• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      旋轉(zhuǎn)機械轉(zhuǎn)子故障診斷軟件系統(tǒng)設(shè)計

      2022-02-12 07:16:46關(guān)少亞王春宇隋金玲
      制造業(yè)自動化 2022年1期
      關(guān)鍵詞:頂桿時頻故障診斷

      關(guān)少亞,王春宇,陳 琪*,薛 龍,隋金玲

      (1.北京石油化工學(xué)院 工程師學(xué)院,北京 102617;2.北京石油化工學(xué)院 機械工程學(xué)院,北京 102617)

      0 引言

      轉(zhuǎn)子作為旋轉(zhuǎn)機械的核心部件,一旦發(fā)生故障,將造成巨大的經(jīng)濟損失甚至人員傷亡,因此開展對旋轉(zhuǎn)機械轉(zhuǎn)子早期故障診斷的研究,對于確保旋轉(zhuǎn)機械安全、平穩(wěn)運行具有重要意義[1]。

      目前旋轉(zhuǎn)機械轉(zhuǎn)子的運行監(jiān)測與故障診斷大都采用依靠人工經(jīng)驗與定期巡檢,由于轉(zhuǎn)子早期故障信號比較微弱,很容易受到現(xiàn)場噪聲的干擾,雖然可以通過一定方法提高信噪比,但對于故障的識別能力依然較弱[2~5]。旋轉(zhuǎn)機械的振動信號包含了設(shè)備振動情況的有效信息。對故障設(shè)備的振動信號進(jìn)行分析,能夠有效地揭示故障設(shè)備信號的幅值和頻率隨時間變化的情況[6,7]。

      隨著深度學(xué)習(xí)在圖像領(lǐng)域取得的巨大成就,由于信號與圖像知識屬于不同維度的信號,二者本質(zhì)上具有一定的相似性。因此,在信號處理領(lǐng)域,越來越多的檢測、分類等工作都可以由深度學(xué)習(xí)來完成。

      基于深度學(xué)習(xí)的故障診斷主要分類兩大類,一種是將用于圖像處理的網(wǎng)絡(luò)進(jìn)行降維,得到適用于一維信號處理的一維神經(jīng)網(wǎng)絡(luò)[8,9];另一種則是通過將一維信號進(jìn)行時域和頻域分析,得到信號的二維時頻分布圖像,將圖像直接輸入神經(jīng)網(wǎng)絡(luò)進(jìn)行故障診斷的訓(xùn)練和識別[10]。

      本文通過對轉(zhuǎn)子故障信號進(jìn)行模擬,對比現(xiàn)有基于信號分析的故障檢測算法,最終選擇基于CNN(Convolutional Neural Network,CNN)的算法,通過小波變換對降噪濾波后的轉(zhuǎn)子故障信號進(jìn)行處理,得到其二維時頻分布圖像對CNN網(wǎng)絡(luò)進(jìn)行訓(xùn)練,得到能對故障進(jìn)行快速診斷和識別網(wǎng)絡(luò)模型。并設(shè)計一套故障診斷軟件系統(tǒng),將數(shù)據(jù)采集與管理功能、數(shù)據(jù)處理、人機交互及故障診斷等功能進(jìn)行集成,滿足實際工程需要。

      1 故障檢測系統(tǒng)的組成及功能

      轉(zhuǎn)子故障診斷系統(tǒng)如圖1所示,主要由以下幾個模塊組成:人機交互界面模塊、系統(tǒng)管理模塊、數(shù)據(jù)采集模塊、數(shù)據(jù)管理模塊、數(shù)據(jù)分析及處理模塊、故障診斷模塊以及輔助模塊。通過以上7個模塊的相互配合,實現(xiàn)對旋轉(zhuǎn)機械轉(zhuǎn)子振動信號的提取、故障信號的檢測及故障類型判別三大功能。

      圖1 故障檢測系統(tǒng)組成及功能

      轉(zhuǎn)子故障診斷系統(tǒng)使用C#語言編寫,基于.NET Fromwork 4.8平臺進(jìn)行開發(fā),系統(tǒng)環(huán)境是Windows10操作系統(tǒng)。

      2 故障診斷算法

      旋轉(zhuǎn)機械的轉(zhuǎn)子故障主要包括轉(zhuǎn)子不平衡故障、轉(zhuǎn)子碰撞故障、熱彎曲故障、電氣干擾類故障等。本系統(tǒng)通過實驗室易模擬的轉(zhuǎn)子不平衡故障及轉(zhuǎn)子碰磨故障信號進(jìn)行檢測,并對所采集的信號進(jìn)行小波變換,得到信號所對應(yīng)的二維時頻分布圖像。結(jié)合深度學(xué)習(xí)在圖像分類中的應(yīng)用,利用深度學(xué)習(xí)網(wǎng)絡(luò)對所得到的二維時頻圖像進(jìn)行分類。

