. 一種改進(jìn)型電導(dǎo)增量法 MPPT 控制策略仿真研究[J]. 信息技術(shù),2019(3):111-115.
Lu Chao. Simulation study of MPPT control strategy based on an improved conductance increment method[J]. Information Technology, 2019(3): 111-115. (in Chinese with English abstract)
[12] Mirza A F, Ling Q, Javed M Y, et al. Novel MPPT techniques for photovoltaic systems under uniform irradi-ance and Partial shading[J]. Solar Energy, 2019, 184: 628-648.
[13] Zhao Y, Li H, Liu L Q, et al. The MPPT control method by using BP Neural Networks in PV generating system[C]. 2011 2nd International Conference on Network Engineering and Computer Science. 2011, 9: 482-487.
[14] 徐珊珊,金玉華,張慶兵. 帶全局判據(jù)的改進(jìn)量子粒子群優(yōu)化算法[J]. 系統(tǒng)工程與電子技術(shù),2018,40(9):2131-2137.
Xu Shangshang, Jin Yuhua, Zhang Qingbing. Improved quantum-particle swarm optimization with global criterion[J]. Systems Engineering and Electronics, 2018, 40(9): 2131-2137. (in Chinese with English abstract)
[15] 翟小軍,杜蘅,劉建義,等. 粒子群算法與電導(dǎo)增量法的雙級(jí)最大功率點(diǎn)跟蹤控制[J]. 紅外與激光工程,2016,45(6):190-195.
Zhai Xiaojun, Du Xun, Liu Jianyi, et al. Two-stage maximum power point tracking control based on particle swarm optimization and conductance increment method[J]. Infrared and Laser Engineering, 2016,45(6): 190-195. (in Chinese with English abstract)
[16] 劉家贏,韓肖清,張鵬. 一種改進(jìn)的變步長(zhǎng)電導(dǎo)增量法在光伏MPPT中的應(yīng)用[J]. 電氣應(yīng)用,2014,7:23-27.
Liu Jiaying, Han Xiaoqing, Zhang Peng. Application of an improved variable step size conductance increment method in photovoltaic MPPT[J]. Electrical Applications, 2014, 7: 23-27. (in Chinese with English abstract)
[17] 周建萍,朱建萍. 自適應(yīng)變步長(zhǎng)電導(dǎo)增量法的最大功率點(diǎn)跟蹤控制[J]. 上海電力學(xué)院學(xué)報(bào),2014,30(3):235-239.
Zhou Jianping, Zhu Jianping. Maximum power point tracking control of adaptive variable step size conductance increment method[J]. Journal of Shanghai Electric Power Institute, 2014, 30(3): 235-239. (in Chinese with English abstract)
[18] 周東寶,陳淵睿. 基于改進(jìn)型變步長(zhǎng)電導(dǎo)增量法的最大功率點(diǎn)跟蹤策略[J]. 電網(wǎng)技術(shù),2015,39(6):1491-1498.
Zhou Dongbao, Chen Yuanrui. Maximum power point tracking strategy based on improved variable step size conductance increment method[J]. Grid Technology, 2015, 39(6): 1491-1498. (in Chinese with English abstract)
[19] 王立舒,馮廣煥,張旭,等. 聚光太陽(yáng)能光伏/溫差復(fù)合發(fā)電系統(tǒng)設(shè)計(jì)與性能測(cè)試[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(15):230-238.
Wang Lishu, Feng Guanghuan, Zhang Xu, et al. Design and performance test of concentrating solar photovoltaic / thermoelectric hybrid power generation system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(15): 230-238. (in Chinese with English abstract)
[20] 梁秋艷. 聚光太陽(yáng)能溫差發(fā)電關(guān)鍵技術(shù)及熱電性能機(jī)理研究[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué),2016.
