暴宏天, 王 焰, 曹勇華, 魏 博, 3
內蒙古中部二疊紀額布圖巖體的橄欖石成分特征及其對輝石巖地幔源區(qū)的指示
暴宏天1, 2, 王 焰1, 3*, 曹勇華1, 魏 博1, 3
(1.中國科學院 廣州地球化學研究所, 礦物學與成礦學重點實驗室, 廣東 廣州 510640; 2.中國科學院大學, 北京 100049; 3.廣東省礦物物理與材料研究開發(fā)重點實驗室, 廣東 廣州 510640)
內蒙古中部的額布圖超鎂鐵質巖體位于中亞造山帶與華北克拉通北緣的碰撞拼貼帶內, 發(fā)育銅鎳硫化物礦化。該巖體主要由橄欖斜方輝石巖和斜方輝石巖組成, 橄欖斜方輝石巖中橄欖石含量~15%, 斜方輝石巖中橄欖石含量<5%, 兩種巖石中橄欖石的Fo值介于83~87之間。在Fo值相同時, 與橄欖巖地幔部分熔融熔體中結晶的橄欖石相比, 額布圖巖體中的橄欖石具有較低的Mn含量, 指示其母巖漿可能不是橄欖巖地幔的熔融產物。同時, 該巖體的橄欖石具有較低的Mn/Zn和Mn/Fe值、較高的Zn/Fe值, 與來源于典型輝石巖地幔的Mwenezi和Tuli玄武巖中橄欖石斑晶的相應比值一致。因此, 額布圖巖體的地幔源區(qū)可能以輝石巖為主。同時, 該巖體中橄欖石的Ca含量較低、Li含量較高指示其源區(qū)可能經歷了俯沖流體的改造。因此, 額布圖巖體地幔源區(qū)中的輝石巖組分可能是當古亞洲洋板片向南俯沖至華北克拉通之下時, 來自俯沖板片的流體/揮發(fā)分進入上覆地幔楔, 造成先存于地幔中的古老下地殼組分發(fā)生熔融并交代周圍的地幔橄欖巖形成的。
橄欖石; 輝石巖地幔; 額布圖超鎂鐵質巖體; 中亞造山帶
隨著賦含銅鎳硫化物礦床(化)的鎂鐵?超鎂鐵質巖體在匯聚板塊邊緣不斷被發(fā)現, 與俯沖作用有關的含礦鎂鐵?超鎂鐵質巖體的成因受到了廣泛關注。中亞造山帶自古生代以來發(fā)育了一系列賦含銅鎳硫化物礦床(化)的巖體, 構成了世界上最長的匯聚板塊邊緣銅鎳硫化物成礦帶。在我國境內的中亞造山帶發(fā)育大量含礦巖體, 包括菁布拉克、喀拉通克、圖拉爾根、黑山、黃山東、黃山西、黃山南、香山、坡北、白石泉、葫蘆、天宇、紅旗嶺7號、漂河川4號和額布圖巖體等。這些巖體中巖石的微量元素組成普遍具有大離子親石元素富集及高場強元素虧損的島弧巖漿特征, 可能與其地幔源區(qū)受到來自俯沖板片的流體/揮發(fā)分交代作用有關(Zhou et al., 2004; Song et al., 2011, 2013; Li et al., 2012; Xie et al., 2012)。
有學者認為, 俯沖板片釋放的流體/揮發(fā)分進入地幔楔后, 有可能導致地幔中的再循環(huán)地殼組分發(fā)生熔融并交代其周圍的橄欖巖地幔, 從而產生輝石巖地幔組分(Gao et al., 2004, 2008; Liu et al., 2005)。而地幔中的再循環(huán)地殼組分多以榴輝巖形式存在(Stracke, 2012; Hofmann, 2014)。相比地幔橄欖巖, 榴輝巖的固相線溫度較低(Yaxley and Green, 1998; Rapp et al., 1999; Kogiso et al., 2003)。當軟流圈地幔巖漿上涌或有水加入時, 均會造成榴輝巖組分熔融, 如果其與周圍的地幔橄欖巖反應, 則形成相對富硅的地幔輝石巖(Hirschmann et al., 2003; Gao et al., 2004, 2008; Liu et al., 2005; Sobolev et al., 2005)。
橄欖石是幔源基性巖漿中較早結晶的礦物, 其成分可能記錄了初始巖漿的特征。Ni和Mn在橄欖石與熔體之間的分配系數分別為7.37~11.9(Wang and Gaetani, 2008)和0.89(Foley et al., 2013), 它們在輝石與熔體中的分配系數分別為2.44~3.78(Le Roux et al., 2011)和1 (Foley et al., 2013)。因此, 相比橄欖巖地幔, 在同等部分熔融程度條件下, 輝石巖地幔部分熔融產生的熔體會具有較高的Si和Ni含量, 以及較低的Mn含量, 從輝石巖地幔熔體中結晶的橄欖石通常也具有高Ni、低Mn的特征(Sobolev et al., 2005, 2007; Herzberg and Asimow, 2008; De Hoog et al., 2010; Herzberg, 2011; Foley et al., 2013; Howarth and Harris, 2017)。另外, 在橄欖石?硅酸鹽熔體之間分配系數相似的元素對, 如Mn-Fe、Ni-Mg、Zn-Fe、Mn-Zn等, 其在橄欖石中的比值基本不受巖漿分離結晶作用的影響, 可以近似代表其在硅酸鹽熔體中的初始比值(Sobolev et al., 2007; Le Roux et al., 2010; Herzberg, 2011; Mallik and Dasgupta, 2012; S?ager et al., 2015), 因此橄欖石中的這些元素比值可用來探討鎂鐵?超鎂鐵質巖體的地幔源區(qū)特征。與橄欖巖地幔部分熔融熔體中結晶的橄欖石相比, 從輝石巖地幔部分熔融產生的熔體中結晶的橄欖石可能具有較高的Ni/Mg和Zn/Fe值, 以及較低的Mn/Fe和Mn/Zn值(Sobolev et al., 2007; Le Roux et al., 2010; Howarth and Harris, 2017)。因此, 鎂鐵?超鎂鐵質巖體中橄欖石的成分特征可為探討其地幔源區(qū)組成提供重要依據。
額布圖巖體位于內蒙古中部索倫縫合帶(圖1), 具銅鎳硫化物礦化, 礦石的Ni品位為0.3%~2%, Ni金屬量約1 Mt(Peng et al., 2013)。巖體的形成與古亞洲洋俯沖作用有關, 其母巖漿具高Mg和高Si的特征, 與玻安質巖漿的成分類似(Peng et al., 2013)。其地幔源區(qū)是否存在輝石巖組分、輝石巖組分對鎳礦化是否有貢獻, 是兩個值得探討的問題。本文通過分析額布圖巖體中橄欖石的成分特征, 探討其地幔源區(qū)中輝石巖組分的貢獻, 以及輝石巖地幔組分的存在與銅鎳硫化物礦化的關系。