      本研究選擇基于VGG網(wǎng)絡(luò),結(jié)合具體故障類型及二維時頻圖像的特性對網(wǎng)絡(luò)進(jìn)行微調(diào),按照如圖2所示的流程對網(wǎng)絡(luò)進(jìn)行訓(xùn)練。

      圖2 基于深度學(xué)習(xí)的診斷模型

      其中,每一個卷積塊包含兩個3×3的卷積層、緊隨卷積層的兩個ReLU單元以及一個池化層。網(wǎng)絡(luò)的最終輸出,對應(yīng)旋轉(zhuǎn)機械轉(zhuǎn)子的具體故障類型。

      3 實驗驗證

      3.1 實驗環(huán)境

      實驗采用如圖4所示的MV-BQ2100轉(zhuǎn)子試驗設(shè)備為主要的數(shù)據(jù)采集對象。試驗設(shè)備主要包括動力部分、安裝基座、軸系和測量輔件、動平衡輔件。實驗臺動力部分是直流永磁伺服電動機。

      信號采集選用16位USB7104B高速高精度數(shù)據(jù)并行采集卡,用USB進(jìn)行傳輸數(shù)據(jù),支持最高4通道的并行同步采集,同時此設(shè)備支持最高2MHz的頻率測量。

      模型的訓(xùn)練基于Caffe框架,在Linux服務(wù)器上完成,服務(wù)器CPU為E5-2620 2.4GHz×12,GPU為Nvidia GeForce GTX 980。

      3.2 模擬信號采集

      本研究主要利用圖3所示的實驗設(shè)備,在實驗室環(huán)境下模擬轉(zhuǎn)子不平衡故障以及轉(zhuǎn)子碰磨故障,并通過采集卡采集轉(zhuǎn)子發(fā)生故障后的信號。

      圖3 卷積塊的組成

      圖4 試驗設(shè)備結(jié)構(gòu)示意圖

      1)轉(zhuǎn)子不平衡故障模擬

      如圖5所示,通過在試驗臺上的兩個圓盤處添加螺釘砝碼來模擬轉(zhuǎn)子不平衡故障,通過改變螺釘砝碼添加的數(shù)量和位置來得到多組測量信號,并通過多次重復(fù)測量來增加網(wǎng)絡(luò)訓(xùn)練所需要的數(shù)據(jù)。轉(zhuǎn)子的轉(zhuǎn)速設(shè)置為3000r/min,采樣頻率為12800Hz,每個轉(zhuǎn)子的旋轉(zhuǎn)周期可以采集256個數(shù)據(jù)點。

      圖5 轉(zhuǎn)子不平衡故障模擬

      圖6是轉(zhuǎn)子不平衡模擬故障添加前后軸心的運動軌跡,軸心軌跡中心在添加砝碼后發(fā)生明顯偏置,證明以添加砝碼來模擬轉(zhuǎn)子不平衡故障的有效性。

      圖6 轉(zhuǎn)子不平衡添加前后軸心軌跡

      2)轉(zhuǎn)子碰磨故障模擬

      如圖7所示,通過在靠近電機的位置安裝用于制造碰磨的螺旋頂桿來模擬轉(zhuǎn)子碰磨故障。旋轉(zhuǎn)螺旋頂桿,將頂桿與轉(zhuǎn)子接觸并抵住轉(zhuǎn)子,為了保持頂桿的穩(wěn)定,可以滴入一些膠水進(jìn)行固定。提升轉(zhuǎn)子轉(zhuǎn)速到6000r/min,進(jìn)行信號采集,使用的采樣頻率為25600Hz。同樣通過改變螺旋頂桿的位置以及多次測量來豐富樣本量。

      圖7 轉(zhuǎn)子碰磨故障模擬用螺旋頂桿

      圖8是轉(zhuǎn)子碰磨模擬故障添加前后軸心的運動軌跡,軸心軌跡在頂桿的干擾下發(fā)生明顯震蕩,證明以螺旋頂桿接觸來模擬轉(zhuǎn)子碰磨故障的有效性。

      圖8 轉(zhuǎn)子碰磨添加前后軸心軌跡

      兩種故障信號的采集均由圖3所示的四個電渦流位移傳感器同時進(jìn)行,這里分析靠近電機處的一對在平面內(nèi)互相垂直的傳感器(X1和Y1)所采集的信息,這兩組信號經(jīng)過降噪濾波及小波變換后分別可以得到兩個二維時頻圖像。兩個時頻圖像所對應(yīng)的訓(xùn)練標(biāo)簽均為“轉(zhuǎn)子不平衡故障”或“轉(zhuǎn)子碰磨故障”。