Liang Qiuyan. Research of Concentration Solar Thermoelectric Generation Key Technology and Thermoelectric Performance Mechanism[D]. Harbin: Northeast Agricultural University, 2016. (in Chinese with English abstract)
[21] 別玉,李明,陳飛,等. 基于槽式聚光集熱的腔體吸收器熱損失特性研究[J]. 太陽(yáng)能學(xué)報(bào),2017,38(2):423-430.
Bie Yu, Li Ming, Chen Fei, et al. Heat loss properties of cavity absorber in solar collecting system with parabolic trough concentrator[J]. Acta Energiae Solaris Sinica, 2017, 38(2): 423-430. (in Chinese with English abstract)
[22] 聶健. 太陽(yáng)能光伏定向跟蹤裝置的設(shè)計(jì)與開(kāi)發(fā)[D]. 長(zhǎng)沙:湖南師范大學(xué),2014.
Nie Jian. Design and Development of Solar Photovoltaic Directional Tracking Device[D]. Changsha: Hunan Normal University, 2014. (in Chinese with English abstract)
[23] 張政. 太陽(yáng)能光伏光熱一體化熱泵/熱管系統(tǒng)性能研究[D]. 南京:東南大學(xué),2016.
Zhang Zheng. Performance Research of a Solar Photovoltaic/Thermal Integrated Heat Pump/Heat Pipe system[D]. Nanjing: Southest University, 2016. (in Chinese with English abstract)
[24] Huynh D C, Dunnigan M W. Development and comparison of an improved incremental conductance algorithm for tracking the MPP of a solar PV panel[J]. IEEE Transactions on Sustainable Energy, 2016, 7(4): 1421-1429.
[25] 梁亮,詹智民,鄧小磊,等. 基于電導(dǎo)增量法的太陽(yáng)能光伏陣列MPPT仿真[J]. 鄭州大學(xué)學(xué)報(bào),2018,39(6):88-92.
Liang Liang, Zhan Zhiming, Deng Xiaolei, et al. PV array mppt simulation based on the conductance increment method[J]. Journal of Zhengzhou University (Engineering Science), 2018, 39(6): 88-92. (in Chinese with English abstract)
[26] Mousa H, Youssef A, Mohamed E M. Variable step size P&O MPPT algorithm for opti-mal power extraction of multi-phase PMSG based windgeneration system[J]. Electrical Power and Energy Systems, 2019, 108: 218-231.
[27] Ahmed J, Salam Z. An improved perturb and observe(P&O) maximum power point tracking (MPPT) algo- rithm for higher efficiency[J]. Applied Energy, 2015, 150: 97-108.
[28] Hamidreza N, Keith A W. Modeling and analysis of a combined photovoltaic-thermoelectric power generation system[J]. Journal of Solar Energy Engineering, 2013, 135(031013): 1-8.
[29] 王立舒,王慧杰,趙嘉瑋,等. 基于電導(dǎo)-模糊雙模式的MPPT優(yōu)化控制[J]. 太陽(yáng)能學(xué)報(bào),2017,38(7):1847-1853.
Wang Lishu, Wang Huijie, Zhao Jiawei, et al. Inc-fuzzy dual mode for optimal control of photovoltaic maximum power point[J]. Acta Energiae Solaris Sinica, 2017, 38(7): 1847-1853 (in Chinese with English abstract)
[30] 劉偉,張健,金宏達(dá),等. 哈爾濱地區(qū)輻照度推算及NASA數(shù)據(jù)適用性分析[J]. 黑龍江電力,2019,41(2):179-183.
