• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      殼聚糖聚多巴胺改性水凝膠對(duì)雙氯芬酸鈉的吸附實(shí)驗(yàn)研究

      2022-03-07 02:35:05曲今垚林艷孫強(qiáng)劉鴻霞梁建軍鄭懷禮
      土木建筑與環(huán)境工程 2022年1期
      關(guān)鍵詞:吸附殼聚糖

      曲今垚 林艷 孫強(qiáng) 劉鴻霞 梁建軍 鄭懷禮

      摘 要:雙氯芬酸鈉是水體中廣泛分布的新型污染物之一,關(guān)于其去除的研究備受關(guān)注。為提高水體中雙氯芬酸鈉的去除效率,獲得經(jīng)濟(jì)高效、對(duì)環(huán)境友好的吸附劑,以殼聚糖為原料,通過光催化法在殼聚糖上引入聚多巴胺進(jìn)行改性,制備新型殼聚糖聚多巴胺改性水凝膠(CS-PDA),研究該材料對(duì)雙氯芬酸鈉的吸附性能。通過SEM、FTIR、XPS和BET測(cè)試對(duì)CS-PDA進(jìn)行表征,材料呈網(wǎng)狀結(jié)構(gòu),疏松多孔,比表面積達(dá)22.46 m2/g;探究時(shí)間、溫度、初始濃度、pH值對(duì)吸附效果的影響。結(jié)果表明:pH值為4.3時(shí)CS-PDA對(duì)雙氯芬酸鈉的吸附容量最大;吸附動(dòng)力學(xué)符合擬二級(jí)動(dòng)力學(xué)模型,在240 min時(shí)達(dá)到吸附飽和;吸附等溫線符合Langmuir等溫線模型,在25 ℃時(shí)雙氯芬酸鈉的Langmuir理論最大吸附容量為333.2 mg/g。CS-PDA對(duì)雙氯芬酸鈉的吸附容量經(jīng)歷7個(gè)再生循環(huán)后仍大于70 mg/g。

      關(guān)鍵詞:殼聚糖;聚多巴胺;雙氯芬酸鈉;吸附

      中圖分類號(hào):X703.5 ? 文獻(xiàn)標(biāo)志碼:A ? 文章編號(hào):2096-6717(2022)01-0177-11

      收稿日期:2021-03-09

      基金項(xiàng)目:國家自然科學(xué)基金(21677020);重慶市自然科學(xué)基金(cstc2018jszx-cyzd0053)

      作者簡介:曲今垚(1996- ),男,主要從事吸附材料研究,E-mail:910068469@qq.com。

      林艷(通信作者),女,博士,E-mail:sister2000@163.com。

      Abstract: Diclofenac sodium is one of the new pollutants widely distributed in water, and its removal has attracted much attention. In order to improve the removal efficiency of diclofenac sodium and obtain cost-effective and environmentally-friendly adsorbents, the chitosan polydopamine modified hydrogel (CS-PDA) was prepared from chitosan by introducing polydopamine onto chitosan by photocatalytic method. The adsorption properties of diclofenac sodium were studied. The CS-PDA was characterized by SEM, FTIR, XPS and BET. The results showed that the CS-PDA had a network structure, porous structure and a specific surface area of 22.46 m2·g-1. Explored the effects of time, temperature, initial concentration and pH value on the adsorption effect, the results showed that the adsorption capacity of CS-PDA was the largest at pH=4.3, the adsorption kinetics of CS-PDA for diclofenac sodium was in accordance with the pseudo second order kinetic model, and reached the adsorption saturation at 240 minutes.The adsorption isotherm was in line with the Langmuir isotherm model and the Langmuir theoretical maximum adsorption capacity of diclofenac sodium at 25 ℃ was 333.2 mg/g. The adsorption capacity of diclofenac sodium by CS-PDA was higher than 70 mg/g after 7 regeneration cycles.

