• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      殺鈴脲對(duì)有益天敵的安全性研究綜述

      2022-01-11 06:19:04譚海軍張譯丹
      生物災(zāi)害科學(xué) 2021年4期
      關(guān)鍵詞:寄生蜂赤眼蜂有益

      譚海軍,張譯丹

      殺鈴脲對(duì)有益天敵的安全性研究綜述

      譚海軍1,張譯丹2

      (1. 蘇州艾科爾化工科技有限公司,江蘇 昆山 215300;2. 通化農(nóng)藥化工股份有限公司,吉林 通化 134001)

      有益天敵具有控制有害生物危害程度的自然生態(tài)平衡功能。然而,當(dāng)有害生物侵襲大面積爆發(fā)時(shí),就需要使用化學(xué)農(nóng)藥來(lái)對(duì)其進(jìn)行有效防控。為減輕對(duì)有益天敵的影響,選用對(duì)非靶標(biāo)生物低毒、同時(shí)可減少施用劑量的化學(xué)農(nóng)藥尤為重要。作為一種適用于有害生物綜合治理的化學(xué)類昆蟲(chóng)生長(zhǎng)調(diào)節(jié)劑,殺鈴脲處理后也會(huì)使暴露其間的有益天敵的生存、生長(zhǎng)、繁殖、寄生和捕食等行為受到不同程度的影響。對(duì)膜翅目、半翅目、鞘翅目、革翅目和脈翅目昆蟲(chóng),以及蛛形綱節(jié)肢動(dòng)物和昆蟲(chóng)病原線蟲(chóng)等有益天敵在暴露于殺鈴脲后的影響進(jìn)行總結(jié),以期更好地理解殺鈴脲在施用方式、劑量和時(shí)間,以及寄生或捕食對(duì)象等不同條件下對(duì)有益天敵的作用效應(yīng)和安全性,從而為其在害蟲(chóng)綜合治理方面的開(kāi)發(fā)和應(yīng)用提供參考。

      殺鈴脲;有益天敵;安全性;作用效應(yīng)

      天敵是自然界存在的生物因子,在正常的自然生態(tài)環(huán)境條件下與有害生物及其他生物保持著一種相互依存和制約的動(dòng)態(tài)平衡。一旦這種平衡遭到破壞,有害生物就會(huì)失去制約而猖獗起來(lái)。這時(shí)就可通過(guò)加強(qiáng)有益的天敵生物因子來(lái)抑制其猖獗,從而在一定范圍內(nèi)實(shí)現(xiàn)有效的生物防控,即有益天敵具有控制有害生物危害程度的自然生態(tài)平衡功能。然而,當(dāng)有害生物侵襲大面積爆發(fā)時(shí),就需要使用化學(xué)農(nóng)藥來(lái)對(duì)其進(jìn)行有效的防控。但在化學(xué)農(nóng)藥施用期間及施用后,寄生性天敵、捕食性天敵和昆蟲(chóng)病原線蟲(chóng)等有益天敵將不可避免地長(zhǎng)時(shí)間暴露于亞致死劑量的化學(xué)環(huán)境中?;瘜W(xué)農(nóng)藥不一定會(huì)導(dǎo)致這些有益天敵的死亡,但會(huì)對(duì)其生存、生長(zhǎng)、繁殖、寄生和捕食等產(chǎn)生不同程度的影響。選用與天敵生物相容的、施用劑量低的化學(xué)農(nóng)藥,對(duì)減輕有益天敵的不利影響、可持續(xù)地實(shí)施有害生物綜合治理策略尤為重要。

      作為一種重要的苯甲酰脲類昆蟲(chóng)生長(zhǎng)調(diào)節(jié)劑,殺鈴脲以胃毒作用為主、觸殺作用為輔,無(wú)熏蒸和內(nèi)吸作用[1]。通過(guò)影響靶標(biāo)生物體內(nèi)幾丁質(zhì)的含量,殺鈴脲對(duì)具有完全變態(tài)特征的和不完全變態(tài)特征的多種害蟲(chóng)具有不同程度的生物活性。在殺鈴脲施用后,靶標(biāo)害蟲(chóng)的幼(若)蟲(chóng)和蛹不能正常生長(zhǎng)發(fā)育而變畸致死,即使存活也不能正常生長(zhǎng)和生殖;成蟲(chóng)的活動(dòng)和攝食受到抑制,生殖能力及子代存活率大大降低;蟲(chóng)卵的孵化也受到抑制,即使孵化也不能存活[2-3]。由于可經(jīng)卵巢跨代跨性別傳遞,殺鈴脲一次施用即可同時(shí)控制多種、數(shù)代害蟲(chóng),從而有效地減少農(nóng)藥施用。同時(shí),殺鈴脲對(duì)哺乳動(dòng)物的毒性較低,在動(dòng)、植物體內(nèi)和環(huán)境中不易富集,與鳥(niǎo)、魚(yú)、蜜蜂、大型溞、藻類和蚯蚓等非靶標(biāo)生物的相容性較好[1]。殺鈴脲與有益天敵配合施用對(duì)有害生物防控還具有顯著的協(xié)同增效作用,因而適合用于有害生物綜合治理。研究表明[4-6],天敵生物寄生后的梨小食心蟲(chóng)[(Busck)]和德國(guó)小蠊[(Linnaeus)]對(duì)殺鈴脲更敏感,而施用殺鈴脲也可增強(qiáng)寄生蜂喜馬拉雅角頭小蜂[(Westwood)]對(duì)害蟲(chóng)的寄生能力。

      本文就施用期間和施用后,殺鈴脲對(duì)膜翅目、半翅目、鞘翅目、革翅目和脈翅目昆蟲(chóng),以及蛛形綱節(jié)肢動(dòng)物和昆蟲(chóng)病原線蟲(chóng)等多種有益天敵的暴露影響進(jìn)行總結(jié),以期更好地理解殺鈴脲在不同條件下對(duì)這些有益天敵的作用效應(yīng)和安全性,從而為其在害蟲(chóng)綜合治理方面的開(kāi)發(fā)及應(yīng)用提供參考。

      1 對(duì)膜翅目天敵昆蟲(chóng)的安全性

      與其生物活性一致,殺鈴脲對(duì)膜翅目天敵昆蟲(chóng)的安全性相對(duì)較高,但隨著其處理的方式、劑量(或濃度)和時(shí)間,天敵和寄主的種類、寄生時(shí)間和發(fā)育階段等因素的變化呈現(xiàn)差異。一般說(shuō)來(lái),田間施用濃度的殺鈴脲對(duì)膜翅目天敵昆蟲(chóng)的寄生能力無(wú)不利影響,發(fā)育早期的寄生蜂對(duì)殺鈴脲更敏感,寄生后寄生蜂的存活受殺鈴脲對(duì)寄主毒殺作用的影響較大。當(dāng)前對(duì)膜翅目天敵的安全性研究主要集中寄生蜂上,下面按殺鈴脲處理方式的不同分別予以總結(jié)。