圖1 中亞造山帶的構造位置(a, 據Jahn, 2004)和內蒙古中部區(qū)域地質簡圖(b, 據Jian et al., 2008)
中亞造山帶位于西伯利亞板塊、華北板塊和塔里木板塊之間, 其東西向延伸超過7000 km, 是全球范圍內顯生宙地殼增生和改造最顯著的地區(qū), 同時也是全球礦產資源潛力最大的地區(qū)之一(Xiao et al., 2008)。中亞造山帶是古亞洲洋在新元古代至晚古生代期間經歷了打開、消減和閉合形成的巨型縫合帶, 該帶由一系列微陸塊、島弧、蛇綠巖和火山巖組成(Jahn, 2004; Windley et al., 2007; Xiao et al., 2009)。自古生代以來, 在中亞造山帶我國境內部分發(fā)育了大量的鎂鐵?超鎂鐵質巖體, 其中賦含銅鎳硫化物礦化的巖體主要形成于早二疊世?晚三疊世, 且主要集中于中亞造山帶東段和西段, 其中大型含礦巖體主要包括紅旗嶺7號、黃山西、黃山東和喀拉通克巖體(Song and Li, 2009; Gao and Zhou, 2013; Sun et al., 2013; Wei et al., 2013)(圖1a), 中?小型含礦巖體主要包括葫蘆、白石泉、天宇和紅旗嶺1號巖體等(孫濤等, 2010; Tang et al., 2011, 2013; 呂林素等, 2012)。在中亞造山帶中段的內蒙古中部地區(qū), 鎂鐵?超鎂鐵質巖體呈帶狀分布, 包括小南山、黃花灘、克布、溫根、特頗格日圖、達布遜、額布圖巖體等(江思宏等, 2003; 李鵬等, 2013; 黨智財等, 2014; 李志丹等, 2015; 趙澤霖等, 2016)。這些巖體大多規(guī)模較小、且礦化程度低, 相對而言, 額布圖巖體是其中礦化程度較高的一個。
內蒙古中部地區(qū)自北向南由索倫縫合帶、溫都爾廟俯沖?增生雜巖體和白乃廟島弧巖漿巖帶三個東西向延伸的構造單元組成, 白乃廟島弧巖漿巖帶南部與華北克拉通北緣相接(Xiao et al., 2003)。區(qū)內主要出露晚二疊世火山?沉積巖, 石炭紀侵入巖零星出露在索倫縫合帶內, 二疊紀侵入巖在索倫縫合帶和白乃廟島弧巖漿巖帶內較發(fā)育, 零星發(fā)育于溫都爾廟俯沖?增生雜巖體內, 早古生代侵入巖主要發(fā)育在白乃廟島弧巖漿巖帶中。索倫縫合帶中還發(fā)育大量蛇綠巖, 普遍認為其可能代表了古亞洲洋最終閉合的位置(Xiao et al., 2003; Jian et al., 2008; Chen et al., 2009; Eizenh?fer et al., 2014)(圖1b)。
額布圖巖體位于白乃廟巖漿巖帶西側, 平面上近似呈紡錘狀, 長約200 m, 寬約100 m (圖2a)。鉆孔數據顯示, 巖體在縱剖面上呈碗狀, 向下延伸約200 m(圖2b), 直接圍巖為中元古界寶音圖組變火山?沉積巖。巖體上部以斜方輝石巖為主, 下部以橄欖斜方輝石巖為主。上部的斜方輝石巖平均厚度約60 m,其頂部5~30 m已風化為氧化帶, 橄欖斜方輝石巖的平均厚度約100 m。斜方輝石巖的鋯石U-Pb年齡為294.2±2.7 Ma(Peng et al., 2013)。兩種巖性均發(fā)育浸染狀礦化(圖3a), 硫化物主要分布在斜方輝石和橄欖石之間的粒間相中(圖3b、c)。
斜方輝石巖主要由斜方輝石(~80%)、單斜輝石(<10%)、橄欖石(<5%)和少量角閃石組成。斜方輝石呈半自形短柱狀或板狀, 顆粒大小介于0.4~2 mm之間, 在大顆粒的內部裂隙或邊部可見輕微蝕變。單斜輝石呈半自形?它形, 粒徑多介于0.5~0.6 mm之間, 邊部多輕微蝕變。橄欖石為半自形渾圓狀, 粒徑一般<0.4 mm, 大多被斜方輝石包裹, 呈包含結構。沿裂隙蛇紋石化較發(fā)育。角閃石呈它形, 主要位于斜方輝石和橄欖石粒間(圖4a)。
圖2 額布圖超鎂鐵質巖體及圍巖地質簡圖(a)和額布圖超鎂鐵質巖體剖面圖(b, 據Peng et al., 2013)
礦物代號: Ol. 橄欖石; Opx. 斜方輝石; Cpy. 黃銅礦; Pn. 鎳黃鐵礦; Po. 磁黃鐵礦; Sul. 硫化物。
橄欖斜方輝石巖主要由斜方輝石(~75%)、橄欖石(~15%)、單斜輝石(<10%)和少量角閃石組成。斜方輝石粒徑可達2~3 mm。橄欖石呈粒狀或渾圓狀, 粒度介于0.2~1 mm之間。被斜方輝石和單斜輝石包裹的橄欖石的粒度多小于0.3 mm。沿橄欖石的裂理發(fā)育強烈蛇紋石化。單斜輝石呈它形粒狀, 粒徑介于0.4~0.5 mm之間, 邊部具輕微蝕變。角閃石呈它形, 充填于兩種輝石和橄欖石粒間(圖4b)。
選取斜方輝石巖和橄欖斜方輝石巖樣品進行光薄片磨制和觀察, 并挑選相對新鮮的巖石樣品進行碎樣, 選用剛玉破碎機對樣品進行粗碎, 粗碎后用瑪瑙球狀研磨機磨至200目左右, 以供全巖分析。
全巖主量元素分析在澳實分析檢測(廣州)有限公司利用X射線熒光光譜法(XRF)完成。儀器型號為PANalytical Axios型XRF光譜儀, 分析精度優(yōu)于5%。分析時所采用的標樣為GBM306-12、GBM315-13、NCSDC73303和OREAS 195。
選擇樣品中相對新鮮的橄欖石顆粒進行主、微量元素分析, 測試分析在中國科學院礦物學與成礦學重點實驗室完成。主量元素分析采用JEOL JXA-8230型電子探針(EPMA), 束斑直徑1 μm, 加速電壓15 kV, 電流20 nA。分析Mg、Fe和Si時, 分析時間為20 s, 背景分析時間為10 s; 分析Ca時, 分析時間為40 s, 背景分析時間為20 s; 分析Ni和Mn時, 分析時間為60 s, 背景分析時間為30 s。分析Mg、Si采用TAP晶體; 分析Fe、Mn和Ni采用 LIF晶體; 分析Ca采用PET晶體。使用的標樣包括橄欖石(Si、Mg)、磁鐵礦(Fe)、透輝石(Ca)、菱錳礦(Mn)和鎳金屬(Ni)。分析元素的檢出限普遍<100 μg/g, 不需要波峰重疊校正。分析結果利用ZAF校正程序進行了修正。
