• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      C3型李代數(shù)的張量積分解

      2022-03-29 03:16:30代佳華王利萍盛昱杰李澤妤
      關(guān)鍵詞:張量積重?cái)?shù)共軛

      代佳華, 王利萍, 盛昱杰, 李澤妤

      (1.北京建筑大學(xué) 理學(xué)院, 北京 100044; 2.北京工商大學(xué) 嘉華學(xué)院, 北京 101118)

      1979年,KAZHDAN等[1]提出了Kazhdan-Lusztig理論, 并且指出Kazhdan-Lusztig系數(shù)是該理論的核心研究對(duì)象。在計(jì)算最低雙邊胞腔上的Kazhdan-Lu-sztig系數(shù)時(shí), 通常需要求出對(duì)應(yīng)李代數(shù)中的張量積分解。許超[2]給出了A2型李代數(shù)不可約模的張量積分解的計(jì)算方法。于桂海等[3]給出了特征數(shù)大于0的代數(shù)閉域上C2型單連通半單代數(shù)群,限制支配權(quán)所對(duì)應(yīng)的不可約模的張量積分解。魏玉麗等[4]計(jì)算出了A3型李代數(shù)的部分張量積分解。

      1 預(yù)備知識(shí)

      1.1 C3型單李代數(shù)

      W0={e,1,2,3,12,13,21,23,32,121,123,132,213,
      232,321,323,1213,1232,1321,1323,2132,2321,
      2323,3213,12132,12321,12323,13213,21321,
      21323,23213,32132,121321,121323,123213,
      132132,213213,232132,321323,1231213,
      1232132,1321323,2132132,2321323,
      12132132,12321323,21321323,121321323}

      并且Λ=x1+x2+x3,Λ+=x1+x2+x3,Λr=α1+α2+α3。

      在Λ中, 存在序關(guān)系λ≤μ, 即μ-λ可以寫(xiě)成關(guān)于α1,α2,α3的非負(fù)線(xiàn)性組合。

      1.2 李代數(shù)中張量積分解的結(jié)論

      引理2如果λ∈Λ+,則以λ為首權(quán)的不可約L-模V=V(λ)是有限維的,且權(quán)集合∏(λ)被W0所置換,使得對(duì)于σ∈W0,有dimVμ=dimVσμ。

      引理3(Freudenthal公式) 設(shè)V=V(λ)是首權(quán)為λ(λ∈Λ+)的不可約L-模,如果μ∈Λ,則μ在V內(nèi)的重?cái)?shù)m(μ)可從如下的遞推得到:

      (1)

      引理4使得V(λ)可能出現(xiàn)在V(λ′)?V(λ″)的加項(xiàng)中的λ∈Λ+,只能形如μ+λ″,μ∈∏(λ′)。當(dāng)這樣的μ+λ″都是支配權(quán)時(shí),V(μ+λ″)出現(xiàn)在張量積內(nèi),且重?cái)?shù)為mλ′,λ″μ+λ″=mλ′(μ)。

      2 C3型李代數(shù)的張量積分解

      根據(jù)李代數(shù)的知識(shí), 給出了共軛元以及權(quán)重?cái)?shù)的算法:

      第一步,給定任意1個(gè)首權(quán)λ。用W0中的48個(gè)元素去作用λ,從而得到共軛元,定義為S(λ)(λ∈Λ+)。此處:

      λ=aα1+bα2+cα3

      (2)

      式中:a,b,c均為實(shí)數(shù)。

      第二步,找到所有比λ低的支配權(quán)μ:

      μ=aiα1+biα2+ciα3

      (3)

      式中:ai,bi,ci均為實(shí)數(shù), 且滿(mǎn)足

      用第一步的方法得到μ的共軛元集S(μ)(μ∈Λ+)。

      第四步,首權(quán)λ的重?cái)?shù)為1。

      表1 層

      第五步,在算某個(gè)支配權(quán)的重?cái)?shù)時(shí),按照水平高度表,然后利用Freudenthal公式即可得到該支配權(quán)的重?cái)?shù)。

      2.1 ∏(λ)以及權(quán)重?cái)?shù)m(μ)的部分計(jì)算結(jié)果

      通過(guò)編程可以得到:

      S(x1)={x1,-x1,x2-x1,x1-x2,x3-x2,x2-x3}
      S(x2)={x2,-x2,x2-x1-x3,x1-x2+x3,x3-
      x1,x1-x3,x1+x2-x3,-x1-x2+x3,
      -x1+2x2-x3,x1-2x2+x3,2x1-x2,x2-2x1}
      S(x3)={x3,-x3,2x2-x3,x3-2x2,x3-2x1,
      2x1-x3,-2x1+2x2-x3,2x1-2x2+x3}
      S(2x1)={2x1,-2x1,2x2-2x1,2x1-2x2,2x3-
      2x2,2x2-2x3}
      S(2x2)={2x2,-2x2,2x2-2x1-2x3,
      2x1-2x2+2x3,2x3-2x1,
      2x1-2x3,2x1+2x2-2x3,-2x1-2x2+2x3,
      -2x1+4x2-2x3,2x1-4x2+2x3,4x1-2x2,2x2-4x1}
      S(2x3)={2x3,-2x3,4x2-2x3,2x3-4x2,2x3-4x1,
      4x1-2x3,-4x1+4x2-2x3,4x1-4x2+2x3}
      S(x1+x2)={x1+x2,-x1-x2,2x2-x1,x1-2x2,
      2x1-x2+x3,-2x1+x2-x3-2x1+x2+x3,
      2x1-x2-x3,x1-2x2+2x3,-x1+2x2-2x3,
      2x1+x2-x3,-2x1-x2+x3,3x1-x2,x2-3x1,
      x1+2x2-2x3,-2x1+3x2-x3,2x1-3x2+x3,
      -3x1+2x2,3x1-2x2,-x1+3x2-2x3}
      S(x1+x3)={x1+x3,-x1-x3,x3+x2-x1,
      x1-x2-x3,-x1-2x2+x3-x1+3x2-x3,
      x1-3x2+x3,-x2+2x3,x2-2x3,3x1-2x2+x3,
      -3x1+2x2-x3,-3x1+x2+x3,3x1-x2-x3,
      3x2-2x3,2x3-3x2,2x1-3x2+2x3,-2x1+3x2-2x3,
      -3x1+x3,3x1-x3,-3x1+3x2-x3,
      3x1-3x2+x3,-2x1-x2+2x3,2x1+x2-2x3}
      S(x2+x3)={x2+x3,-x2-x3,x1-x2+2x3,
      -x1+x2-2x3,-3x2+2x3-x1,x1-2x3,3x1-2x3,
      2x3-3x1,3x1-3x2+2x3,-3x1+3x2-2x3,
      x1+3x2-2x3,-x1-3x2+2x3,x1-4x2+2x3,
      -x1+4x2-2x3,-4x1+3x2-x3,4x1-3x2+x3,
      -3x1-x2+2x3,3x1+x2-2x3,-4x1+x2+x3,
      4x1-x2-x3,-3x1+4x2-2x3,3x1-4x2+2x3}
      ∏(x1)={x1,-x1,x2-x1,x1-x2,x3-x2,x2-x3}
      ∏(x2)={x2,-x2,x2-x1-x3,x1-x2+x3,
      x3-x1,x1-x3,x1+x2-x3,-x1-x2+x3,
      -x1+2x2-x3,x1-2x2+x3,
      2x1-x2,x2-2x1,0}
      ∏(x3)={x3,-x3,2x2-x3,x3-2x2,x3-2x1,
      2x1-x3,-2x1+2x2-x3,2x1-2x2+x3}
      ∏(2x1)={2x1,-2x1,2x2-2x1,2x1-2x2,
      2x2-2x3,2x3-2x2,x1-x3,x1+x2-x3,
      -x1-x2+x3,-x1+2x2-x3,
      x1-2x2+x3,2x1-x2,x2-2x1,0}
      ∏(2x2)={2x2,-2x2,2x1-2x2+2x3,
      -2x1+2x2-2x3,2x3-2x1,2x1-2x3,
      2x1+2x2-2x3,-2x1-2x2+2x3,2x1-4x2+2x3,
      -2x1+4x2-2x3,4x1-2x2,2x2-4x1,x1+x3,
      -x1-x3,x3+x2-x1,x1-x2-x3,x1+2x2-x3,
      -x1-2x2+x3-x1+3x2-x3,x1-3x2+x3,-x2+2x3,
      x2-2x3,3x1-2x2+x3,-3x1+2x2-x3,-3x1+x2+x3,
      3x1-x2-x3,3x2-2x3,2x3-3x2,2x1-3x2+2x3,
      -2x1+3x2-2x3,-3x1+x3,3x1-x3,
      -3x1+3x2-x3,3x1-3x2+x3,-2x1-x2+2x3,
      2x1+x2-2x3,2x1,-2x1,2x2-2x1,2x1-2x2,
      2x2-2x3,2x3-2x2,x2,-x2,x1-x2+x3,
      -x1+x2-x3,x3-x1,x1-x3,x1+x2-x3,