      1.1 直接處理寄生蜂

      1.1.1 殘留暴露 暴露后,寄生蜂只有在直接接觸或者吸入殺鈴脲后才會(huì)表現(xiàn)出一定的作用效應(yīng)。由于需要不斷地尋找食物和合適的寄主,寄生蜂成蟲(chóng)最容易與殺鈴脲接觸而成為最敏感的發(fā)育階段,蟲(chóng)蛹則由于不可移動(dòng)性和繭殼天然的保護(hù)作用而成為最不敏感發(fā)育階段。不同種類寄生蜂成蟲(chóng)的敏感性雖然不同,但卻在一定濃度范圍內(nèi)對(duì)殺鈴脲相對(duì)安全。暴露時(shí)間也對(duì)寄生蜂的安全性產(chǎn)生重要的影響,有些不利的影響還可隨著時(shí)間的延長(zhǎng)得以恢復(fù)。管測(cè)藥膜法測(cè)試結(jié)果顯示[7],殺鈴脲對(duì)松毛蟲(chóng)赤眼蜂[(Matsumura)]成蟲(chóng)的急性LR50(半數(shù)致死用量,24 h)>9.16×10-3mg/cm2。根據(jù)殺鈴脲在農(nóng)業(yè)農(nóng)村部登記的最高用量計(jì)算其安全系數(shù)遠(yuǎn)大于5,按《化學(xué)農(nóng)藥環(huán)境安全評(píng)價(jià)試驗(yàn)準(zhǔn)則》(國(guó)標(biāo)—2014)評(píng)價(jià)標(biāo)準(zhǔn)屬于低風(fēng)險(xiǎn)農(nóng)藥。螟黃赤眼蜂[(Ishii)]蟲(chóng)卵的羽化率在巴基斯坦秋葵田間施用劑量的殺鈴脲(約14.8 g/hm2)中暴露1~3 d后未受到顯著影響[8],但其成蟲(chóng)在400 mg/L的殺鈴脲中暴露24 h后則全部不能存活[9]。暴露于南非柑橘園施用濃度的殺鈴脲(96 mg/L),克虱跳小蜂[(Timberlake)][10]和蠟蚧長(zhǎng)尾嚙小蜂[(=)(Girault)][11]分別在6~24 h內(nèi)和3~12 h內(nèi)的存活未受到顯著影響,而蠟蚧長(zhǎng)尾嚙小蜂在12~96 h的存活則受到了中度不利影響。在更高濃度的殺鈴脲(0.06%)中暴露1~7 d后,普特萊利姬小蜂[(Grissell)]成蟲(chóng)的存活未受到顯著影響[12]。用2 000 mg/L的殺鈴脲殘留暴露處理,蒼白三叉蚜繭蜂[(Haliday)]成蟲(chóng)的存活也未受到顯著影響[13]。卷蛾分索赤眼蜂[(Nagaraja)]成蟲(chóng)的存活率和寄生率在番茄田間施用濃度的殺鈴脲(144 mg/L)中暴露1~3 d后受到顯著影響,但在7~30 d后恢復(fù)至不顯著水平[14]。

      暴露于150 mg/L的殺鈴脲后,同色蠅繭蜂[(Szepligeti)]成蟲(chóng)的壽命、后代和寄生,短管赤眼蜂[(Riley)]、雙斑鑲顎姬蜂[(Thunberg)]和棉大卷蛾甲腹繭蜂[(Linnaeus)]成蟲(chóng)的寄生,以及棉大卷蛾甲腹繭蜂成蟲(chóng)的存活(7~15 d)均未受到不利影響,短管赤眼蜂蛹的羽化也未受到不利影響,但雙斑鑲顎姬蜂和棉大卷蛾甲腹繭蜂成蟲(chóng)的壽命縮短、羽化率降低[15-17]。而暴露于巴西甘蔗田間施用殺鈴脲(129.6 mg/L)后,巴西螟黃足盤絨繭蜂[(Cameron)]親代F0的存活、子代F1和F2的卵-蛹和蛹-成蟲(chóng)的發(fā)育歷期、蛹數(shù)、蛹質(zhì)量、羽化和性別比等均未受到不利影響,但子代F1表現(xiàn)出一定的亞致死效應(yīng)[18]。巴西螟黃足盤絨繭蜂子代F1雌蟲(chóng)的右后腿脛節(jié)長(zhǎng)度變短,這可能與殺鈴脲會(huì)影響幾丁質(zhì)的含量、破壞表皮結(jié)構(gòu)并減少新表皮的形成有關(guān)。在殺鈴脲進(jìn)入體內(nèi)后,寄生蜂需要利用更多的能量去消解其毒力作用,從而對(duì)其生長(zhǎng)速度和大小產(chǎn)生負(fù)面影響。

      1.1.2 點(diǎn)滴或浸漬處理 點(diǎn)滴或浸漬處理使寄生蜂不可避免地直接接觸到殺鈴脲,其對(duì)寄生蜂的影響一般要大于殘留暴露的。按巴基斯坦秋葵田間施用一定濃度的殺鈴脲浸漬處理,螟黃赤眼蜂蟲(chóng)卵在1~7 d后的羽化率受到輕微的不利影響[19],其影響略大于殘留暴露[8]處理的。

      不同種類和發(fā)育階段的寄生蜂對(duì)殺鈴脲的敏感性不同。其中,蟲(chóng)蛹的繭殼可將殺鈴脲隔離在外,發(fā)育成成蟲(chóng)后適時(shí)破繭而出也不受其影響,但成蟲(chóng)在殺鈴脲直接處理后則表現(xiàn)出一定的亞致死效應(yīng)。即使?jié)舛雀咧? 000 mg/L,殺鈴脲點(diǎn)滴處理蒼白三叉蚜繭蜂蟲(chóng)蛹對(duì)其羽化率無(wú)顯著影響[13]。與繭殼的保護(hù)作用有關(guān),未羽化的蟲(chóng)蛹在解剖后未發(fā)現(xiàn)形態(tài)學(xué)異常,羽化后的成蟲(chóng)中也未發(fā)現(xiàn)有蟲(chóng)蛹蛻皮受阻及其延遲的效應(yīng)。按劑量0.15 μg/蜂的殺鈴脲點(diǎn)滴處理雙斑鑲顎姬蜂蟲(chóng)蛹,其羽化成蟲(chóng)及后續(xù)的存活(7~15 d)、寄生和后代等均未受到顯著影響[20]。相同劑量的殺鈴脲點(diǎn)滴處理雙斑鑲顎姬蜂成蟲(chóng)對(duì)其寄生能力無(wú)不利影響,但卻使其壽命有所縮短[21]。

      1.1.3 飼喂處理 由于殺鈴脲的作用方式以胃毒為主,飼喂處理對(duì)寄生蜂的影響比其他方式處理的更大,不同種類寄生蜂對(duì)殺鈴脲的敏感性也存在差異。用150 mg/L的殺鈴脲飼喂處理同色蠅繭蜂成蟲(chóng)對(duì)其壽命、后代和寄生表現(xiàn)出輕微的不利影響,而殘留暴露或點(diǎn)滴處理則無(wú)不利影響[15]。用每千克飼料含劑量0.53 g的殺鈴脲飼喂處理雙斑鑲顎姬蜂成蟲(chóng)對(duì)其寄生能力和壽命均無(wú)不利影響[21]。用300 mg/L的殺鈴脲飼喂處理長(zhǎng)距繭蜂[(Rohwer)]成蟲(chóng)可使其羽化率和寄生能力(率)降低約3~4倍[4],而用2 000 mg/L的殺鈴脲處理蒼白三叉蚜繭蜂成蟲(chóng)則對(duì)其寄生能力無(wú)顯著影響[13]。推測(cè)這可能與不同寄生蜂對(duì)殺鈴脲不同的消化解毒能力有關(guān)。

      無(wú)論是飼喂處理(每千克飼料含劑量0.116~0.53 g)、點(diǎn)滴處理(0.15 μg/蟲(chóng))[20-21],還是殘留暴露(150 mg/L)[17],殺鈴脲對(duì)雙斑鑲顎姬蜂和棉大卷蛾甲腹繭蜂等寄生蜂都表現(xiàn)出了相對(duì)更高的安全性,優(yōu)于氟蟲(chóng)腈、吡蟲(chóng)啉、天然除蟲(chóng)菊酯和吡蚜酮的,或與之相當(dāng)。

      1.2 寄生前處理寄主

      1.2.1 卵寄生前浸漬處理 在寄生前,用田間施用濃度的殺鈴脲浸漬處理地中海粉螟[(=)(Zeller)]蟲(chóng)卵,對(duì)產(chǎn)雌孤雌赤眼蜂[(Oatman & Platner)]和短管赤眼蜂等多種卵寄生類寄生蜂的親代和子代均具有相對(duì)較高的安全性。48 mg/L的殺鈴脲對(duì)產(chǎn)雌孤雌赤眼蜂親代F0和子代F1的寄生能力,子代F1和F2的羽化率均無(wú)不利影響,其安全性優(yōu)于蟲(chóng)螨腈、多殺菌素、毒死蜱和氟酰脲的[22]。玉米[23]和番茄[24-25]田間施用濃度的殺鈴脲(80,140,144 mg/L)對(duì)短管赤眼蜂親代F0的寄生能力和壽命,子代F1和F2的羽化率、寄生能力、性別比和壽命等也無(wú)不利影響。即使處理濃度高至500 mg/L,殺鈴脲對(duì)短管赤眼蜂的羽化成蟲(chóng)也無(wú)不利影響,其安全性優(yōu)于阿維菌素和礦物油復(fù)配的[26]。進(jìn)一步的研究表明,番茄田間施用濃度的殺鈴脲(150 mg/L)使短管赤眼蜂親代F0的寄生能力、羽化率和壽命,子代F1的寄生能力、羽化率、性別比和壽命,以及子代F2的羽化率和性別比等均未受到不利影響[27-29]。值得注意的是,殺鈴脲使短管赤眼蜂親代F0和子代F1的壽命以及子代F1和F2的羽化率比清水對(duì)照顯著縮短或降低[27]。這可能與短管赤眼蜂因直接接觸和間接攝取到寄主卵殼上的殺鈴脲而引起的副作用有關(guān),但該影響隨著繁殖代數(shù)的增加得以恢復(fù)。此外,不同品系短管赤眼蜂對(duì)殺鈴脲的敏感性存在差異,但均未受到其不利影響。