橄欖石微量元素分析采用Resonetic RESOlution S-155激光器結合 Agilent 7900質譜聯機的激光剝蝕電感耦合等離子體質譜儀(LA-ICP-MS)。激光剝蝕束斑直徑為43 μm, 頻率6 Hz, 以氦氣為載氣, 氬氣為補償氣來調節(jié)靈敏度, 背景分析時間為20 s, 數據采集時間為50 s。分別采用NIST SRM 610和GOR-132為外標和監(jiān)控標樣。最后以電子探針得到的橄欖石的Si含量為內標利用ICPMS-DataCal 軟件(Liu et al., 2008)對原始數據進行校正。大多數微量元素檢出限小于 0.1 μg/g, 分析精度優(yōu)于10%。
額布圖巖體全巖主量元素組成見表1。橄欖斜方輝石巖樣品的燒失量(LOI)均>4.0%, 因此, 全巖成分均被校正至100%硅酸鹽總量。在全巖的MgO與其他主量元素的二元圖解上, 橄欖斜方輝石巖相比斜方輝石巖, 具有較高的MgO和FeOT(FeOT= Fe2O3T′0.89)含量、較低的SiO2和Al2O3含量, 以及相似的CaO含量(圖5)。
(a) 斜方輝石巖由大小不一的斜方輝石堆晶組成, 含少量橄欖石、單斜輝和角閃石; (b) 橄欖斜方輝石巖主要由斜方輝石和橄欖石組成, 巖石具包橄結構即橄欖石被包裹在斜方輝石。礦物代號: Ol. 橄欖石; Opx. 斜方輝石; Cpx. 單斜輝石; Hb. 角閃石。
表1 額布圖巖體的巖石主量元素組成(%)
兩種巖石都表現出隨MgO含量降低, FeOT含量逐漸降低, 而SiO2和Al2O3含量逐漸升高的趨勢, CaO含量變化不明顯。樣品的全巖氧化物含量多落在斜方輝石端元附近, 表明額布圖巖體兩種巖性巖石的礦物組成主要為斜方輝石, 其次為橄欖石和單斜輝石。Peng et al. (2013)樣品的全巖FeOT含量明顯高于本次研究的樣品, 樣品的Cu含量(117~1249 μg/g)也遠高于本次樣品的Cu含量(36~304 μg/g, 課題組未發(fā)表數據)??紤]到Cu與S之間的正相關關系(圖6), 表明Peng et al. (2013)的樣品含有更多的硫化物, 而硫化物可以提供一定量的Fe2+。因此, 樣品中FeOT含量的差別可能與其中硫化物的含量不同有關。
額布圖巖體橄欖石的Fo值介于83~87之間(表2), 其Fo值與Ni含量之間無明顯相關性。Fo<85的橄欖石與Fo>85的橄欖石具有明顯不同的Ni含量: Fo>85橄欖石的Ni含量與洋中脊玄武巖(MORB)中橄欖石斑晶的Ni含量范圍基本一致, 而Fo<85橄欖石的Ni含量則明顯偏高, 與夏威夷Koolau玄武巖中橄欖石斑晶的Ni含量類似(圖7a)。Fo>85橄欖石的Co含量與Fo值之間呈正相關關系, 而Fo<85橄欖石的Co含量與Fo值之間呈負相關關系(圖7b)。橄欖石的Mn和Zn含量總體與Fo值之間呈明顯的負相關關系(圖7c、d), 與巖漿結晶分異的趨勢一致, 但其Mn含量明顯低于MORB和Koolau玄武巖中橄欖石斑晶的Mn含量。橄欖石的Ca含量普遍<1000 μg/g,與Duke Island雜巖體中橄欖石的Ca含量類似(Li et al., 2011), 遠低于MORB及洋島玄武巖(OIB)中橄欖石斑晶的Ca含量(>1500 μg/g, Foley et al., 2013)(圖7e)。而額布圖巖體中橄欖石的Ca含量大致與Fo值呈負相關關系(圖6e), 這可能與巖體形成過程中僅有少量的單斜輝石結晶分異有關。額布圖巖體中橄欖石的Li含量普遍高于5 μg/g, 略高于板內巖漿巖中橄欖石的Li含量(≤ 5 μg/g, Foley et al., 2013) (圖7f)。
圖中橄欖石(Ol)、斜方輝石(Opx)和單斜輝石(Cpx)的成分范圍是礦物的電子探針分析結果。
Ni和Co同為親鐵元素, 在橄欖石中均為相容元素, 橄欖石?硅酸鹽熔體之間的Ni分配系數(NiOl-Liq)為7.37~11.9(Wang and Gaetani, 2008), Co分配系數(CoOl-Liq)為2.48±0.68(Laubier et al., 2014)。二者又同為親銅元素, 極易進入硫化物中, 硫化物?硅酸鹽熔體之間Ni的分配系數(NiSul-Liq)為300~1000(Patten et al., 2013), Co分配系數(CoSul-Liq)為20~580(Li and Audétat, 2012; Kiseeva and Wood, 2015), 均遠遠高于其在橄欖石?硅酸鹽熔體間的分配系數。在硫不飽和的巖漿體系中, 隨著橄欖石結晶, 巖漿的Ni和Co含量均逐漸降低, 同時,NiOl-Liq及CoOl-Liq均逐漸升高, 但由于NiOl-Liq>CoOl-Liq,巖漿中Ni含量的下降幅度高于Co。因此, 隨著巖漿分離結晶作用的進行, 從硫不飽和巖漿中結晶的橄欖石, 其Ni含量與Fo值呈正相關關系, 但Co含量與Fo值則可能呈負相關關系(Papike et al., 1999; Herd et al., 2009)。當巖漿體系達到硫化物飽和時, Ni和Co則優(yōu)先進入硫化物熔體, 導致與硫化物熔體同時結晶的橄欖石的Ni和Co含量明顯降低。在亞固相階段, 硫化物熔體與橄欖石之間還可能發(fā)生Fe-Ni交換, 造成橄欖石的Ni含量與Fe含量呈正相關, 而與Fo值之間呈負相關關系(Barnes and Naldrett, 1985; Li et al., 2007)。因此, 橄欖石的Ni和Co含量與Fo值的相關性可作為判別體系是否達到硫化物飽和的指標。
圖6 額布圖巖體的全巖S與Cu含量二元圖解
表2 額布圖巖體斜方輝石巖和橄欖斜方輝石巖中的橄欖石平均成分
續(xù)表2:
MORB. 全球范圍內洋中脊玄武巖中的橄欖石斑晶成分(據Sobolev et al., 2007); Koolau. 夏威夷Koolau洋島玄武巖中的橄欖石斑晶成分(據Sobolev et al., 2005); FC-1. 地幔橄欖巖來源熔體在3 GPa、1515 ℃和QFM條件下, 20%分離結晶過程中橄欖石成分的變化趨勢(據Sobolev et al., 2007)。MORB+OIB橄欖石的Ca含量和板內巖漿巖中橄欖石的Li含量據Foley et al. (2013); Duke island 雜巖體中橄欖石的成分據Li et al. (2011)。