      Keywords:chitosan; polydopamine; diclofenac sodium; adsorption

      雙氯芬酸鈉(DS)是近年來在生活污水中頻繁被檢測(cè)出的一種新興污染物[1],主要來源于非甾體抗炎藥,經(jīng)未妥善處理的生活污水和工業(yè)廢水進(jìn)入水體[2-3],由于傳統(tǒng)水處理工藝對(duì)DS去除效率低,對(duì)水體中各個(gè)營養(yǎng)級(jí)的生物均存在潛在的毒性效應(yīng)[4]。研究顯示,DS即使在低濃度(>2.00 μg/L)下也會(huì)造成水環(huán)境污染,對(duì)人體會(huì)造成肝損傷[5]、腎損傷[6]、甲狀腺腫瘤等危害[7]。近年來,一些學(xué)者對(duì)DS的去除方法進(jìn)行了一定研究,包括高級(jí)氧化法(光降解[8]、臭氧氧化[9]和芬頓氧化[10]等)和吸附法[11-13]。研究表明,一些高級(jí)氧化法的轉(zhuǎn)化中間產(chǎn)物毒性比DS本身更大[14]。此外,污水廠內(nèi)監(jiān)測(cè)到的DS濃度一般在痕量范圍內(nèi)(ng/L至μg/L),很難通過傳統(tǒng)方法被直接降解[15],相比之下,吸附法更加簡單,成本低,無毒副產(chǎn)物產(chǎn)生[16]。

      Mi等[17]制備了磁性共價(jià)有機(jī)骨架以去除DS,最大吸附量可達(dá)203.4 mg/L;Fan等[18]以纖維素納米晶體、聚乙烯醇、海藻酸鈉為原料,經(jīng)聚乙烯亞胺改性,合成了復(fù)合微球以去除DS,去除率可達(dá)85%。改性水凝膠有表面官能團(tuán)豐富的特點(diǎn)[19],對(duì)DS的去除具有一定潛力,然而,殼聚糖聚多巴胺改性水凝膠對(duì)DS的去除目前還鮮有報(bào)道。殼聚糖(CS)來源于幾丁質(zhì),是一種廣泛存在的天然高分子,具有無毒、抑菌、可生物降解等優(yōu)點(diǎn)[20],同時(shí),另一種生物材料——聚多巴胺(PDA)結(jié)構(gòu)中包含大量的鄰苯二酚基團(tuán),具有豐富的芳香環(huán)和親水性[21],是去除DS的潛在候選物[22-23]。殼聚糖和聚多巴胺的結(jié)合有望成為可有效富集DS的吸附劑,且易降解,對(duì)環(huán)境友好。

      筆者通過紫外光催化的方法,用聚多巴胺對(duì)殼聚糖進(jìn)行改性,制備了CS-PDA水凝膠,并探究合成材料對(duì)DS的去除效果。用傅里葉變換紅外光譜(FTIR)、環(huán)境掃描電子顯微鏡(SEM)、X射線光電子光譜(XPS)、氮?dú)馕摳綔y(cè)試(BET)分析研究吸附劑的結(jié)構(gòu)特征,通過吸附等溫線和動(dòng)力學(xué)模型擬合實(shí)驗(yàn)數(shù)據(jù)以獲得最大的理論吸附容量,分析其內(nèi)在吸附機(jī)理,與其他殼聚糖基吸附劑對(duì)DS的吸附能力進(jìn)行對(duì)比分析。

      1 材料與方法

      1.1 實(shí)驗(yàn)藥品

      殼聚糖(CS),中黏度200~400 mPa·s;鹽酸多巴胺(DA),純度98%;雙氯芬酸鈉(DS),純度≥99%,均購自阿拉丁試劑(上海)有限公司。冰醋酸,AR,購自成都科龍化工廠。氫氧化鈉溶液,1 mol/L,自制。V0-44光引發(fā)劑、戊二醛(50%)均購自上海麥克林生化科技有限公司。實(shí)驗(yàn)所用溶液均用去離子水(18 MΩ·cm)配制。