      然而,光周期和測(cè)試環(huán)境等因素的改變可能使殺鈴脲對(duì)寄生蜂產(chǎn)生一定的影響。當(dāng)光周期由14 h改為12 h后,96 mg/L的殺鈴脲處理寄主蟲(chóng)卵還使短管赤眼蜂顯示出趨避作用,寄生率也顯著降低[28]。番茄田間試驗(yàn)結(jié)果表明[29],田間劑量的殺鈴脲(144 g/hm2)施用后,短管赤眼蜂對(duì)美洲棉鈴[(Boddie)]蟲(chóng)卵的寄生率顯著降低。

      不同種類和品系的寄主和寄生蜂對(duì)殺鈴脲的選擇性也存在差異。用田間施用濃度的殺鈴脲處理小蔗螟[(Fabricius)][30-31]和地中海粉螟[32]蟲(chóng)卵(處理濃度分別為192 mg/L和250 mg/L),加盧瓦赤眼蜂[(Zucchi)]既未表現(xiàn)出趨避作用也無(wú)寄生能力和存活影響,但其子代未成熟態(tài)寄生蜂出現(xiàn)不同程度的死亡和羽化減少。這與寄生后寄生蜂卵-幼蟲(chóng)期處理寄主的結(jié)果相似。用48 mg/L的殺鈴脲處理昂古穆瓦谷蛾[(Olivier)]蟲(chóng)卵對(duì)短管赤眼蜂親代F0的寄生率和子代F1的羽化率均無(wú)不利影響,但相同濃度的殺鈴脲處理地中海粉螟蟲(chóng)卵則使寄生蜂表現(xiàn)出更顯著的或不利的影響[33]。用96 mg/L的殺鈴脲處理地中海粉螟、小菜蛾[(Linnaeus)]或草地貪夜蛾[(Smith)]的蟲(chóng)卵,短管赤眼蜂和擬暗褐赤眼蜂[(Pinto & Platner)]的混合寄生蜂種群親代F0的存活、寄生和羽化[34],以及子代F1和F2的羽化、壽命和性別比等均未表現(xiàn)出顯著的不利影響[35]。而草地貪夜蛾蟲(chóng)卵暴露于殺鈴脲殘留后還更易于擬暗褐赤眼蜂的寄生(即雌蜂寄生能力增加),由于寄生蜂在試驗(yàn)前已寄生繁殖了好幾代,這可能與寄主通過(guò)變態(tài)保持學(xué)習(xí)的前印象條件作用有關(guān)。雖然將殺鈴脲處理后的寄主立即供給短管赤眼蜂會(huì)使后者的敏感性呈現(xiàn)出品系差異,但如延長(zhǎng)供給間隔至48 h則可使殺鈴脲的安全性與對(duì)照無(wú)差異[36-37]。此外,用0.01%~0.03%的殺鈴脲處理外米蛾[(Stainton)]蟲(chóng)卵,可使寄生其上的螟黃赤眼蜂的寄生能力降低[38]。

      1.2.2 蛹寄生前浸漬處理 在蛹寄生前處理寄生的蟲(chóng)蛹,不同寄生蜂對(duì)殺鈴脲的敏感性不同。殺鈴脲對(duì)巴西油棕姬小蜂[(Delvare & Lasalle)]的影響相對(duì)較小,即使存在影響也可在子代中得到恢復(fù),但對(duì)皺肩俑小蜂[(Perkins)]的存活影響較大。按大豆田施用劑量的殺鈴脲(20 g/hm2)浸漬處理大豆夜蛾[(Hubner)]蟲(chóng)蛹對(duì)其寄生蜂巴西油棕姬小蜂親代F0和子代F1的生命周期以及后代數(shù)量、壽命和性別比等種群動(dòng)態(tài)影響較小,在親代F0中受影響的寄生率和羽化率也可在子代中得到恢復(fù)[39]。與雄性親代的產(chǎn)精量減少或不育而使未受精的蟲(chóng)卵發(fā)育成雄蟲(chóng)(即雄性單性生殖)有關(guān),除蟲(chóng)脲使巴西油棕姬小蜂子代F1的雄性比例顯著增加,但殺鈴脲則沒(méi)有出現(xiàn)該情況。用0.1%的殺鈴脲浸漬處理或點(diǎn)滴處理家蠅[(Linnaeus)]蟲(chóng)蛹對(duì)其寄生蜂皺肩俑小蜂[(Perkins)]種群的毒性較高[40]。

      1.3 寄生后處理寄主

      1.3.1 卵寄生后處理 在卵寄生后用殺鈴脲處理寄主,一般低濃度對(duì)卵寄生蜂的安全性較高,高濃度可能對(duì)寄生蜂產(chǎn)生一定的亞致死作用,但對(duì)其羽化成蟲(chóng)的影響也較小。在寄生后寄生蜂的未成熟期處理地中海粉螟蟲(chóng)卵,殺鈴脲在濃度為48 mg/L時(shí)對(duì)產(chǎn)雌孤雌赤眼蜂子代F1和F2的羽化率、F1的寄生能力和性別比無(wú)不利影響[41],在濃度為80 mg/L[42]和140 mg/L[43]時(shí)對(duì)短管赤眼蜂子代F1和F2的羽化率、性別比和寄生能力也均無(wú)不利影響。當(dāng)處理濃度提高至150 mg/L時(shí),殺鈴脲會(huì)影響短管赤眼蜂的性別比[44]。但即使處理濃度高至500 mg/L,殺鈴脲噴霧處理對(duì)短管赤眼蜂羽化成蟲(chóng)也無(wú)不利影響,其安全性優(yōu)于寄生前處理寄主的[26]。

      在寄生蜂不同的未成熟發(fā)育階段,用殺鈴脲處理對(duì)寄生蜂的影響不同,一般在卵-幼蟲(chóng)期處理會(huì)產(chǎn)生一定的不利影響或亞致死作用,而蛹期施藥至羽化的時(shí)間較短而更容易受到影響。用番茄田間施用濃度的殺鈴脲(144 mg/L)在短管赤眼蜂前蛹期和蛹期處理對(duì)寄生蜂的寄生能力均無(wú)害,但在卵-幼蟲(chóng)期處理則有害[25],在卵-幼蟲(chóng)期用150 mg/L的殺鈴脲處理還會(huì)使其子代F1的壽命縮短[44]。在加盧瓦赤眼蜂卵-幼蟲(chóng)期、前蛹期和蛹期用殺鈴脲(250 mg/L)浸漬處理寄主(地中海粉螟蟲(chóng)卵)對(duì)其卵-成蟲(chóng)的發(fā)育歷期和寄生能力均無(wú)不利影響,但卵-幼蟲(chóng)期處理對(duì)其卵發(fā)育成蟲(chóng)有害[33]。在加盧瓦赤眼蜂未成熟期用120 mg/L的殺鈴脲處理寄主對(duì)該寄生蜂親代F0和子代F1的羽化率和性別比均無(wú)不利影響,但在蛹期處理對(duì)親代F0的存活率和寄生率存在不同程度的影響[45]。

      相比之下,殺鈴脲在寄生蜂卵期處理也具有比幼蟲(chóng)期等階段處理更好的安全性,而在高齡幼蟲(chóng)期,處理的安全性也優(yōu)于低齡幼蟲(chóng)期處理的。在螟黃赤眼蜂卵期用殺鈴脲(400 mg/L)處理寄生后的麥蛾[(Olivier)]蟲(chóng)卵,對(duì)寄生蜂羽化成蟲(chóng)無(wú)顯著影響,但在幼蟲(chóng)期、前蛹期、蛹早期和蛹期處理則出現(xiàn)不同程度的不利影響[9]。這可能與卵殼的保護(hù)作用及殺鈴脲的分解等因素有關(guān)。在寄生蜂高齡幼蟲(chóng)期處理(0.06%)馬鈴薯甲蟲(chóng)[(Say)]卵對(duì)普特萊利姬小蜂羽化成蟲(chóng)無(wú)影響,但在低齡幼蟲(chóng)期處理則使其完全不能羽化成蟲(chóng)[12]。