額布圖巖體Fo>85橄欖石的Ni含量明顯低于Fo<85橄欖石的Ni含量, 在橄欖石Fo>85時其Co含量與Fo值呈正相關關系(圖7a、b), 表明該巖漿體系在早期已達到了硫化物飽和, 即Ni和Co優(yōu)先進入硫化物熔體中, 導致Fo>85橄欖石的Ni和Co含量明顯降低。另一方面, Fo<85橄欖石的Ni含量與Fo值之間呈負相關關系, 表明橄欖石與硫化物熔體之間發(fā)生了Fe-Ni交換(Barnes and Naldrett, 1985; Li et al., 2007), 說明體系發(fā)生了硫化物熔離。因此, 額布圖巖體中橄欖石的Ni含量受到了硫化物熔離的影響, 其Ni/Mg值不能用來探討地幔源區(qū)的組成特征。而橄欖石的Mn和Zn含量主要受控于巖漿結晶分異過程, 基本不受體系硫化物飽和的影響, 因此可利用橄欖石的Mn、Zn含量和Mn/Zn值等對其源區(qū)性質進行判別。
前人模擬計算結果顯示, 在Fo值相同時, MORB中橄欖石斑晶與從橄欖巖地幔3 GPa壓力下部分熔融熔體中結晶的橄欖石具有類似的Mn含量, 均高于輝石巖地幔部分熔融熔體中結晶橄欖石的Mn含量(Sobolev et al., 2007; Herzberg, 2011)。額布圖巖體中橄欖石的Mn含量明顯低于MORB中橄欖石, 但接近于輝石巖地幔來源的Koolau玄武巖中橄欖石(圖7c)。這表明, 額布圖巖體的母巖漿可能不是橄欖巖地幔部分熔融的產物, 而更可能與輝石巖地幔部分熔融作用有關。
額布圖巖體橄欖石的Mn/Zn值隨Fo值降低基本保持不變, 說明該比值基本未受分離結晶作用的影響。該Mn/Zn值<13, 遠低于來源于橄欖巖地幔的Baffin苦橄巖和Etendeka玄武巖中橄欖石斑晶的Mn/Zn值, 而與來源于輝石巖地幔的Mwenezi和Tuli玄武巖中橄欖石斑晶的Mn/Zn值一致(圖8)。
橄欖石的Mn/Fe和Zn/Fe值可以近似代表其幔源巖漿的相應比值, 可用來判斷其地幔源區(qū)的性質(Le Roux et al., 2010; Howarth and Harris, 2017)。額布圖巖體中橄欖石的Mn/Fe和Zn/Fe值與Mwenezi和Tuli玄武巖中橄欖石斑晶的相應比值一致, 均位于從輝石巖地幔熔融產生的熔體中結晶橄欖石的相應比值區(qū)域(圖9b), 也指示其地幔源區(qū)可能存在輝石巖組分。
選取額布圖巖體中Fo值最高的橄欖石(Fo=86.6), 利用Sobolev et al. (2007)提出的公式計算了來自輝石巖地幔的熔體對額布圖巖體母巖漿成分的貢獻。
px=3.48?2.071×(100×Mn/Fe)
式中:px表示輝石巖地幔來源熔體的比例; Mn和Fe分別為橄欖石中兩種元素的含量。橄欖巖地幔對應的px值為?0.2~0.2, 輝石巖地幔對應的px值為0.8~1.2(Sobolev et al., 2009)。計算結果為1.06, 表明額布圖巖體的母巖漿可能幾乎全部是輝石巖地幔部分熔融的產物。
通常認為, 橄欖石的Ca含量主要受溫度、壓力和熔體成分的控制(Jurewicz and Watson, 1988; O’Reilly et al., 1997; Libourel, 1999; De Hoog et al., 2010), 但這些因素不能完全解釋MORB、OIB和大陸溢流玄武巖(CFB)中橄欖石斑晶的Ca含量范圍相互重疊的現象(Gavrilenko and Herzberg, 2016)。越來越多的證據表明, 橄欖石的Ca含量可能還受到巖漿體系中水含量的控制, 巖漿的含水量越高, Ca則越不容易進入橄欖石中。例如, 從富水的島弧巖漿中結晶的橄欖石相比從相對貧水的板內巖漿中結晶的橄欖石, 具有明顯更低的Ca含量(Feig et al., 2006; Kamenetsky et al., 2006; Gavrilenko and Herzberg, 2016)。因此, 橄欖石的Ca含量可用來表征幔源巖漿的含水程度。額布圖巖體中橄欖石的Ca含量遠低于MORB和OIB中橄欖石斑晶的Ca含量, 與島弧環(huán)境形成的Duke island 雜巖體中橄欖石的Ca含量接近(圖7e), 表明額布圖巖體的母巖漿含水量較高, 這與巖石中普遍發(fā)育含水礦物(如角閃石)(圖4)的特征一致。
Etandeka玄武巖和Baffin苦橄巖來源于橄欖巖地幔, Mwenezi和Tuli玄武巖來源于輝石巖地幔。數據來源: Tuli, Mwenezi, Etendeka玄武巖中的橄欖石斑晶成分據Howarth and Harris (2017); Baffin苦橄巖中的橄欖石斑晶成分據De Hoog et al. (2010)。
橄欖巖地幔和輝石巖地幔參考范圍分別引自Sobolev et al. (2007)和Howarth and Harris (2017)。
橄欖石?硅酸鹽熔體之間Li的分配行為基本不受溫度控制, 橄欖石的Li含量主要與熔體成分有關(Brenan et al., 1998)。地幔橄欖巖的Li含量為1~2 μg/g (Seitz and Woodland, 2000), MORB的Li含量一般<4 μg/g(Tomascak et al., 2008; Marschall et al., 2017), 板內玄武巖中橄欖石斑晶的Li含量一般<5 μg/g (Jeffcoate et al., 2007; Chan et al., 2009; Foley et al., 2013)。但是, 在俯沖過程中, 板片脫水可將蝕變洋殼及大陸沉積物中的Li遷移至地幔楔, 造成地幔楔部分熔融產生的熔體中具有較高的Li含量(Chan and Kastner, 2000; Chan et al., 2002; Tomascak et al., 2002; Bouman et al., 2004; Tang et al., 2014)。額布圖巖體橄欖石的Li含量明顯高于板內巖漿巖中橄欖石的Li含量(圖7f), 表明其地幔源區(qū)可能有俯沖板片組分的加入。