      1.2 多巴胺殼聚糖改性水凝膠的制備

      圖1為CS-PDA的合成路徑。稱量3.00 g DA于燒杯中,加入30 mL去離子水后超聲至完全溶解,使用紫外高壓泵燈(額定功率1 000 W)系統(tǒng)照射2 h后取出,稱量3.00 g CS加入上述溶液,同時(shí)加入20 mL去離子水、1.00 mL冰醋酸,再滴加適量NaOH溶液(1 mol/L),調(diào)節(jié)pH值至8.0,隨后加入0.01% V0-44引發(fā)劑、5 mL戊二醛(10%,由50%戊二醛稀釋而得),磁力攪拌1 h,最后使用紫外高壓泵燈照射1 h后取出。使用去離子水和無水乙醇多次洗滌產(chǎn)品,以去除未交聯(lián)的CS、DA,置于陰涼通風(fēng)處靜置12 h以待其完全熟化,熟化后的深紫色水凝膠即為紫外催化接枝的CS-PDA水凝膠,冷凍干燥后得到干凝膠,干燥后的凝膠避光常溫保存。

      1.3 表征方法

      使用Nesus 670傅里葉紅外光譜儀(Nicolet,美國)測(cè)得CS-PDA、CS、PDA、DA的FTIR光譜;使用Quattro S環(huán)境掃描電鏡(Thermo Scientific,美國)研究CS-PDA的表面形態(tài),包括吸附DS前后的形貌;使用K-Alpha X光譜儀(Thermo Scientific,美國)測(cè)得CS-PDA的X射線光電子能譜;使用ASAP 2460型分析儀(Micromeritics,美國)測(cè)定殼聚糖聚多巴胺的孔徑分布與比表面積;使用Nano ZS90 Zeta電位分析儀(Malvern,英國)測(cè)量CS-PDA在溶液中的Zeta電位。

      1.4 吸附實(shí)驗(yàn)方法

      使用1 000 mL容量瓶制備一系列不同濃度(50、100、150、200、250、300、400 mg/L)的DS溶液。每批吸附實(shí)驗(yàn)都在含有50 mL DS溶液的250 mL錐形瓶中進(jìn)行,恒溫?fù)u床以180 r/min的速度振蕩。

      然后對(duì)DS進(jìn)行吸附實(shí)驗(yàn),研究時(shí)間、初始濃度、溫度、pH值等對(duì)吸附的影響,結(jié)合吸附動(dòng)力學(xué)、等溫線來分析DS吸附的過程,吸附劑量為25±5 mg。吸附動(dòng)力學(xué)實(shí)驗(yàn)的DS溶液濃度控制為100 mg/L,等溫線和熱力學(xué)實(shí)驗(yàn)中,溫度梯度為298.15、308.15、318.15 K,DS濃度梯度設(shè)置為50~400 mg/L,結(jié)合材料表征來分析DS吸附的機(jī)理。同時(shí),進(jìn)行循環(huán)吸附實(shí)驗(yàn)研究材料的循環(huán)吸附性能。

      實(shí)驗(yàn)前,統(tǒng)一將冷凍干燥后的干凝膠裁剪至合適尺寸(直徑10 mm、厚度3 mm的圓柱體),稱重后加入錐形瓶,吸附后的溶液從錐形瓶中取出后經(jīng)0.22 μm濾頭過濾至進(jìn)樣瓶并送檢。通過Waters 2695高效液相色譜(Waters,美國),結(jié)合ZORBAX Eclipse Plus C18色譜柱(Agilent,美國)在276 nm檢測(cè)波長下從進(jìn)樣瓶中提取樣品以檢測(cè)殘留DS濃度。以乙腈/5‰乙酸溶液(65∶35)為流動(dòng)相,流速為1.0 mL/min,最大進(jìn)樣量為5 μL。吸附效率和去除效率的計(jì)算式為

      2.2.3 pH值對(duì)吸附性能的影響

      CS-PDA的表面電荷以及DS在溶液中的形態(tài)均受到環(huán)境中的pH值的影響,因此,pH值也是影響吸附過程的重要因素。pH值對(duì)去除DS的影響如圖9(a)所示,pH值范圍為4~11時(shí),吸附容量呈逐漸降低的趨勢(shì),在實(shí)驗(yàn)范圍內(nèi),pH值等于4.3時(shí)吸附容量達(dá)到峰值106.35 mg/g(初始濃度C0=100 mg/L),pH值為7.3時(shí)吸附容量為98.65 mg/g,當(dāng)環(huán)境中的pH值達(dá)到11.2時(shí),吸附容量降至最低水平92.80 mg/g,因此,酸性條件下DS的去除效率最高,吸附材料對(duì)DS的吸附易于進(jìn)行。