      在寄生蜂蛹期用殺鈴脲處理寄主對(duì)寄生蜂的寄生和羽化等產(chǎn)生不同作用效應(yīng),一般與殺鈴脲處理濃度、寄生蜂和寄主的種類等因素有關(guān)。在加盧瓦赤眼蜂蛹期用250 mg/L的殺鈴脲處理寄主對(duì)寄生蜂無(wú)害[32],但由其羽化而成的成蟲(chóng)顯示出了較低的寄生能力。用殺鈴脲(0.01%~0.03%)在螟黃赤眼蜂寄生后1 d、4 d和7 d(依次對(duì)應(yīng)為卵期、前蛹期和蛹期)處理外米蛾蟲(chóng)卵,寄生蜂的羽化率先減后增,而寄生能力則依次降低[38]。螟黃赤眼蜂在蛹期處理的寄生能力最低,可能與殺鈴脲對(duì)寄生蜂成蟲(chóng)前卵母細(xì)胞分化的不利作用有關(guān)。在大豆田施用濃度(72~120 mg/L)下,殺鈴脲在短管赤眼蜂卵期、幼蟲(chóng)期和蛹期處理寄主使其寄生率先增后減,在蛹期用低濃度殺鈴脲處理對(duì)其無(wú)害,高濃度處理則略微有害[46]。與寄生前處理的結(jié)果一致[33],在短管赤眼蜂蛹期用低濃度的殺鈴脲(48 mg/L)處理寄生后的昂古穆瓦谷蛾蟲(chóng)卵對(duì)寄生蜂羽化成蟲(chóng)無(wú)不利影響,但處理地中海粉螟蟲(chóng)卵則對(duì)其有害。

      1.3.2 幼(若)蟲(chóng)寄生后處理 由于寄生蜂依賴其寄生的寄主而存活,在幼(若)蟲(chóng)寄生后用殺鈴脲處理寄主在殺死寄主的同時(shí)也會(huì)對(duì)寄生蜂產(chǎn)生不利影響,一般飼喂處理對(duì)寄生蜂的影響要大于點(diǎn)滴處理的。用劑量0.15 μg/蟲(chóng)的殺鈴脲點(diǎn)滴處理或每千克飼料含0.116~0.53 g殺鈴脲飼喂處理寄生后的灰翅夜蛾幼蟲(chóng)對(duì)雙斑鑲顎姬蜂幼蟲(chóng)無(wú)顯著致死作用,但卻顯著影響該幼蟲(chóng)成繭[20-21]。雖然點(diǎn)滴處理對(duì)雙斑鑲顎姬蜂的羽化、寄生和后代無(wú)顯著影響,飼喂處理卻使其幾乎不能羽化成蟲(chóng)。殺鈴脲飼喂處理比點(diǎn)滴處理對(duì)雙斑鑲顎姬蜂幼蟲(chóng)成繭和羽化成蟲(chóng)受阻的影響更大,這可能與兩種處理方式對(duì)灰翅夜蛾幼蟲(chóng)不同的致死率有關(guān)。研究表明[47],飼喂處理灰翅夜蛾幼蟲(chóng)比點(diǎn)滴處理具有較高的累積死亡率(3~7 d),因而對(duì)雙斑鑲顎姬蜂幼蟲(chóng)成繭和羽化成蟲(chóng)的影響更大。

      用150 mg/L的殺鈴脲浸漬處理長(zhǎng)距繭蜂寄生后的梨小食心蟲(chóng)[(Busck)]幼蟲(chóng)對(duì)長(zhǎng)距繭蜂具有較高的致死作用,同時(shí)使其羽化成蟲(chóng)的數(shù)量降低8倍多[4],這可能與寄主梨小食心蟲(chóng)種群數(shù)量的減少有關(guān)。進(jìn)一步的田間試驗(yàn)表明[48],施用300 mg/L的殺鈴脲會(huì)對(duì)長(zhǎng)距繭蜂親代的寄生產(chǎn)生不利影響,但可在子代中得以恢復(fù)。

      2 對(duì)鞘翅目天敵昆蟲(chóng)的安全性

      用田間施用濃度的殺鈴脲處理后,不同發(fā)育階段的血紅環(huán)瓢蟲(chóng)[(Linnaeus)]、楔斑溜瓢蟲(chóng)[(Germar)]和異色瓢蟲(chóng)[(Pallas)]等鞘翅目捕食性天敵昆蟲(chóng)均未受到不利影響。用48 mg/L的殺鈴脲噴灑處理血紅環(huán)瓢蟲(chóng)蟲(chóng)蛹或成蟲(chóng)對(duì)其存活、雌蟲(chóng)(或發(fā)育成的雌蟲(chóng))的胚胎期、產(chǎn)卵數(shù)、卵孵化以及后續(xù)發(fā)育成的幼蟲(chóng)的發(fā)育歷期和存活均無(wú)顯著影響,處理蟲(chóng)蛹還對(duì)其發(fā)育歷期和羽化成蟲(chóng)的性別比無(wú)影響[49]。而用72 mg/L的殺鈴脲噴灑處理楔斑溜瓢蟲(chóng)蟲(chóng)卵不影響其孵化,處理蟲(chóng)蛹對(duì)其羽化的成蟲(chóng)及后續(xù)的繁殖、生育均無(wú)不利影響[50]。即使處理濃度高至200 mg/L,殺鈴脲對(duì)異色瓢蟲(chóng)的致死作用也較弱,存活的幼蟲(chóng)可以成繭并羽化成蟲(chóng)[51]。然而,南非柑橘園紅圓蚧[(Maskell)]的天敵黑唇瓢蟲(chóng)[(Fabricius)]和蒙氏瓢蟲(chóng)[(Mulsant)]則對(duì)殺鈴脲比較敏感[52]。即使在施用131 d后,殺鈴脲(96 mg/L)的風(fēng)化殘留也使這2種瓢蟲(chóng)的卵孵化和后代數(shù)量受到抑制。然而,這種抑制作用可在殺鈴脲脅迫移除后消除。

      對(duì)于鞘翅目天敵昆蟲(chóng)瓢蟲(chóng),一般合適的獵物可使其對(duì)殺鈴脲的敏感性降低。天敵二星瓢蟲(chóng)[(Linnaeus)]在豆蚜[(Scopoli)]中飼養(yǎng)14 d對(duì)用殺鈴脲(0.05%)的敏感性是在忽布疣額蚜[(Schrank)]中的2倍[53]。這可能與不同獵物對(duì)二星瓢蟲(chóng)的搜索行為和生命力的影響不同有關(guān)。

      3 對(duì)脈翅目天敵昆蟲(chóng)的安全性

      殺鈴脲對(duì)脈翅目天敵昆蟲(chóng)的安全性與處理時(shí)天敵昆蟲(chóng)的發(fā)育階段有關(guān)。在一定濃度范圍內(nèi),蟲(chóng)卵和蟲(chóng)蛹由于外殼的保護(hù)作用而對(duì)殺鈴脲具有較高的耐受力,而幼蟲(chóng)和成蟲(chóng)在接觸或攝入殺鈴脲后可能會(huì)因幾丁質(zhì)不足而不能正常蛻皮,嚴(yán)重時(shí)還可能會(huì)死亡。用72 mg/L的殺鈴脲噴霧處理巴西通草蛉[(Hagen)]蟲(chóng)卵對(duì)其孵化無(wú)影響,處理蟲(chóng)蛹對(duì)其羽化成蟲(chóng)及后續(xù)的繁殖、生育也無(wú)不利影響[50]。用150 g/hm2或10 μg/蟲(chóng)的殺鈴脲點(diǎn)滴處理西班牙普通草蛉[(Stephens)] III齡幼蟲(chóng)對(duì)其24~72 h的存活無(wú)影響,但卻幾乎使其羽化受到完全抑制;處理成蟲(chóng)對(duì)其存活、繁殖和生育力無(wú)影響,但使其所產(chǎn)卵的孵化受到嚴(yán)重抑制,卵孵化存活的幼蟲(chóng)的后續(xù)發(fā)育也受到顯著影響[54-55]。用300 mg/L的殺鈴脲處理過(guò)的二點(diǎn)斑葉螨[(Koch)]飼喂,或直接點(diǎn)滴處理金眼草蛉[(Say)]齡幼蟲(chóng),都在14 d后引起該草蛉的蛻皮受阻和大量死亡[4]。