      3.3 網(wǎng)絡(luò)訓(xùn)練及結(jié)果

      每種故障類型均采集500組信號數(shù)據(jù),并進(jìn)行降噪濾波及小波變換,其中450組作為訓(xùn)練數(shù)據(jù),50組作為測試數(shù)據(jù)。損失函數(shù)采用式(1)中的歐幾里得函數(shù)。

      其中N代表網(wǎng)絡(luò)訓(xùn)練時每批數(shù)據(jù)中的樣本個數(shù),yn表示第n個樣本所對應(yīng)的標(biāo)簽數(shù)據(jù)。訓(xùn)練學(xué)習(xí)率通過多步衰減的策略進(jìn)行,初始學(xué)習(xí)率設(shè)置為0.05。批訓(xùn)練中,每一批的樣本數(shù)設(shè)置為50。

      CNN模型的訓(xùn)練結(jié)果如表1所示,對于轉(zhuǎn)子不平衡及轉(zhuǎn)子碰磨的分類準(zhǔn)確率可以達(dá)到99%以上,模型測試所需時間僅為0.06秒。

      表1 CNN模型訓(xùn)練結(jié)果

      3.4 系統(tǒng)功能集成及驗證

      將數(shù)據(jù)采集、信號處理、降噪濾波以及基于VGG網(wǎng)絡(luò)的深度學(xué)習(xí)算法與本研究所設(shè)計的故障診斷系統(tǒng)相結(jié)合,實現(xiàn)對輸入信號的實時、精確診斷。

      隨機設(shè)置轉(zhuǎn)子不平衡故障模擬中的砝碼位置以及轉(zhuǎn)子碰磨故障模擬中頂桿的位置,保證與深度學(xué)習(xí)網(wǎng)絡(luò)訓(xùn)練過程所設(shè)置的位置不同,將采集得到的信號輸入系統(tǒng),如下圖9(a)、圖9(b)所示,系統(tǒng)可以實時、準(zhǔn)確的分析出故障類型。

      圖9 系統(tǒng)故障診斷結(jié)果

      4 結(jié)語

      本研究設(shè)計了一套轉(zhuǎn)子故障診斷系統(tǒng),實現(xiàn)了旋轉(zhuǎn)機械轉(zhuǎn)子故障診斷系統(tǒng)的主要功能,利用轉(zhuǎn)子試驗臺模擬故障數(shù)據(jù),對系統(tǒng)主要功能模塊進(jìn)行試驗,結(jié)果表明數(shù)據(jù)采集與管理功能、數(shù)據(jù)處理等功能均滿足要求。系統(tǒng)的故障診斷功能可以準(zhǔn)確識別出現(xiàn)的故障,診斷時間可以控制在0.06秒,實現(xiàn)故障的快速診斷。

      但是本研究僅對轉(zhuǎn)子不平衡及轉(zhuǎn)子碰磨故障進(jìn)行了模擬及檢測,未來應(yīng)該增加其他類型故障的檢測能力,提升系統(tǒng)的魯棒性。

      猜你喜歡
      頂桿時頻故障診斷
      電梯制動器頂桿螺栓斷裂失效分析與研究
      持續(xù)改進(jìn)的輪轂鍛造模具頂桿新型結(jié)構(gòu)設(shè)計
      鋼質(zhì)活塞閉式鍛造模具中頂料裝置設(shè)計與應(yīng)用
      基于Weis-Fogh效應(yīng)的頂桿-翼板型波浪能發(fā)電裝置設(shè)計
      船海工程(2015年4期)2016-01-05 15:53:34
      因果圖定性分析法及其在故障診斷中的應(yīng)用
      基于時頻分析的逆合成孔徑雷達(dá)成像技術(shù)
      對采樣數(shù)據(jù)序列進(jìn)行時頻分解法的改進(jìn)
      雙線性時頻分布交叉項提取及損傷識別應(yīng)用
      基于LCD和排列熵的滾動軸承故障診斷
      基于WPD-HHT的滾動軸承故障診斷
      機械與電子(2014年1期)2014-02-28 02:07:31
      景泰县| 当阳市| 松溪县| 沈丘县| 黄大仙区| 綦江县| 禹州市| 大埔县| 东山县| 东源县| 措勤县| 永城市| 容城县| 陇西县| 理塘县| 依兰县| 景东| 华容县| 青浦区| 溆浦县| 高尔夫| 汉川市| 双辽市| 聂荣县| 南陵县| 吉木乃县| 夹江县| 泰宁县| 福贡县| 西和县| 辉南县| 荆门市| 玛沁县| 通河县| 桓仁| 大连市| 大悟县| 称多县| 东丽区| 阿克| 花莲县|