      研究表明,DS的酸離解常數(shù)pKa=4.2,當(dāng)環(huán)境中pH值大于4.2時(shí),DS主要以雙氯芬酸陰離子(-COO-)的形式存在[36],結(jié)合圖9(b)所示,不同pH值下材料表面的Zeta電位值進(jìn)行分析,CS-PDA的零電點(diǎn)PZC=7.4,當(dāng)pH值小于7.4時(shí),CS-PDA表面的-OH、-NH3活性位點(diǎn)易受到質(zhì)子化攜帶大量正電荷[37],與雙氯芬酸陰離子產(chǎn)生強(qiáng)烈的靜電引力;當(dāng)pH值大于7.4時(shí),CS-PDA對(duì)DS的吸附容量并未由于靜電引力被屏蔽而急劇下降,仍然維持在較高水平,說明靜電引力并不是材料對(duì)DS吸附的主導(dǎo)作用力,氫鍵和π-π堆積作用也在吸附中起到重要作用[38-40]。

      2.2.4 CS-PDA的再生性能

      在吸附劑是否優(yōu)良的評(píng)價(jià)中,經(jīng)濟(jì)指標(biāo)是關(guān)鍵。而循環(huán)再生的能力會(huì)在很大程度上降低使用的成本,考察CS-PDA對(duì)DS吸附的再生性能,每輪均在初始濃度為100 mg/L的DS溶液中進(jìn)行吸附,之后用NaOH(0.1 mol/L)溶液浸泡,再用去離子水沖洗后冷凍干燥為干凝膠,再次準(zhǔn)確稱取吸附劑的質(zhì)量投入到下一輪的吸附中,輪次1即為第一次對(duì)DS的去除效率,隨著重復(fù)使用次數(shù)的增加,CS-PDA的去除效率相對(duì)于首次均逐漸下降,如圖10所示,在第7輪次時(shí),CS-PDA對(duì)DS的去除率降至60%以下,吸附容量從110.70 mg/g降至70.75 mg/g。CS-PDA吸附能力的下降可能是由于CS-PDA水凝膠在循環(huán)過程中有一定損失或化學(xué)位點(diǎn)的不可逆再生??傊?jīng)歷7個(gè)循環(huán)后,DS的吸附容量仍保持在較高水平,大于70 mg/g。因此判斷CS-PDA具有良好的循環(huán)再生性能,該材料可重復(fù)用于去除含DS的水體。

      2.2.5 吸附機(jī)理

      結(jié)合實(shí)驗(yàn)數(shù)據(jù),分析CS-PDA對(duì)DS的吸附機(jī)理總結(jié)如圖11所示。系統(tǒng)中的pH值是影響DS吸附和CS-PDA表面電荷密度的關(guān)鍵參數(shù)[41]。DS在pH值低于其pKa(pKa=4.2)時(shí)溶解度較低,因此,實(shí)驗(yàn)中最低pH值為4.2。而環(huán)境中pH值大于4.2時(shí),DS主要以雙氯芬酸陰離子(-COO-)的形式存在,而CS-PDA材料表面的零電點(diǎn)PZC=7.4,當(dāng)pH值小于7.4時(shí),CS-PDA表面的-OH活性位點(diǎn)受到質(zhì)子化從而攜帶正電荷,與雙氯芬酸分子之間產(chǎn)生較強(qiáng)的靜電引力(Electrostatic interaction),驅(qū)動(dòng)雙氯芬酸陰離子遷移至吸附劑表面乃至介孔內(nèi)部,進(jìn)而得到吸附去除。聚多巴胺的引入使得材料表面的芳香環(huán)和羥基(-OH)大量增加,受益于π-π堆積作用(π-π stacking)和氫鍵(H-bond)的弱引力作用,即使在堿性環(huán)境中pH值超過CS-PDA的零電點(diǎn)(PZC=7.4)之后,依靠這兩種作用力,仍能對(duì)DS進(jìn)行有效的吸附。