      4 對(duì)革翅目天敵昆蟲(chóng)的安全性

      在田間施用濃度下,殺鈴脲(Scudder)]和球(Eschscholtz)]等在玉米田半田條件下暴露于85 mg/L的殺鈴脲殘留后,均受到輕度不利影響[56]。150 mg/L的殺鈴脲的殘留后,球也未受到不利影響[57]。

      雖然高濃度的殺鈴脲對(duì)多魯黃足蠼螋的蟲(chóng)卵和若蟲(chóng)無(wú)生理學(xué)選擇性,但對(duì)其成蟲(chóng)相對(duì)安全。暴露于170 mg/L的殺鈴脲后,多魯黃足蠼螋蟲(chóng)卵的存活和發(fā)育成蟲(chóng)受到嚴(yán)重不利影響,若蟲(chóng)在暴露24 h后的存活無(wú)影響,但隨時(shí)間延長(zhǎng)影響加重,96 h后出現(xiàn)嚴(yán)重不利影響[58]。用170 mg/L[59]或382 mg/L[60]的殺鈴脲直接噴灑或通過(guò)草地貪夜蛾飼喂處理多魯黃足蠼螋成蟲(chóng)對(duì)其存活和雌蟲(chóng)產(chǎn)卵均無(wú)不利影響,低濃度殘留暴露僅會(huì)累積起來(lái)對(duì)其存活產(chǎn)生的輕微影響,安全性多優(yōu)于溴蟲(chóng)腈、醚菊酯、多殺菌素和擬除蟲(chóng)菊酯類殺蟲(chóng)劑等藥劑。然而,用殺鈴脲噴灑處理多魯黃足蠼螋成蟲(chóng)對(duì)其所產(chǎn)卵及由其發(fā)育成的不同齡期若蟲(chóng),或直接處理蟲(chóng)卵和不同齡期若蟲(chóng),都使其存活受到輕度到中度的不利影響[60]。處理成蟲(chóng)對(duì)卵孵化受到的影響最大而對(duì)I齡和II齡最小,直接處理若蟲(chóng)則對(duì)II齡若蟲(chóng)的危害最大而對(duì)IV齡和III齡的最小。

      5 對(duì)半翅目天敵昆蟲(chóng)的安全性

      與對(duì)不完全變態(tài)的半翅目昆蟲(chóng)相對(duì)較低的生物活性有關(guān),殺鈴脲對(duì)獵蝽[(Degeer)]和無(wú)毛小花蝽[(Fieber)]等半翅目天敵的具有較高的選擇性。在田間施用濃度下,殺鈴脲對(duì)該類天敵的生長(zhǎng)、發(fā)育和繁殖無(wú)害,但攝入殺鈴脲則呈現(xiàn)一定的影響,殘留暴露(接觸)可能因較低的表皮吸收而表現(xiàn)出較低的毒性。用300 mg/L的殺鈴脲殘留暴露或點(diǎn)滴處理,或用處理過(guò)的薔薇斜條卷葉蛾[(Harris)]或桃蚜[(Sulzer)]飼喂獵蝽I齡若蟲(chóng),都對(duì)其蛻皮發(fā)育無(wú)不利影響[4]。用約98.5 mg/L的殺鈴脲殘留暴露處理意大利無(wú)毛小花蝽IV齡若蟲(chóng)對(duì)發(fā)育成成蟲(chóng)及成蟲(chóng)生育力無(wú)不利影響,飼喂處理成蟲(chóng)對(duì)其存活、生育力及其所產(chǎn)卵孵化存在輕微的不利影響,浸漬處理2~3 d卵對(duì)其孵化也無(wú)不利影響[61]。

      6 對(duì)蛛形綱天敵節(jié)肢動(dòng)物的安全性

      6.1 對(duì)捕食螨的安全性

      在田間施用濃度下,殺鈴脲對(duì)捕食螨相對(duì)安全,然而高濃度的殺鈴脲及其殘留則有可能對(duì)其產(chǎn)生不利影響。用100 mg/L的殺鈴脲浸葉處理對(duì)韓國(guó)蘋果園二斑葉螨的捕食螨溫氏鈍綏螨[(Schicha)]成蟲(chóng)的存活和發(fā)育成蟲(chóng)無(wú)不利影響,噴灑處理蟲(chóng)卵、殘留暴露若蟲(chóng)和飼喂成蟲(chóng)對(duì)德國(guó)智利小植綏螨[(Athias-Henriot)]的卵孵化、存活和生育力均無(wú)不利影響[62-63]。暴露于0.19%的殺鈴脲殘留后,以色列蘋果園里的捕食螨阿西盲走(Porath & Swirski)]和智利小植綏螨的存活率和繁殖力降低,4 d后還對(duì)朱砂葉螨[(Boisduval)]表現(xiàn)出一定的增殖作用[64]。

      6.2 對(duì)捕食性蜘蛛的安全性

      殺鈴脲通常對(duì)捕食性蜘蛛無(wú)不利影響,但高劑量和有機(jī)溶劑會(huì)對(duì)其安全性產(chǎn)生不利影響。殺鈴脲噴霧、點(diǎn)滴或飼喂處理綠猞猁蛛[(Blackwall)]、歐洲奇異盜蛛[(Clerck)]、黃瓜綠色蜘蛛[(Kulczynski)]和狼逍遙蛛(sp.)亞成蟲(chóng)對(duì)其捕食、存活和蛻皮均無(wú)不利影響[65-67]。0.025%的殺鈴脲對(duì)金黃逍遙蛛[(Clerck)]和紅鰲蛛[(Koch)]的致死作用也較弱[68]。在半田條件下,雖然殺鈴脲對(duì)毛里塔尼亞狼逍遙蛛的作用效果與其劑量無(wú)依賴關(guān)系,低劑量(25 g/hm2)的殺鈴脲對(duì)其無(wú)影響,但高劑量(100 g/hm2)卻會(huì)使其相對(duì)和絕對(duì)豐度顯著減少[66]。此外,用含甲基吡咯烷酮和甲基萘溶劑的殺鈴脲處理馬達(dá)加斯加松貓蛛(sp.)若蟲(chóng)也對(duì)其具有一定的初始毒性[66]。這可能與有機(jī)溶劑本身的毒性有關(guān)。

      7 對(duì)其他有益天敵的安全性

      殺鈴脲對(duì)昆蟲(chóng)病原線蟲(chóng)等其他具有控制有害生物作用的有益天敵也具有較好的安全性。研究表明,80~120 mg/L的殺鈴脲對(duì)巴西草地貪夜蛾的天敵格氏斯氏線蟲(chóng)[(Ssteiner)]、印度小桿線蟲(chóng)[(Poinar, Karunakar & David)]和小卷蛾斯氏線蟲(chóng)[(Weiser)]無(wú)致死作用,同時(shí)對(duì)這些有益線蟲(chóng)的侵染力也無(wú)不利影響[69]。

      8 總結(jié)與展望

      殺鈴脲對(duì)具有完全變態(tài)特征的和不完全變態(tài)特征的多種害蟲(chóng)都具有不同程度的生物活性,同時(shí)對(duì)多種寄生性天敵、捕食性天敵和昆蟲(chóng)病原線蟲(chóng)等有益天敵具有相對(duì)較高的選擇性,其安全性優(yōu)于除蟲(chóng)脲、醚菊酯和多殺菌素等化學(xué)和生物農(nóng)藥。在施用期間或施用后,殺鈴脲對(duì)多種有益天敵的親代和子代的生存、生長(zhǎng)、繁殖、寄生或捕食等產(chǎn)生直接或間接的作用效應(yīng)。這些作用效應(yīng)或安全性多與殺鈴脲處理的方式、劑量和時(shí)間,有益天敵的種類、發(fā)育階段及其寄生或捕食的有害生物等因素有關(guān),但一般與天敵的品系無(wú)關(guān)。由于蟲(chóng)蛹具有不可移動(dòng)性和繭殼的物理保護(hù),有益天敵在蛹期比其他發(fā)育階段對(duì)殺鈴脲的耐藥性更高。