額布圖巖體橄欖石總體具有低Ca、高Li的特征, 表明其地幔源區(qū)可能經歷了俯沖板片來源熔體/流體的交代, 與Peng et al. (2013)認為該巖體形成于俯沖階段的認識一致。而中亞造山帶其他含礦巖體則主要形成在碰撞后伸展階段, 初始巖漿中可能還具有來自軟流圈地幔熔體的組分(Li et al., 2012; Mao et al., 2014)。
額布圖巖體中鋯石的Hf()值介于–8.5~–4.2之間(Peng et al., 2013), 全巖Nd()值介于–8~–5之間(課題組未發(fā)表數據), 其地幔源區(qū)具富集地幔特征, 與華北克拉通西部大陸下巖石圈地幔的特征基本一致(趙磊等, 2011; Guo et al., 2014; Pang et al., 2017)。前人通過對華北克拉通西部地幔包體和中?新生代巖漿巖的地球化學研究, 證實華北克拉通西部大陸下巖石圈地幔曾遭受了明顯的交代作用(Guo et al., 2014; Dai et al., 2018; Dai and Zheng, 2019)、并存在古老的下地殼組分(榴輝巖)(Guo et al., 2014)。本次研究認為, 當古亞洲洋向南俯沖至華北克拉通大陸下巖石圈地幔時, 俯沖板片釋放的流體交代了上覆含有榴輝巖組分的地幔楔, 由于榴輝巖的固相線溫度較低, 其優(yōu)先熔融后產生的熔體與周圍的地幔橄欖巖反應形成了輝石巖地幔組分。輝石巖地幔部分熔融產生的熔體形成了額布圖巖體的母巖漿, 因此, 該巖體的巖石微量元素和同位素組成具有來自富集地幔島弧巖漿的地球化學特征。
幔源巖漿中的成礦金屬元素含量(如Ni、Cu和PGE等)是能否形成巖漿銅鎳硫化物礦床的重要因素之一, 其主要與地幔的部分熔融程度有關(Naldrett, 1989; Barnes and Lightfoot, 2005)。地幔高程度部分熔融不僅可以提高巖漿中成礦元素的含量, 而且可形成較大體積的巖漿量, 大量巖漿流經穿越地殼的巖漿通道/巖漿房時, 如果發(fā)生地殼混染, 則更有利于造成巖漿的硫化物飽和(Arndt et al., 2005; Barnes and Lightfoot, 2005)。因此, 絕大多數世界級銅鎳硫化物礦床都與地幔柱引發(fā)的大規(guī)模巖漿作用有關(Pirajno, 2000; Ernst, 2007; Pirajno et al., 2009; Begg et al., 2010), 如Noril’sk, Bushveld, Voisey’s Bay, Jinchuan, Pechenga等(Barnes et al., 2001; Barnes and Lightfoot, 2005; Li et al., 2005; Naldrett, 2010)。然而, 額布圖巖體形成于匯聚板塊邊緣環(huán)境, 其形成與俯沖作用有關。在俯沖環(huán)境產生的巖漿量無法與板內地幔柱活動或裂谷伸展環(huán)境產生的巖漿量相比, 但額布圖巖體的地幔源區(qū)中含有大量的輝石巖組分。相比橄欖巖地幔, 輝石巖地幔部分熔融產生的熔體具有較高的Ni含量(Sobolev et al., 2005; Straub et al., 2008; Herzberg, 2011)。因此, 額布圖巖體中發(fā)育的銅鎳硫化物礦化說明, 在匯聚板塊邊緣發(fā)育的鎂鐵?超鎂鐵質巖體, 如果其地幔源區(qū)含有輝石巖組分, 則地幔源區(qū)部分熔融產生的巖漿成礦元素含量有可能比較高, 有利于對銅鎳硫化物礦化。
額布圖巖體形成在匯聚板塊邊緣環(huán)境, 其地幔源區(qū)可能經歷過俯沖板片來源流體的交代作用, 巖石中的橄欖石具有低Ca、高Li的特征。巖體的母巖漿可能是輝石巖地幔的部分熔融產物, 造成橄欖石具有較低的Mn含量和Mn/Fe值, 以及較高的Zn/Fe值。古亞洲洋板塊向南俯沖至華北克拉通之下, 來自俯沖板塊的流體和揮發(fā)分進入上覆地幔楔, 導致華北克拉通大陸下巖石圈地幔中的古老下地殼組分(榴輝巖)發(fā)生熔融、并與周圍的地幔橄欖巖反應, 從而造成額布圖巖體的地幔源區(qū)中含有大量的輝石巖組分。由于輝石巖地幔部分熔融產生的熔體具有較高的Ni含量, 造成了額布圖巖體具有一定的銅鎳硫化物礦化潛力。因此, 輝石巖地幔組分的存在, 對于匯聚板塊邊緣環(huán)境中鎂鐵?超鎂鐵質巖漿的銅鎳硫化物成礦作用是十分有利的。
中國科學院礦物學與成礦學重點實驗室邢長明副研究員和吳丹老師在電子探針和LA-ICP-MS測試方面給予了指導和幫助; 中國科學院廣州地球化學研究所黃小龍研究員和匿名審稿人對本文提出的寶貴意見和建議, 一并表示感謝。
黨智財, 李俊健, 宋雪龍, 趙澤霖, 付超, 唐文龍. 2014. 內蒙古中部鎂鐵質?超鎂鐵質巖帶銅鎳硫化物礦床地質特征. 地質找礦論叢, 29(3): 329–335.
江思宏, 聶鳳軍, 劉妍, 王新亮. 2003. 內蒙古小南山?鉑?銅?鎳礦區(qū)輝長巖地球化學特征及成因. 地球學報, 24(2): 121–126.
李鵬, 任陪林, 白啟星, 張淼鑫, 周南. 2013. 烏拉特中旗克布礦區(qū)鎳礦床巖石學特征及成因淺析. 現代礦業(yè), 53(6): 65–66.
李志丹, 王佳營, 文思博, 陳軍強, 段明, 張鋒, 魏佳林, 謝瑜. 2015. 內蒙古烏拉特中旗克布鎳礦地質特征及超基性?基性巖LA-ICP-MS鋯石U-Pb年齡. 礦物學報, 35(1): 130–131.
呂林素, 毛景文, 周振華, 李宏博, 張作衡, 汪云峰. 2012.吉林紅旗嶺1號和7號巖體中含礦超鎂鐵質巖的礦物化學特征: 對巖漿演化過程以及銅鎳硫化物礦床形成機制的約束. 巖石學報, 28(1): 319–344.
孫濤, 錢壯志, 湯中立, 姜常義, 何克, 孫亞莉, 王建中, 夏明哲. 2010. 新疆葫蘆銅鎳礦床鋯石U-Pb年代學、鉑族元素地球化學特征及其地質意義. 巖石學報, 26(11): 3339–3349.
趙磊, 吳泰然, 羅紅玲. 2011. 內蒙古烏拉特中旗北七哥陶輝長巖SHRIMP鋯石U-Pb年齡、地球化學特征及其地質意義. 巖石學報, 27(10): 3071–3082.