      2.3 與其他吸附劑的對(duì)比

      為了與其他殼聚糖基的材料作對(duì)比,表5總結(jié)了用于從水中去除DS的其他吸附劑的性能參數(shù)。CS-PDA的最大DS吸附容量為333.25 mg/g(Langmuir模型擬合所得),比先前報(bào)道的類似殼聚糖基吸附劑擁有更高的吸附容量。高吸附容量使得CS-PDA成為了十分有競(jìng)爭力的去除水體中雙氯芬酸的有機(jī)吸附材料。

      3 結(jié)論

      1)用光催化的方法在殼聚糖表面接枝了聚多巴胺,引入了大量芳香環(huán),對(duì)DS有較好的吸附效果,CS-PDA水凝膠的網(wǎng)狀結(jié)構(gòu)組織變薄,內(nèi)部孔隙數(shù)量增加且直徑減小,更加疏松多孔,有利于提高CS-PDA的吸附性能。

      2)材料對(duì)DS的吸附模型擬合擬二級(jí)動(dòng)力學(xué)模型和Langmuir模型,吸附以化學(xué)吸附和單層吸附為主,DS理論最大吸附效率為333.25 mg/g。CS-PDA吸附DS經(jīng)歷7個(gè)循環(huán)后仍有良好的去除能力,吸附容量大于70 mg/g。

      3)CS-PDA對(duì)DS的吸附過程受到環(huán)境中pH值的影響較大,酸性環(huán)境下材料表面攜帶大量正電荷,對(duì)DS的吸附依靠靜電引力發(fā)生,在中堿性環(huán)境下,得益于π-π堆積作用和氫鍵(H-bond)的作用力,CS-PDA對(duì)DS的吸附效果仍舊出色。參考文獻(xiàn):

      [1] ACUA V, GINEBREDA A, MOR J R, et al. Balancing the health benefits and environmental risks of pharmaceuticals: Diclofenac as an example [J]. Environment International, 2015, 85: 327-333.

      [2] ?BHADRA B N, SEO P W, JHUNG S H. Adsorption of diclofenac sodium from water using oxidized activated carbon [J]. Chemical Engineering Journal, 2016, 301: 27-34.

      [3] ?BUSER H R, POIGER T, MLLER M D. Occurrence and fate of the pharmaceutical drug diclofenac in surface waters: Rapid photodegradation in a lake [J]. Environmental Science & Technology, 1998, 32(22): 3449-3456.

      [4] ?SCHWAIGER J, FERLING H, MALLOW U, et al. Toxic effects of the non-steroidal anti-inflammatory drugdiclofenac: Part I: histopathological alterations and bioaccumulation in rainbow trout [J]. Aquatic Toxicology, 2004, 68(2): 141-150.

      [5] ?MURRAY K E, THOMAS S M, BODOUR A A. Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment [J]. Environmental Pollution, 2010, 158(12): 3462-3471.

      [6] ?PRAKASH REDDY N C, ANJANEYULU Y, SIVASANKARI B, et al. Comparative toxicity studies in birds using nimesulide and diclofenac sodium [J]. Environmental Toxicology and Pharmacology, 2006, 22(2): 142-147.

      [7] ?HASAN Z, KHAN N A, JHUNG S H. Adsorptive removal of diclofenac sodium from water with Zr-based metal-organic frameworks [J]. Chemical Engineering Journal, 2016, 284: 1406-1413.

      [8] 高曉亞, 郭倩, 唐光貝, 等. BiOBr光催化劑微球的制備及其對(duì)藥物廢水光催化降解的研究[J]. 環(huán)境污染與防治, 2020, 42(2): 139-142.