      在田間施用濃度下,不同處理方式的殺鈴脲對(duì)短管赤眼蜂等多種多代有益天敵相對(duì)安全,其毒性多屬無(wú)害或危害較輕。表1和表2對(duì)殺鈴脲的毒性和綜合毒性研究結(jié)果按國(guó)際生物防治組織(IOBC)的草案標(biāo)準(zhǔn)進(jìn)行了分級(jí)。值得注意的是,殺鈴脲在實(shí)現(xiàn)對(duì)有害生物控制的同時(shí),也會(huì)使其天敵的生存和繁殖因缺少特異性的寄生對(duì)象或食物而受到影響。無(wú)論如何,殺鈴脲與有益天敵都具有較好的相容性,二者相結(jié)合的有害生物綜合治理策略可廣泛應(yīng)用于玉米、小麥、大豆、甘蔗、馬鈴薯、番茄、甘藍(lán)、秋葵、檸檬、柑橘、蘋果、梨和核桃等多種作物保護(hù)。

      表1 殺鈴脲對(duì)部分有益天敵的毒性分級(jí)

      續(xù)表1 殺鈴脲對(duì)部分有益天敵的毒性分級(jí)

      表2 殺鈴脲對(duì)部分有益天敵的綜合毒性分級(jí)

      目前,殺鈴脲對(duì)有益天敵的作用效應(yīng)和安全性的研究報(bào)道主要集中在巴西、西班牙、南非、德國(guó)、巴基斯坦和印度等國(guó)。其中,研究的天敵多以短管赤眼蜂等膜翅目天敵昆蟲(chóng)為主,半翅目、鞘翅目、革翅目和脈翅目昆蟲(chóng)、以及蛛形綱節(jié)肢動(dòng)物和昆蟲(chóng)病原線蟲(chóng)等其他有益天敵的研究相對(duì)較少。而報(bào)道的安全性研究評(píng)價(jià)結(jié)果多在實(shí)驗(yàn)室條件下獲得,半田和田間條件下的試驗(yàn)還有待開(kāi)展。由于殺鈴脲具有廣譜的生物活性和較長(zhǎng)的殘效作用,田間施用后必將對(duì)包含有害生物及其天敵在內(nèi)的各生態(tài)系統(tǒng)因子產(chǎn)生復(fù)雜的動(dòng)態(tài)影響,因而有必要從田間生態(tài)系統(tǒng)的種群結(jié)構(gòu)與數(shù)量等方面對(duì)殺鈴脲的安全性進(jìn)行更加全面的評(píng)價(jià)。同時(shí),還應(yīng)加強(qiáng)殺鈴脲與有益天敵的綜合防治應(yīng)用研究,開(kāi)發(fā)對(duì)有益天敵安全的殺鈴脲制劑類型和復(fù)配組合,結(jié)合有益天敵和有害生物的生態(tài)學(xué)特點(diǎn)開(kāi)發(fā)符合生產(chǎn)實(shí)踐的綜合施用技術(shù),以此實(shí)現(xiàn)對(duì)有害生物的可持續(xù)性抗性管理和有效防控。

      [1] BRITISH CROP PRODUCTION COUNCIL. e-Pesticide manual (Version 6.0)[DB/CD]. Hampshire: BCPC, 2012.

      [2] 譚海軍. 殺鈴脲在林業(yè)有害生物防治上的研究和應(yīng)用[J]. 林業(yè)資源管理, 2020(1): 164-169.

      [3] 譚海軍. 殺鈴脲在公共衛(wèi)生上的研究與應(yīng)用[J]. 中華衛(wèi)生殺蟲(chóng)器械, 2021, 27(3): 273-279.

      [4] BROADBENT A B, PREE D J. Effects of diflubenzuron and BAY SIR 8514 on beneficial insects associated with peach[J]. Environmental entomology, 1984, 13(1): 133-136.

      [5] LOPES R B, ALVES S B. Effect ofsp. parasitism on the susceptibility ofto some control agents[J]. Journal of invertebrate pathology, 2005, 88(3): 261-264.

      [6] SRINIVASAN R, AMALRAJ D D. Efficacy of insect parasitoid(Hymenoptera: Chalcididae) & insect growth regulator, triflumuron against house fly,(Diptera: Muscidae)[J]. Indian journal of medical research, 2003, 118: 158-166.

      [7] 徐華強(qiáng), 薛明, 趙海朋. 林業(yè)常用16種殺蟲(chóng)劑對(duì)赤眼蜂的急性毒性和安全性評(píng)價(jià)[J]. 林業(yè)科技, 2014, 39(2): 10-13.

      [8] QASIM M, HUSAIN D, ISLAM S U, et al. Effectiveness ofIshii against spiny bollworm in okra and susceptibility to insecticides[J]. Journal of entomology and zoology studies, 2018, 6(1): 1576-1581.

      [9] HUSSAIN D, AKRAM M, IQBAL Z, et al. Effect of some insecticides onIshii.(Trichogrammatidae: Hymenoptera) immature and adult survival[J]. Journal of agricultural research, 2010, 48(4): 531-537.

      [10] WAKGARI W M, GILIOMEE J H. Natural enemies of three mealybug species (Hemiptera: Pseudococcidae) found on citrus and effects of some insecticides on the mealybug parasitoid(Hymenoptera: Encyrtidae) in South Africa[J]. Bulletin of entomological research, 2003, 93(3): 243-254.

      [11] WAKGARI W, GILIOMEE J. Effects of some conventional insecticides and insect growth regulators on different phenological stages of the white wax scale,Newstead (Hemiptera: Coccidae), and its primary parasitoid,(Girault) (Hymenopte)[J]. International journal of pest management, 2001, 47(3): 179-184.

      [12] OBRYCKI J J, TAUBER M J, TINGEY W M. Comparative toxicity of pesticides to(Hymenoptera: Eulophidae), an egg parasitoid of the Colorado potato beetle (Coleoptera: Chrysomelidae)[J]. Journal of economic entomology, 1986, 79(4): 948-951.

      [13] PURCELL M, GRANETT J. Toxicity of benzoylphenyl ureas and thuringiensin to(Hymenoptera: Braconidae) and the Walnut Aphid (Homoptera: Aphididae)[J]. Journal of economic entomology, 1985, 78(5): 1133-1137.

      [14] VIRGALA M B R, BOTTO E N, LAFALCE C. Efficacy of insecticides against the ?tomato moth?,(Lepidoptera: Gelechiidae) and their residual effects on the parasitoid(Hymenoptera: Trichogrammatidae)[J]. Revista de la sociedad entomológica argentina, 2006, 65(3/4): 57-65.

      [15] ZAPATA N, MEDINA P, VI?UELA E, et al. Toxicity of modern insecticides on(Szèpligeti) adults (Hym.: Braconidae) depending on the mode of exposure[J]. Boletin de sanidad vegetal plagas, 2005, 31: 111-118.

      [16] CARVALHO G A, MOURA A P, BUENO V H P. Side effects of pesticides on(Hymenoptera: Trichogrammatidae)[C]// Casta?é C, Sanchez J A(ed.). Proceedings of the meeting of IOBC/WPRS at Murcia, Spain (IOBC wprs Bulletin). Heinrichstr & Gent: Publication Commission of the IOBC/WPRS, 2006, 29(4): 355-359.

      [17] MORALES J J, MEDINA P, VI?UELA E. Residual toxicity of five insecticides on two noctuid endoparasitoids,(Thunberg)(Hymenoptera: Ichneumonidae) andL. (Hymenoptera: Braconidae) under laboratory conditions[M]// ANNIE ENKEGAARD(ed.). Newsletter on biological control in greenhouses. Slagelse: Danish Institute of Agricultural Sciences, 2005: 14-17.

      [18] MATIOLI T F, ZANARDI O Z, YAMAMOTO P T. Impacts of seven insecticides on(Cameron) (Hymenoptera: Braconidae)[J]. Ecotoxicology, 2019, 28(10): 1210-1219.

      [19] HUSSAIN D, HUSSAIN A, QASIM M, et al. Insecticidal susceptibility and effectiveness ofas parasitoids of tomato fruit borer,[J]. Pakistan journal of zoology, 2015, 47(5): 1427-1432.

      [20] MEDINA P, MORALES J J, BUDIA F, et al. Compatibility of endoparasitoid(Hymenoptera: Ichneumonidae) protected stages with five selected insecticides[J].Journal of economic entomology, 2007, 100(6): 1789-1796.