趙澤霖, 李俊建, 黨智財, 付超, 唐文龍, 王守光, 劉利雙, 趙麗君. 2016. 內蒙古黃花灘銅鎳礦區(qū)輝長巖LA-ICP-MS鋯石U-Pb定年及地球化學特征. 巖礦測試, 35(2): 208–216.
Arndt N, Lesher C M and Czamanske G K. 2005. Mantle-derivedmagmas and magmatic Ni-Cu-(PGE) deposits., 100th Aniversary Volume: 5–24.
Barnes S J and Lightfoot P C. 2005. Formation of magmatic nickel sulfide ore deposits and processes affecting their copper and platinum group element contents., 100th Anniversary Volume: 179–213.
Barnes S J, Melezhik V and Sokolov S. 2001. The composition and mode of formation of the pechenga nickel deposits, Kola Peninsula, Northwestern Russia., 39(2): 447–471.
Barnes S J and Naldrett A J. 1985. Geochemistry of the J-M (Howland) reef of the Stillwater complex, Minneapolis Adit area; I, Sulfide chemistry and sulfide-olivine equili-brium., 80(3): 627–645.
Begg G C, Hronsky J, Arndt N T, Griffin W L, O’reilly S Y and Hayward N H. 2010. Lithospheric, cratonic, and geodynamic setting of Ni-Cu-PGE sulfide deposits., 105(6): 1057–1070.
Bouman C, Elliott T and Vroon P Z. 2004. Lithium inputs to subduction zones., 212(1–2): 59–79.
Brenan J M, Neroda E, Lundstrom C C, Shaw H, Ryerson F and Phinney D L. 1998. Behaviour of boron, beryllium, and lithium during melting and crystallization: Constraintsfrom mineral-melt partitioning experiments — Inferences from10Be., 62(12): 2129–2141.
Chan L H, Alt J C and Teagle D A H. 2002. Lithium and lithium isotope profiles through the upper oceanic crust: A study of seawater-basalt exchange at ODP Sites 504B and 896A., 201(1): 187–201.
Chan L H and Kastner M. 2000. Lithium isotopic compositionsof pore fluids and sediments in the Costa Rica subduction zone: Implications for fluid processes and sediment contribution to the arc volcanoes., 183(1–2): 275–290.
Chan L H, Lassiter J C, Hauri E H, Hart S R and Blusztajn J. 2009. Lithium isotope systematics of lavas from the Cook-Austral Islands: Constraints on the origin of HIMU mantle., 277(3–4): 433–442.
Chen B, Jahn B M and Tian W. 2009. Evolution of the Solonker suture zone: Constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction- and collision-related magmas and forearc sediments., 34(3): 245–257.
Dai H K and Zheng J P. 2019. Mantle xenoliths and host basalts record the Paleo-Asian oceanic materials in the mantle wedge beneath northwest North China Craton., 4(4): 150–158.
Dai H K, Zheng J P, Xiong Q, Su Y P, Pan S K, Ping X Q and Zhou X. 2018. Fertile lithospheric mantle underlyingancient continental crust beneath the northwestern North China craton: Significant effect from the southward subduction of the Paleo-Asian Ocean., 131(1–2): 3–20.
De Hoog J C M, Gall L and Cornell D H. 2010. Trace-elementgeochemistry of mantle olivine and application to mantlepetrogenesis and geothermobarometry., 270(1–4): 196–215.
Eizenh?fer P R, Zhao G C, Zhang J and Sun M. 2014. Final closure of the Paleo-Asian Ocean along the Solonker Suture Zone: Constraints from geochronological and geochemical data of Permian volcanic and sedimentary rocks., 33(4): 441–463.
Ernst R E. 2007. Large igneous provinces in Canada through time and their metallogenic potential., 5: 929–937.
Feig S T, Koepke J and Snow J E. 2006. Effect of water on tholeiitic basalt phase equilibria: An experimental study under oxidizing conditions., 152(5): 611–638.
Foley S F, Prelevic D, Rehfeldt T and Jacob D E. 2013. Minor and trace elements in olivines as probes into earlyigneous and mantle melting processes., 363(2): 181–191.
Gao J F and Zhou M F. 2013. Generation and evolution of siliceous high magnesium basaltic magmas in the formation of the Permian Huangshandong intrusion (Xinjiang, NW China)., 162–163(2): 128–139.
Gao S, Rudnick R L, Xu W L, Yuan H L, Liu Y S, Walker R J, Puchtel I S, Liu X, Huang H, Wang X R and Yang J. 2008. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton., 270(1–2): 41–53.
Gao S, Rudnick R L, Yuan H L, Liu X M, Liu Y S, Xu W L, Ling W L, Ayers J, Wang X C and Wang Q H. 2004. Recycling lower continental crust in the North China craton., 432(7019): 892–897.
Gavrilenko M and Herzberg C. 2016. A calcium-in-olivine geohygrometer and its application to subduction zone magmatism., 57(9): 1811–1832.
Guo P Y, Niu Y L, Ye L, Liu J J, Sun P, Cui H X, Zhang Y, Gao J P, Su L X, Zhao J X and Feng Y X. 2014. Lithosphere thinning beneath west North China Craton: Evidence from geochemical and Sr-Nd-Hf isotope compositions of Jining basalts., 202–203: 37–54.
Herd C D K, Dwarzski R E and Shearer C K. 2009. The behavior of Co and Ni in olivine in planetary basalts: An experimental investigation., 94(2–3): 244–255.
Herzberg C. 2011. Identification of source lithology in the Hawaiian and Canary islands: Implications for origins., 52(1): 113–146.
Herzberg C and Asimow P D. 2008. Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation.,,, 9(9): 1–25.
Hirschmann M M, Kogiso T, Baker M B and Stolper E M. 2003. Alkalic magmas generated by partial melting of garnet pyroxenite., 31(6): 481–484.
Hofmann A W. 2014. Sampling mantle heterogeneity through oceanic basalts: Isotopes and trace elements // Holland H D and Turekian K K. Treatise on Geochemistry, second edition. Oxford: Elsevier: 67–101.
Howarth G H and Harris C. 2017. Discriminating between pyroxenite and peridotite sources for continental flood basalts (CFB) in southern Africa using olivine chemistry., 475: 143–151.
Jahn B M. 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic.,,, 226(1): 73–100.
Jeffcoate A B, Elliott T, Kasemann S A, Ionov D, Cooper K and Brooker R. 2007. Li isotope fractionation in peridotites and mafic melts., 71(1): 202–218.
Jian P, Liu D Y, Kr?ner A, Windley B F, Shi Y R, Zhang F Q, Shi G H, Miao L C, Zhang W, Zhang Q, Zhang L Q and Ren J S. 2008. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian OrogenicBelt, Inner Mongolia of China: Implications for continental growth., 101(3): 233–259.
Jurewicz A J G and Watson E B. 1988. Cations in olivine, Part 1: Calcium partitioning and calcium-magnesium distribution between olivines and coexisting melts, with petrologic applications.,99(2): 176–185.