      GAO X Y, GUO Q, TANG G B, et al. Synthesis of BiOBr photocatalyst microsphere and its photocatalytic degradation of pharmaceutical wastewater [J]. Environmental Pollution & Control, 2020, 42(2): 139-142. (in Chinese)

      [9] ?NADDEO V, BELGIORNO V, RICCO D, et al. Degradation of diclofenac during sonolysis, ozonation and their simultaneous application [J]. Ultrasonics Sonochemistry, 2009, 16(6): 790-794.

      [10] 莊淑婷, 徐冰, 劉博, 等. 基于靜電紡絲膜的Fenton法降解雙氯芬酸鈉[J]. 環(huán)境工程學(xué)報(bào), 2016, 10(9): 4895-4901.

      ZHUANG S T, XU B, LIU B, et al. Degradation of diclofenac sodium by electrospinning fibers-based Fenton method [J]. Chinese Journal of Environmental Engineering, 2016, 10(9): 4895-4901. (in Chinese)

      [11] 羅鈺, 白波, 王洪倫, 等. MnO2@海藻酸基炭吸附去除雙氯芬酸鈉及其再生[J]. 化學(xué)工程, 2018, 46(4): 22-28.

      LUO Y, BAI B, WANG H L, et al. Adsorptive removal of diclofenac by MnO2@ alginate-carbon and regeneration [J]. Chemical Engineering (China), 2018, 46(4): 22-28. (in Chinese)

      [12] 隗玉, 隗翠香, 夏炎. 季銨功能化的金屬有機(jī)骨架對(duì)水中雙氯芬酸鈉的高效吸附與去除[J]. 色譜, 2018, 36(3): 222-229.

      WEI Y,WEI C X, XIA Y. Efficient adsorption and removal of diclofenac sodium from water with quaternary ammonium functionalized metal-organic frameworks [J]. Chinese Journal of Chromatography, 2018, 36(3): 222-229. (in Chinese)

      [13] 孟琪, 張志昊, 程修文, 等. 水中雙氯芬酸污染現(xiàn)狀及其處理方法研究進(jìn)展[J]. 山東化工, 2015, 44(16): 66-68.

      MENG Q, ZHANG Z H, CHENG X W, et al. Research progress in the pollution situation and treatment methods for diclofenac in water [J]. Shandong Chemical Industry, 2015, 44(16): 66-68. (in Chinese)

      [14] ?YU H, NIE E, XU J, et al. Degradation of diclofenac by advanced oxidation and reduction processes: Kinetic studies, degradation pathways and toxicity assessments [J]. Water Research, 2013, 47(5): 1909-1918.

      [15] 王鴻斌, 王群, 劉義青, 等. 亞鐵活化過硫酸鹽降解水中雙氯芬酸鈉[J]. 環(huán)境化學(xué), 2020, 39(4): 869-875.

      WANG H B, WANG Q, LIU Y Q, et al. Degradation of diclofenac by ferrous activated persulfate [J]. Environmental Chemistry, 2020, 39(4): 869-875. (in Chinese)

      [16] 夏文君, 徐劼, 劉鋒, 等. 秸稈生物炭對(duì)雙氯芬酸鈉的吸附性能研究[J]. 中國環(huán)境科學(xué), 2019, 39(3): 1054-1060.

      XIA W J, XU J, LIU F, et al. Adsorption of diclofenac on straw-biochar [J]. China Environmental Science, 2019, 39(3): 1054-1060. (in Chinese)

      [17] ?MI X, ZHOU S X, ZHOU Z M, et al. Adsorptive removal of diclofenac sodium from aqueous solution by magnetic COF: Role of hydroxyl group on COF [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603: 125238.

      [18] ?FAN L H, LU Y Q, YANG L Y, et al. Fabrication of polyethylenimine-functionalized sodium alginate/cellulose nanocrystal/polyvinyl alcohol core-shell microspheres ((PVA/SA/CNC)@PEI) for diclofenac sodium adsorption [J]. Journal of Colloid and Interface Science, 2019, 554: 48-58.

      [19] ?MICHALICHA A, PAKA K, ROGUSKA A, et al. Polydopamine-coated curdlan hydrogel as a potential carrier of free amino group-containing molecules [J]. Carbohydrate Polymers, 2021, 256: 117524.