      [21] MORALES J J, MEDINA P, VI?UELA E. Compatibility ofan endoparasitoid ofwith several insecticides used on horticultural crops[C]// Casta?é C, Sanchez J A(ed.). Proceedings of the meeting of IOBC/WPRS at Murcia, Spain (IOBC wprs Bulletin). Heinrichstr & Gent: Publication Commission of the IOBC/WPRS, 2006, 29(4): 362-368.

      [22] MAIA J B, CARVALHO G A, LEITE M I S, et al. Selectivity of insecticides used in corn crops to adult(Hymenoptera: Trichogrammatidae)[J]. Revista colombiana de entomologi?a, 2010, 36(2): 202-206.

      [23] SOUZA J R, CARVALHO G A, MOURA A P, et al. Impact of insecticides used to control(J. E. Smith) in corn on survival, sex ratio, and reproduction ofRiley offspring[J]. Chilean journal of agricultural research, 2013, 73(2):122-127.

      [24] CARVALHO G A, GODOY M S, PARREIRA D S, et al. Selectivity of growth regulators and neonicotinoids for adults of(Hymenoptera: Trichogrammatidae)[J]. Revista Colombiana de entomologi?a, 2010, 36(2): 195-201.

      [25] MOURA A P, GUIMAR?ES J A, CARVALHO G A. Side-effects of pesticides used to control tomato pests in Brazil on the egg parasitoidRiley (Hym.: Trichogrammatidae)[C]// Embrapa Hortali?as-Resumo em anais de congresso (ALICE). International Horticultural Congress. Brisbane: Sustaining lives, livelihoods and landscapes. Brisbane: AuSHS, 2014: ISHS.

      [26] JUNIOR A I C, DINIZ L D C, ZACARIAS M S, et al. Impact of insecticides on the emergence of, Riley (Hymenoptera: Trichogrammatidae)[J]. Ciencia e agrotecnologia, 1999, 23(3): 589-592.

      [27] CARVALHO G A, FUINI L C, Rocha L C D, et al. Evaluation of selectivity of insecticides used in tomato crop toRiley (Hymenoptera: Trichogrammatidae)[J]. Revista ecossistema, 2003, 28(1/2): 23-30.

      [28] VOLPE H X L, THULER R T, BORTOLI S A, et al. Insecticide repellence againstRiley (Hymenoptera: Trichogrammatidae)[J]. Biológico, S?o Paulo, 2006, 68(s): 367-369.

      [29] BRANCO M C, PONTES L A, AMARAL P S T, et al. Insecticides for the control of the south American tomato pinworm and the corn earworm and impact of those products on[J]. Horticultura brasileira, 2003, 21(4): 652-654.

      [30] ANTIGO M R, OLIVEIRA H N, CARVALHO G A, et al. Repellence of pesticides used in sugarcane and their effects on the emergence of[J]. Revista ciencia agronomica, 2013, 44(4): 910-916.

      [31] OLIVEIRA H N, ANTIGO M R, CARVALHO G A, et al. Selectivity of insecticides used in the sugar-cane on adults ofZucchi (Hymenoptera: Trichogrammatidae)[J]. Bioscience journal, 2013, 29(5): 1267-1274.

      [32] C?NSOLI F L, BOTELHO P S M, PARRA J R P. Selectivity of insecticides to the egg parasitoidZucchi, 1988, (Hym. Trichogrammatidae)[J]. Journal of applied entomology, 2008, 125(1/2): 37-43.

      [33] BASTOS C S, ALMEIDA R P, SUINAGA F A. Selectivity of pesticides used on cotton () toreared on two laboratory-reared hosts[J]. Pest management science, 2006, 62(1): 91-98.

      [34] GOULART R M, VOLPE H X L, VACARI A M, et al. Insecticide selectivity to two species ofin three different hosts, as determined by IOBC/WPRS methodology[J]. Pest management science, 2012, 68(2): 240-244.

      [35] GOULART R M, BORTOLI, S A, THULER R T, et al. Evaluation of the selectivity of insecticides to.(Hymenoptera: Trichogrammatidae) in different hosts[J]. Arquivos do instituto biologico s?o paulo, 2008, 75(1): 69-77.

      [36] CARVALHO G A, PARRA J R P, BAPTISTA G C. Impact of pesticides used in tomato crops on adults of two strains ofRiley, 1879 (Hymenoptera: Trichogrammatidae)[J]. Cienc agrotecnol, 2001, 25: 560-568.

      [37] VIANNA U R, PRATISSOLI D, ZANUNCIO J C, et al. Insecticide toxicity to(Hymenoptera: Trichogrammatidae) females and effect on descendant generation[J]. Ecotoxicology, 2009, 18(2): 180-186.

      [38] NARAYANA M L, BABU T R. Evaluation of five insect growth regulators on the egg parasitoid(Ishii)(Hym., Trichogrammatidae) and the hatchability ofStaint (Lep., Galleriidae)[J]. Journal of applied entomology, 1992, 113(1/5): 56-60.

      [39] CRUZ R A, ZANUNCIO J C, LACERDA M C, et al. Side-effects of pesticides on the generalist endoparasitoid(Hymenoptera: Eulophidae)[J]. Scientific reports, 2017, 7(1): 1-8.

      [40] VAZIRIANZADEH B, KIDD N, JERVIS M. Laboratory evaluation indirect effects of two insect growth regulators (IGRs), cyromazine and triflumuron, on a parasitic wasp of housefly pupae[R]. Manchester: UMIST, 8thIranian Students Seminar in Europe, 2001.

      [41] MAIA J B, CARVALHO G A, OLIVEIRA R L, et al. Effects of insecticides used in corn on immature stages of(Hymenoptera: Trichogrammatidae)[J]. Revista Colombiana de entomología, 2013, 39(2): 205-210.

      [42] SOUZA J R, CARVALHO G A, MOURA A P, et al. Toxicity of some insecticides used in maize crop on(Hymenoptera, Trichogrammatidae) immature stages[J]. Chilean journal of agricultural research, 2014, 74(2): 234-239.

      [43] CARVALHO G A, GODOY M S, PARREIRA D S, et al. Effect of chemical insecticides used in tomato crops on immature(Hymenoptera: Trichogrammatidae)[J]. Revista colombiana de entomologi?a, 2010, 36(1): 10-15.

      [44] CARVALHO G A, REIS P R, ROCHA L C D, et al. Side-effects of insecticides used in tomato fields on(Hymenoptera, Trichogrammatidae)[J]. Acta scientiarum agronomy, 2003, 25(2): 275-279.

      [45] COSTA M A, MOSCARDINI V F, da COSTA GONTIJO P, et al. Sublethal and transgenerational effects of insecticides in developing(Hymenoptera: Trichogrammatidae)[J]. Ecotoxicology, 2014, 23(8): 1399-1408.

      [46] BUENO A F, BUENO R C O F, PARRA J R P, et al. Effects of pesticides used in soybean crops to the egg parasitoid[J]. Ciência rural, 2008, 38(6): 1495-1503.

      [47] MORALES J J, BUDIA F, VI?UELA E. Side effects of five insecticides on different stages of development to the parasitoid(Thunberg) (Hyme noptera:)[J]Boletin de sanidad vegetal plagas, 2004, 30: 773-782.

      [48] BROADBENT A B, PREE D J. Effects of diflubenzuron and BAY SIR 8514 on the oriental fruit moth (Lepidoptera: Olethreutidae) and the oblique banded leafroller (Lepidoptera: Tortricidae)[J]. Journal of economic entomology, 1984, 77(1): 194-197.

      [49] PEDROSO E C, CARVALHO G A, LEITE M I S, et al. Selectivity of insecticides used in the cotton crop in regard to pupae and adults of the ladybird beetle(Linnaeus, 1763)[J]. Arquivos do instituto biológico, 2011, 78: 573-584.

      [50] PASINI R A, GRüTZMACHER A D, PAZINI J B, et al. Side effects of insecticides used in wheat crop on eggs and pupae ofand[J]. Phytoparasitica, 2018, 46(1): 115-125.

      [51] 宋淑云,石磊,楊石嶂.殺鈴脲及其混劑對(duì)麥田天敵影響的評(píng)價(jià)[J].吉林農(nóng)業(yè)科學(xué),1996(2):65-69.

      [52] HATTINGH V, TATE B. Effects of field-weathered residues of insect growth regulators on some Coccinellidae (Coleoptera) of economic importance as biocontrol agents[J]. Bulletin of entomological research, 1995, 85(4): 489-493.

      [53] KALUSHKOV P. The effect of aphid prey quality on searching behaviour ofand its susceptibility to insecticides[J]. Entomologia experimentalis et applicata, 1999, 92(3): 277-282.