Kamenetsky V S, Elburg M, Arculus R and Thomas R. 2006. Magmatic origin of low-Ca olivine in subduction-relatedmagmas: Co-existence of contrasting magmas., 233(3–4): 346–357.
Kiseeva E S and Wood B J. 2015. The effects of composition and temperature on chalcophile and lithophile element partitioning into magmatic sulphides., 424(2015): 280–294.
Kogiso T, Hirschmann M M and Frost D J. 2003. High- pressure partial melting of garnet pyroxenite: Possible mafic lithologies in the source of ocean island basalts., 216(4): 603–617.
Laubier M, Grove T L and Langmuir C H. 2014. Trace elementmineral/melt partitioning for basaltic and basaltic andesitic melts: An experimental and laser ICP-MS study with application to the oxidation state of mantle source regions., 392(5): 265–278.
Le Roux V, Dasgupta R and Lee C T A. 2011. Mineralogical heterogeneities in the Earth’s mantle: Constraints from Mn, Co, Ni and Zn partitioning during partial melting., 307(3?4): 395–408.
Le Roux V, Lee C T A and Turner S J. 2010. Zn/Fe systematicsin mafic and ultramafic systems: Implications for detecting major element heterogeneities in the Earth’s mantle., 74(9): 2779–2796.
Li C S, Naldrett A J and Ripley E M. 2007. Controls on the Fo and Ni contents of olivine in sulfide-bearing mafic- ultramafic intrusions: Principles, modeling, and examples from Voisey’s Bay., 14(5): 177– 183.
Li C S, Thakurta J and Ripley E M. 2011. Low-Ca contents and kink-banded textures are not unique to mantle olivine: Evidence from the Duke Island complex, Alaska., 104(3–4): 147–153.
Li C S, Zhang M J, Fu P E, Qian Z Z, Hu P Q and Ripley E M. 2012. The Kalatongke magmatic Ni-Cu deposits in the Central Asian Orogenic Belt, NW China: Product of slab window magmatism?, 47(1): 51–67.
Li X H, Su L, Chung S L, Li Z X, Liu Y, Song B and Liu D Y. 2005. Formation of the Jinchuan ultramafic intrusion and the world’s third largest Ni-Cu sulfide deposit: Associated with the ~825 Ma south China mantle plume?,,, 6(11): 1–16.
Li Y and Audétat A. 2012. Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions., 355– 356: 327–340.
Libourel G. 1999. Systematics of calcium partitioning between olivine and silicate melt: Implications for melt structure and calcium content of magmatic olivines., 136(1): 63–80.
Liu Y S, Gao S, Lee C T A, Hu S, Liu X and Yuan H. 2005. Melt-peridotite interactions: Links between garnet pyroxenite and high-Mg#signature of continental crust., 234(1–2): 39–57.
Liu Y S, Hu Z, Gao S, Günther D, Xu J, Gao C and Chen H. 2008.analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard., 257(1–2): 34–43.
Mallik A and Dasgupta R. 2012. Reaction between MORB- eclogite derived melts and fertile peridotite and generation of ocean island basalts., 329–330: 97–108.
Mao Y J, Qin K Z, Li C, Xue S C and Ripley E M. 2014. Petrogenesis and ore genesis of the Permian Huangshanxi sulfide ore-bearing mafic-ultramafic intrusion in the Central Asian Orogenic Belt, western China., 200–201: 111–125.
Marschall H R, Wanless V D, Shimizu N, Pogge Von Strandmann P A E, Elliott T and Monteleone B D. 2017. The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle., 207: 102–138.
Naldrett A J. 1989. Magmatic Sulfide Deposits. Oxford: Oxford University Press: 1–728.
Naldrett A J. 2010. Secular Variation of magmatic sulfide deposits and their source magmas., 105(3): 669–688.
O’Reilly S. 1997. Minor elements in olivine from spinel lherzolite xenoliths: Implications for thermobarometry., 61(405): 257–269.
Pang C J, Wang X C, Xu B, Luo Z W and Liu Y Z. 2017. Hydrous parental magmas of Early to Middle Permian gabbroic intrusions in western Inner Mongolia, North China: New constraints on deep-Earth fluid cycling in the Central Asian Orogenic Belt., 144: 184–204.
Papike J J, Fowler G W, Adcock C T and Shearer C K. 1999. Systematics of Ni and Co in olivine from planetary melt systems: Lunar mare basalts., 84(3): 392–399.
Patten C, Barnes S J, Mathez E A and Jenner F E. 2013. Partition coefficients of chalcophile elements between sulfide and silicate melts and the early crystallization history of sulfide liquid: LA-ICP-MS analysis of MORB sulfide droplets., 358(6): 170–188.
Peng R M, Zhai Y S, Li C S and Ripley E M. 2013. The Erbutu Ni-Cu deposit in the Central Asian Orogenic Belt: A Permian magmatic sulfide deposit related to boninitic magmatism in an arc setting., 108(8): 1879–1888.
Pirajno F. 2000. Magmatic ore deposits // Ore Deposits and Mantle Plumes. Dordrecht, Netherland: Springer: 387–467.
Pirajno F, Ernst R E, Borisenko A S, Fedoseev G and Naumov E A. 2009. Intraplate magmatism in Central Asia and China and associated metallogeny., 35(2): 114–136.
Rapp R P, Shimizu N, Norman M D and Applegate G S. 1999. Reaction between slab-derived melts and peridotitein the mantle wedge: Experimental constraints at 3.8 GPa., 160(4): 335–356.
Seitz H M and Woodland A B. 2000. The distribution of lithium in peridotitic and pyroxenitic mantle lithologies —An indicator of magmatic and metasomatic processes., 166(1): 47–64.
S?ager N, Portnyagin M, Hoernle K, Holm P M, Hauff F and Garbe-Sch?nberg D. 2015. Olivine major and trace element compositions in southern Payenia basalts, Argentina: Evidence for pyroxenite-peridotite melt mixing in a back-arc setting., 56(8): 1495–1518.
Sobolev A V, Hofmann A W, Kuzmin D, Yaxley G, Arndt N, Chung S L, Danyushevsky L, Elliott T, Frey F, Garcia M, Gurenko A, Kamenetsky V, Kerr A, Krivolutskaya N A K N, Matvienkov V, Nikogosian I, Rocholl A, Sigurdsson I, Sushchevskaya N and Teklay M. 2007. The amount of recycled crust in sources of mantle- derived melts., 316(5823): 412–417.
Sobolev A V, Hofmann A W, Sobolev S V and Nikogosian I K. 2005. An olivine-free mantle source of Hawaiian shield basalts., 434(7033): 590–597.
Sobolev A V, Krivolutskaya N A and Kuzmin D V. 2009. Petrology of the parental melts and mantle sources of Siberian trap magmatism., 17(3): 253–286.