      [20] ?BUMGARDNER J D, MURALI V P, SU H, et al. Characterization of chitosan matters [M]//Chitosan Based Biomaterials Volume 1. Amsterdam: Elsevier, 2017: 81-114.

      [21] ?DUAN J Y, BAI L F, XU K Z, et al. Polydopamine protected hollow nanosphere with AuAg-nanoframe-core@Carbon@AuAg-nanocrystals-satellite hybridnanostructure (AuAg@C@AuAg/PDA) for enhancing nanocatalysis [J]. Journal of Hazardous Materials, 2020, 384: 121276.

      [22] ?HAFNER D, ZIEGLER L, ICHWAN M, et al. Mussel-inspired polymer carpets: Direct photografting of polymer brushes on polydopamine nanosheets for controlled cell adhesion [J]. Advanced Materials, 2016, 28(7): 1489-1494.

      [23] ?MILLER D J, ARAJO P A, CORREIA P B, et al. Short-term adhesion and long-term biofouling testing of polydopamine and poly(ethylene glycol) surface modifications of membranes and feed spacers for biofouling control [J]. Water Research, 2012, 46(12): 3737-3753.

      [24] ?TAN W Q, ZHANG J J, MI Y Q, et al. Enhanced antifungal activity of novel cationic chitosan derivative bearing triphenylphosphonium salt via azide-alkyne click reaction [J]. International Journal of Biological Macromolecules, 2020, 165: 1765-1772.

      [25] ?ZHOU M, LIU Q, WU S S, et al. Starch/chitosan films reinforced with polydopamine modified MMT: Effects of dopamine concentration [J]. Food Hydrocolloids, 2016, 61: 678-684.

      [26] ?BORUAH P K, DARABDHARA G, DAS M R. Polydopamine functionalized graphene sheets decorated with magnetic metal oxide nanoparticles as efficient nanozyme for the detection and degradation of harmful triazine pesticides [J]. Chemosphere, 2021, 268: 129328.

      [27] ?SHENG Z H, SHAO L, CHEN J J, et al. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis [J]. ACS Nano, 2011, 5(6): 4350-4358.

      [28] ?ZHAN Y Q, WAN X Y, HE S J, et al. Design of durable and efficient poly(arylene ether nitrile)/bioinspired polydopamine coated graphene oxide nanofibrous composite membrane for anionic dyes separation [J]. Chemical Engineering Journal, 2018, 333: 132-145.

      [29] ?TRAN H N, YOU S J, HOSSEINI-BANDEGHARAEI A, et al. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review [J]. Water Research, 2017, 120: 88-116.

      [30] ?ZHAO Y J, CHEN Y, LI M S, et al. Adsorption of Hg2+ from aqueous solution onto polyacrylamide/attapulgite [J]. Journal of Hazardous Materials, 2009, 171(1/2/3): 640-646.

      [31] ?POPOVIC A L, RUSMIROVIC J D, VELICKOVIC Z, et al. Kinetics and column adsorption study of diclofenac and heavy-metal ions removal by amino-functionalized ligninmicrospheres [J]. Journal of Industrial and Engineering Chemistry, 2021, 93: 302-314.

      [32] ?DENG S B, TING Y P. Fungal biomass with grafted poly(acrylic acid) for enhancement of Cu(II) and Cd(II) biosorption [J]. Langmuir, 2005, 21(13): 5940-5948.

      [33] ?BI L B, CHEN Z L, LI L H, et al. Selective adsorption and enhanced photodegradation of diclofenac in water by molecularly imprinted TiO2 [J]. Journal of Hazardous Materials, 2021, 407: 124759.

      [34] ?HU D L, HUANG H Y, JIANG R, et al. Adsorption of diclofenac sodium on bilayer amino-functionalized cellulose nanocrystals/chitosan composite [J]. Journal of Hazardous Materials, 2019, 369: 483-493.

      [35] ?TSENG R L, WU F C. Analyzing concurrent multi-stage adsorption process of activated carbon with a favorable parameter of Langmuir equation [J]. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40(2): 197-204.