      [54] HUERTA A, MEDINA P, SMAGGHE G, et al. Topical toxicity of two acetonic fractions ofJacq. and four insecticides to larvae and adults of(Stephens) (Neuroptera: Chrysopidae)[J]. Communications in agricultural and applied biological sciences, 2003, 68(4): 277-286.

      [55] SENIOR L J, MCEWEN P K, KIDD N A C. Effect of the chitin synthesis inhibitor triflumuron on the green lacewing,(Stephens) (Neuroptera, Chrysopidae): influence on adult potentialities and offspring[J]. Acta zoologica fennica1998, 209: 227-231.

      [56] REDOAN A C, CARVALHO G A, CRUZ I, et al. Effect of insecticides used in maize (L.) on nymphs and adults of(Scudder) (Dermaptera: Forficulidae) in semi-field condition[J]. Revista brasileira de milho e sorgo, 2010, 9(3): 223-235.

      [57] TONET G L. Insecticide selectivity to the predator(Dermaptera: Forficulidae) in soybean[C]// EMBRAPA, EMBRAPA-CNPT (INFOTECA-E). Passo Fundo: EMBRAPA, 1995: 102-105.

      [58] REDOAN A C M, CARVALHO G A, CRUZ I, et al. Selectivity of insecticides used in the control of(JE Smith) (Lepidoptera: Noctuidae) for eggs and nymphs of(Scudder) (Dermaptera: Forficulidae)[J]. Revista brasileira de milho e sorgo, 2012, 11(1): 25-34.

      [59] REDOAN A C M, CARVALHO G A, CRUZ I, et al. Physiological selectivity of insecticides to adult of(Scudder, 1876)(Dermaptera: Forficulidae)[J]. Revista ciência agron?mica, 2013, 44(4): 842-850.

      [60] SIM?ES J C, CRUZ I, SALGADO L O. Seletividade de inseticidas às diferentes fases de desenvolvimento do predador(Scudder) (Dermaptera: Forficulidae)[J]. Anais da sociedade entomológica do brasil, 1998, 27(2): 289-294.

      [61] ANGELI G, FORTI D, MAINES R, et al. Side-effects of eleven insect growth regulators on the predatory bugFieber (Heteroptera: Anthocoridae)[C]// VOGT H, HEIMBACH U(ed.). Proceedings of the meeting of IOBC/WPRS at Versailles, France (IOBC wprs Bulletin). Heinrichstr & Gent: Publication Commission of the IOBC/WPRS, 2000, 23(9): 85-92.

      [62] PARK C G, YOO J K, LEE J O. Toxicity of some pesticides to twospotted spider mite (Acari: Tetranychidae) and its predator(Acari; Phytoseiidae)[J]. Korean journal of applied entomology, 1996, 35(3):232-237.

      [63] BLüMEL S, STOLZ M. Investigations on the effect of insect growth regulators and inhibitors on the predatory miteAH with particular emphasis on cyromazine[J]. Journal of plant diseases and protection, 1993, 100(2): 150-154.

      [64] MANSOUR F, COHEN H, SHAIN Z. Integrated mite management in apples in Israel: augmentation of a beneficial mite and sensitivity of tetranychid and phytoseiid mites to pesticides[J]. Phytoparasitica, 1993, 21(1): 39-51.

      [65] PEVELING R, WEYRICH J, MOILER P. Side-effects of botanicals, insect growth regulators and entomopathogenic fungi on epigeal non-target arthropods in locust control[M]// KRALL S, WILPS H (eds). New trends in locust control. Schriftenreihe der GTZ 245. Rossdorf: TZ Verlagsgesellschaft, 1994: 147-176.

      [66] PEVELING R, HARTL J, K?HNE E. Side-effects of the insect growth regulator triflumuron on spiders[M] // KRALL S, PEVELING R, BA DIALLO D. New Strategies in Locust Control. Basel: Birkh?user Basel, 1997: 345-359.

      [67] KOMOREK M, VOGT H. Investigations of side-effects of two insect growth regulators and an organophosphate on dominant spiders in an apple orchard[C]// VOGT H, HEIMBACH U(ed.). Proceedings of the meeting of IOBC/WPRS at Versailles, France (IOBC wprs Bulletin). Heinrichstr & Gent: Publication Commission of the IOBC/WPRS, 2000, 23(9): 111-126.

      [68] MANSOUR F, NENTWIG W. Effects of agrochemical residues on four spider taxa: Laboratory methods for pesticide tests with web-building spiders[J]. Phytoparasitica, 1988, 16(4): 317-326.

      [69] NEGRISOLI A S, GARCIA M S, NEGRISOLI C R C B. Compatibility of entomopathogenic nematodes (Nematoda: Rhabditida) with registered insecticides for(Smith, 1797) (Lepidoptera: Noctuidae) under laboratory conditions[J]. Crop protection, 2010, 29(6): 545-549.

      [70] STERK G, HASSAN S A, BAILLOD M, et al. Results of the seventh joint pesticide testing programme carried out by the IOBC/WPRS-Working Group ‘Pesticides and Beneficial Organisms’[J]. Biocontrol, 1999, 44(1): 99-117.

      Research Review on the Safety of Triflumuron to Beneficial Natural Enemies

      TAN Haijun1,ZHANG Yidan2

      (1. Suzhou ACE Chemical Technology Co., Ltd.,Kunshan, Jiangsu 215300,China;2. Tonghua Pesticide Chemical Stock Co., Ltd., Tonghua, Jilin 134001, China)

      Beneficial natural enemies have the function of natural ecological balance to control the damage degree of pests. However, during the large-scaled pest occurrence, the use of chemical pesticide is then necessary for effective control. To alleviate impacts on beneficial natural enemies, it is particularly important to employ chemical pesticides being low-toxic to non-target organisms and simultaneously able to reduce application rate. As an chemotype insect growth regulator suitable for integrated pest management, triflumuron may also affect the survival, growth, reproduction, parasitism, predation and other behaviors of exposed beneficial natural enemies to various degrees. Such impacts on the beneficial natural enemies like Hymenopterans, Hemipterans, Coleopterans, Dermapterans, Neuropterans, Arachnids, Entomopathogenic nematodes caused by their exposure in triflumuron were summarized in this article. It was expected to better understand triflumuron’s effects of action and safety under different conditions such as application mode, rate and timing, species of parasitized or preyed pests, so as to provide a reference for its development and application in integrated pest management.

      triflumuron; beneficial natural enemies; safety; effect of action

      S482;S47;TQ453

      A

      2095-3704(2021)04-0379-12

      譚海軍, 張譯丹. 殺鈴脲對(duì)有益天敵的安全性研究綜述[J]. 生物災(zāi)害科學(xué), 2021, 44(4): 379-390.

      2021-11-01

      譚海軍(1985—),男,工程師,主要從事綠色農(nóng)藥的開(kāi)發(fā)、應(yīng)用和推廣研究,tanhaijun@foxmail.com。

      猜你喜歡
      寄生蜂赤眼蜂有益
      獨(dú)處有益
      烘焙有益心理健康
      5種赤眼蜂品系對(duì)米蛾卵和梨小食心蟲(chóng)卵的選擇偏好研究
      四種赤眼蜂對(duì)槐尺蠖卵的寄生能力及適應(yīng)性
      做有趣有益的游戲
      應(yīng)用3種赤眼蜂防治油松毛蟲(chóng)試驗(yàn)
      寄生蜂適應(yīng)性生殖行為策略的研究進(jìn)展
      靜坐有益
      2013 年拉薩市青稞田寄生蜂對(duì)蚜蟲(chóng)的寄生率調(diào)查
      西藏科技(2015年3期)2015-09-26 12:11:03
      獨(dú)行殺手寄生蜂
      德庆县| 巴青县| 山阴县| 略阳县| 庆云县| 阿拉善左旗| 姚安县| 德安县| 社旗县| 奎屯市| 铜陵市| 顺平县| 攀枝花市| 交口县| 松阳县| 东乡| 额济纳旗| 读书| 曲阳县| 民乐县| 道孚县| 明光市| 永吉县| 曲松县| 渭源县| 赫章县| 手游| 潼南县| 丰城市| 高阳县| 策勒县| 长垣县| 新和县| 满城县| 鹤岗市| 滕州市| 全椒县| 昌黎县| 绥棱县| 广昌县| 盘山县|