Song X Y, Chen L M, Deng Y F and Xie W. 2013. Syncollisionaltholeiitic magmatism induced by asthenosphere upwelling owing to slab detachment at the southern margin of the central Asian Orogenic Belt., 170(6): 941–950.
Song X Y and Li X R. 2009. Geochemistry of the Kalatongke Ni-Cu-(PGE) sulfide deposit, NW China: Implications for the formation of magmatic sulfide mineralization in a postcollisional environment., 44(3): 303–327.
Song X Y, Xie W, Deng Y F, Crawford A J, Zheng W Q, Zhou G F, Deng G, Cheng S L and Li J. 2011. Slab break-off and the formation of Permian mafic-ultramaficintrusions in southern margin of Central Asian Orogenic Belt, Xinjiang, NW China., 127(1): 128–143.
Stracke A. 2012. Earth’s heterogeneous mantle: A product of convection-driven interaction between crust and mantle., 330–331: 274–299.
Straub S M, Lagatta A B, Martin-Del Pozzo A L and LangmuirC H. 2008. Evidence from high-Ni olivines for a hybridizedperidotite/pyroxenite source for orogenic andesites from the central Mexican Volcanic Belt.,,, 9(3): 1–33.
Sun T, Qian Z Z, Deng Y F, Li C S, Song X Y and Tang Q Y. 2013. PGE and isotope (Hf-Sr-Nd-Pb) constraints on the origin of the Huangshandong magmatic Ni-Cu sulfidedeposit in the Central Asian Orogenic Belt, northwestern China., 108(8): 1849–1864.
Tang D M, Qin K Z, Li C S, Qi L, Su B X and Qu W J. 2011. Zircon dating, Hf-Sr-Nd-Os isotopes and PGE geoche-mistry of the Tianyu sulfide-bearing mafic-ultramafic intrusion in the Central Asian Orogenic Belt, NW China., 126(1–2): 84–98.
Tang D M, Qin K Z, Su B X, Sakyi P A, Liu Y S, Mao Q, Santosh M and Ma Y G. 2013. Magma source and tectonics of the Xiangshanzhong mafic-ultramafic intrusion in the Central Asian Orogenic Belt, NW China, traced from geochemical and isotopic signatures., 170–171: 144–163.
Tang Y J, Zhang H F, Deloule E, Su B X, Ying J F, Santosh Mand Xiao Y. 2014. Abnormal lithium isotope composition from the ancient lithospheric mantle beneath the North China Craton., 4, 4274.
Tomascak P B, Langmuir C H, Le Roux P J and Shirey S B. 2008. Lithium isotopes in global mid-ocean ridge basalts., 72(6): 1626–1637.
Tomascak P B, Widom E, Benton L D, Goldstein S L and Ryan J G. 2002. The control of lithium budgets in island arcs., 196(3): 227–238.
Wang Z R and Gaetani G A. 2008. Partitioning of Ni between olivine and siliceous eclogite partial melt: Experimental constraints on the mantle source of Hawaiian basalts., 156(5): 661–678.
Wei B, Wang C Y, Li C S and Sun Y L. 2013. Origin of PGE-depleted Ni-Cu sulfide mineralization in the Triassic Hongqiling No.7 orthopyroxenite intrusion, Central Asian Orogenic Belt, Northeastern China., 108(8): 1813–1831.
Windley B F, Alexeiev D, Xiao W, Kr?ner A and Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt., 164(1): 31–47.
Xiao W J, Kr?ner A and Windley B. 2009. Geodynamic evolution of Central Asia in the Paleozoic and Mesozoic., 98(6): 1185– 1188.
Xiao W J, Pirajno F and Seltmann R. 2008. Geodynamics and metallogeny of the Altaid orogen., 32(2–4): 77–81.
Xiao W J, Windley B F, Hao J and Zhai M G. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt., 22(6): 1–21.
Xie W, Song X Y, Deng Y F, Wang Y S, Ba D H, Zheng W Q and Li X B. 2012. Geochemistry and petrogenetic implications of a Late Devonian mafic-ultramafic intrusion at the southern margin of the Central Asian Orogenic Belt., 144–145: 209–230.
Yaxley G and Green D. 1998. Reactions between eclogite and peridotite: Mantle refertilisation by subduction of oceanic crust., 78(2): 243–255.
Zhou M F, Michael Lesher C, Yang Z X, Li J W and Sun M. 2004. Geochemistry and petrogenesis of 270 Ma Ni-Cu- PGE sulfide-bearing mafic intrusions in the Huangshan district, eastern Xinjiang, Northwest China: Implications for the tectonic evolution of the Central Asian orogenic belt., 209(3–4): 233–257.
Compositions of Olivine of Permian Erbutu Ultramafic Intrusion in the Central Asian Orogenic Belt (Inner Mongolia): Insights for the Pyroxenite Mantle Source
BAO Hongtian1, 2, WANG Christina Yan1, 3*, CAO Yonghua1and WEI Bo1, 3
(1.510640,; 2.100049,; 3.510640,)
The Erbutu ultramafic intrusion is located in the suture zone between the Central Asian Orogenic Belt and the northern margin of the North China Craton (NCC). The intrusion contains Ni-Cu sulfide mineralization. The intrusion is mainly composed of orthopyroxenite and olivine orthopyroxenite, both of which contain olivine that has Fo contents ranging from 83 to 87. At given Fo contents, the olivine in the rocks of the Erbutu intrusion has much lower Mn than that of the olivine crystallized from the magma derived from the peridotite mantle, indicating that the parental magma of the Erbutu intrusion was unlikely derived from a peridotite mantle. The olivine in the rocks of the Erbutu intrusion has Mn/Zn, Mn/Fe and Zn/Fe ratios similar to those of the olivine in the Mwenezi and Tuli basalts that were derived from typical pyroxenite mantle. Therefore, the Erbutu intrusion is likely derived from a pyroxenite dominated mantle source. The olivine in the rocks of the Erbutu intrusion contains lower Ca but higher Li than that of the olivine in igneous rocks in intra-plate settings, indicating that the mantle source of the intrusion may have been metasomatized by slab-derived fluids. It is proposed that during the subduction of the paleo-Asian oceanic slab beneath the northern margin of the NCC, slab-derived fluids were released and added to the mantle wedge and triggered melting of ancient lower crustal materials (., eclogite) in the mantle, the melt of the eclogite was then reacted with the ambient mantle peridotite and produced the pyroxenite component in the mantle.
olivine; pyroxenite mantle; Erbutu ultramafic intrusion; Central Asian Orogenic Belt
P595
A
1001-1552(2021)06-1185-017
10.16539/j.ddgzyckx.2021.06.005
2020-08-29;
2020-10-14
國家自然科學基金項目(41730423、41902077)資助。
暴宏天(1994–), 男, 博士研究生, 礦物學巖石學礦床學專業(yè)。Email: hongtian_b@outlook.com
王焰(1969–), 女, 研究員, 從事巖漿作用與成礦研究。Email: wang_yan@gig.ac.cn