      [36] ?SOARES S F, FERNANDES T, SACRAMENTO M, et al. Magnetic quaternary chitosan hybrid nanoparticles for the efficient uptake of diclofenac from water [J]. Carbohydrate Polymers, 2019, 203: 35-44.

      [37] ?LU Y Q, FAN L H, YANG L Y, et al. PEI-modified core-shell/bead-like amino silica enhanced poly (vinyl alcohol)/chitosan for diclofenac sodium efficient adsorption [J]. Carbohydrate Polymers, 2020, 229: 115459.

      [38] ?LIANG X X, OMER A M, HU Z H, et al. Efficient adsorption of diclofenac sodium from aqueous solutions using magnetic amine-functionalized chitosan [J].Chemosphere, 2019, 217: 270-278.

      [39] ?BHADRA B N, AHMED I, KIM S, et al. Adsorptive removal of ibuprofen and diclofenac from water using metal-organic framework-derived porous carbon [J]. Chemical Engineering Journal, 2017, 314: 50-58.

      [40] ?DE OLIVEIRA T, GUGAN R, THIEBAULT T, et al. Adsorption of diclofenac onto organoclays: Effects of surfactant and environmental (pH and temperature) conditions [J]. Journal of Hazardous Materials, 2017, 323: 558-566.

      [41] ?YAN Y Z, AN Q D, XIAO Z Y, et al. Flexible core-shell/bead-like alginate@PEI with exceptional adsorption capacity, recycling performance toward batch and column sorption of Cr(VI) [J]. Chemical Engineering Journal, 2017, 313: 475-486.

      [42] ?BUDNYAK T M, PYLYPCHUK I V, TERTYKH V A, et al. Synthesis and adsorption properties of chitosan-silica nanocomposite prepared by Sol-gel method [J]. Nanoscale Research Letters, 2015, 10(1): 1-10.

      [43] ?DOS SANTOS J M N, PEREIRA C R, FOLETTO E L, et al. Alternative synthesis for ZnFe2O4/chitosan magnetic particles to remove diclofenac from water by adsorption [J]. International Journal of Biological Macromolecules, 2019, 131: 301-308.

      [44] ?ZHANG S P, DONG Y Y, YANG Z, et al. Adsorption of pharmaceuticals on chitosan-based magnetic composite particles with core-brush topology [J]. Chemical Engineering Journal, 2016, 304: 325-334.

      (編輯 胡玲)

      猜你喜歡
      吸附殼聚糖
      三種不同分子量6-羧基殼聚糖的制備、表征及其溶解性
      殼聚糖修飾甲醇燃料電池PtRu 催化劑
      一種吸附膜的制備及其吸附性能
      未來英才(2016年13期)2017-01-13 18:38:08
      Fe(Ⅲ)負(fù)載改性核桃殼對(duì)Cu2+吸附研究
      炭氣凝膠的制備與吸附氫氣性能
      核桃殼基吸附材料的制備及性能測(cè)試
      科技視界(2016年25期)2016-11-25 12:30:06
      活化粉煤灰在煤焦油加工廢水預(yù)處理中的應(yīng)用
      四環(huán)素類抗生素的環(huán)境行為研究進(jìn)展
      科技視界(2016年11期)2016-05-23 08:07:47
      殼聚糖的應(yīng)用
      食品界(2016年4期)2016-02-27 07:36:46
      殼聚糖對(duì)尿路感染主要病原菌的體外抑制作用
      冷水江市| 日照市| 全椒县| 五常市| 平陆县| 虎林市| 海南省| 广灵县| 拜泉县| 九江县| 文安县| 荔浦县| 兴安县| 虞城县| 张掖市| 西贡区| 襄汾县| 东乡族自治县| 饶阳县| 牙克石市| 昂仁县| 景洪市| 永仁县| 上蔡县| 南宫市| 辽阳市| 平潭县| 房产| 江陵县| 保定市| 富阳市| 泽库县| 友谊县| 行唐县| 富锦市| 高安市| 廊坊市| 通榆县| 双牌县| 日照市| 靖州|