Liu Wei, Zhang Jian, Jin Hongda, et al. Estimation of irradiance and applicability analysis of NASA data in Harbin[J]. Heilongjiang Electric Power. 2019,41(2):179-183. (in Chinese with English abstract)
Self-adaptive photovoltaic/temperature difference MPPT control strategy based on hyperbolic tangent function
Wang Lishu1, Bai Long1,2, Fang Junlong1※, Li Xinran1, Li Chuang1, Dong Yuqing1
(1.,,150030,; 2.,,157011,)
An effective supply mode, solar power is gradually gaining much attention for the environmental friendliness and convenience. Among them, a photovoltaic/thermal co-generation technology is usually utilized to improve the power generation efficiency of photovoltaic cells, as the operating temperature rises. As such, the redundant heat generated by the photovoltaic cells was reused as the heat source for the temperature difference of the power generation system to realize secondary power generation. Moreover, the Maximum Power Point Tracking (MPPT) control is also required to achieve the optimal potential of the co-generation system. In this study, a new MPPT control of photovoltaic/temperature difference was proposed further to combine the constant voltage and hyperbolic tangent type adaptive variable step size, in response to the oscillation and misjudgment caused by the fixed step size of traditional conductance increment. Two advantages were included here: First, the control was the fast tracking to the area near the nonlinear region of the maximum power point using 0.78 times of the system open-circuit voltage, suitable for the great changing environmental conditions. Second, the step size was adjusted adaptively and quickly, according to the change of external environmental conditions, when the MPPT was tracking to the nonlinear region near the maximum power points. For instance, the light intensity was used to reduce the system oscillation, indicating the monotonic increase and fast variation in the hyperbolic tangent function. Furthermore, a simulation model was established to evaluate the performance of adaptive variable step conductance increment in the MPPT control of a combined photovoltaic/thermal power generation system using the Matlab/Simulink software. Specifically, Jinao JAMG-6-60-250/SI photovoltaic module was set as the photovoltaic cell model, and Xinghe F40550 was the thermoelectric chip model. Simulation results show that the step changes were consistent under the drastic variation in the light intensity, while the response speed was obviously improved with the rapid adjustment for tracking the maximum power point. At the same time, the step size was kept at 0, after the output power of He system was stabilized. There were only small fluctuations and errors in the steady-state output power, indicating that the MPPT control performed well. Correspondingly, an MPPT hardware experiment was conducted to further verify the feasibility at Northeast Agricultural University in Harbin in October 2020. Two periods A (8:00-9:00) and B (12:00-13:00) were selected, when the illumination and temperature were gradually enhanced to remain unchanged. The hardware experimental results show that the system was quickly tracked and stabilized at the maximum power point within 15ms, where the steady-state error was less than 0.3%, indicating more robust to external environmental disturbances and higher energy utilization. Consequently, an excellent balance was achieved in the system response speed and steady-state accuracy. The finding can provide a promising potential to the implementation of hardware, such as digital signal processors in practice.
photovoltaic; temperature difference; adaptive; hyperbolic tangent function; MPPT
王立舒,白龍,房俊龍,等. 基于雙曲正切函數(shù)的光伏/溫差自適應(yīng)MPPT控制策略研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(16):184-191.doi:10.11975/j.issn.1002-6819.2021.16.023 http://www.tcsae.org
Wang Lishu, Bai Long, Fang Junlong, et al. Self-adaptive photovoltaic/temperature difference MPPT control strategy based on hyperbolic tangent function[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(16): 184-191. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.16.023 http://www.tcsae.org
2021-04-26
2021-06-21
黑龍江省教育廳科技課題(12521038);黑龍江省教育廳基本科研業(yè)務(wù)費(fèi)支持項(xiàng)目(1353MSYYB015)
王立舒,博士,教授,博士生導(dǎo)師。研究方向?yàn)檗r(nóng)業(yè)電氣化與自動(dòng)化;電力新能源開(kāi)發(fā)與利用。Email:wanglishu@neau.edu.cn
房俊龍,博士,教授,博士生導(dǎo)師。研究方向?yàn)檗r(nóng)業(yè)電氣化與自動(dòng)化;電力新能源開(kāi)發(fā)與利用。Email:junlongfang@126.com
10.11975/j.issn.1002-6819.2021.16.023
TK514;TM615;TM617
A
1002-6819(2021)-16-0184-08