      -x1-x2+x3,-x1+2x2-x3,x1-2x2+x3,
      2x1-x2,x2-2x1,0}
      ∏(2x3)={2x3,-2x3,4x2-2x3,2x3-4x2,
      4x1-4x2+2x3,-4x1+4x2-2x3,2x3-4x12x2,
      -2x2,2x1-2x2+2x3,-2x1+2x2-2x3,2x3-2x1,
      2x1+2x2-2x3,-2x1-2x2+2x3,2x1-4x2+2x3,
      4x1-2x2,2x2-4x1,x1+x3,-x1-x3,x3+x2-x1,
      x1-x2-x3,-x1-2x2+x3-x1+3x2-x3,
      x1-3x2+x3,-x2+2x3,x2-2x3,-3x1+2x2-x3,
      -3x1+x2+x3,3x1-x2-x3,3x2-2x3,
      2x3-3x2,2x1-3x2+2x3,-2x1+3x2-2x3,
      -3x1+x3,3x1-x3,3x1-3x2+x3,-2x1-x2+2x3,
      2x1+x2-2x3,2x1,-2x1,2x2-2x1,2x2-2x3,2x3-2x2,
      x2,-x2,x1-x2+x3,-x1+x2-x3,x3-x1,
      x1+x2-x3,-x1-x2+x3,-x1+2x2-x3,
      x1-2x2+x3,2x1-x2,0}
      ∏(x1+x3)={x1+x3,-x1-x3,x3+x2-x1,
      x1-x2-x3,x1+2x2-x3,-x1-2x2+x3,
      -x1+3x2-x3,x1-3x2+x3,-x2+2x3,x2-2x3,
      3x1-2x2+x3,-3x1+2x2-x3,-3x1+x2+x3,
      3x1-x2-x3,3x2-2x3,2x3-3x2,2x1-3x2+2x3,
      -2x1+3x2-2x3,-3x1+x3,3x1-x3,-3x1+3x2-x3,
      3x1-3x2+x3,-2x1-x2+2x3,2x1+x2-2x3,
      2x1,-2x1,2x2-2x1,2x2-2x3,2x3-2x2,x2,
      -x2,x1-x2+x3,-x1+x2-x3,x3-x1,x1-x3,
      -x1-x2+x3,-x1+2x2-x3,x1-2x2+x3,
      2x1-x2,x2-2x1,0}
      ∏(x1+x2)={x1+x2,-x1-x2,2x2-x1,
      x1-2x2,2x1-x2+x3,-2x1+x2-x3-2x1+x2+x3,
      2x1-x2-x3,-3x1+2x2,-x1+2x2-2x3,
      2x1+x2-x3,-2x1-x2+x3,3x1-x2,x1+2x2-2x3,
      -2x1+3x2-x3,2x1-3x2+x3,3x1-2x2,
      -x1+3x2-2x3,x1-3x2+2x3,x1,-x1,x3-x2,
      x1-x2,x2-x1x3,-x3,2x2-x3,x3-2x2,
      2x1-2x2+x3,-2x1+2x2-x3,2x1-x3,x3-2x1}
      ∏(x2+x3)={x2+x3,-x2-x3,x1-x2+2x3,
      -x1+x2-2x3,3x2-x3,x1-2x3,3x1-3x2+2x3,
      -3x1+3x2-2x3,2x3-3x1,3x1-2x3,-x1-3x2+2x3,
      -x1+4x2-2x3,x1-4x2+2x3,4x1-3x2+x3,
      3x1+x2-2x3,-3x1-x2+2x3,-4x1+x2+x3,
      4x1-x2-x3,3x1-4x2+2x3x1+x2,-x1-x2,
      2x2-x1,x1-2x2,2x1-x2+x3,-2x1+x2+x3,
      2x1-x2-x3,x1-2x2+2x3,-x1+2x2-2x3,
      2x1+x2-x3,-2x1-x2+x3,3x1-x2,
      x2-3x1,-2x1+3x2-x3,2x1-3x2+x3,
      -3x1+2x2,3x1-2x2,x1-3x2+2x3,x1,-x1,
      x3-x2,x2-x3,x1-x2,x2-x1,x3,-x3,
      2x2-x3,x3-2x2,2x1-2x2+x3,-2x1+2x2-x3}

      由引理2和引理3得到關(guān)于重?cái)?shù)的命題:

      命題1設(shè)V=V(2x1)是首權(quán)為2x1的不可約L-模,則μ∈∏(2x1)時(shí), 有:

      證明: 首權(quán)λ=2x1=2α1+2α2+α3,比其低的支配權(quán)有x2=α1+2α2+α3和0。

      從而∏(2x1)=S(2x1)∪S(x2)∪S(0)?!?2x1)中的權(quán)按照水平排列, 見(jiàn)表2。

      表2 重?cái)?shù)

      2x3-2x2和2x2-2x1是2x1的共軛元, 由引理2得出兩者的重?cái)?shù)均為1。然后計(jì)算m(x2)。

      由引理1得到,δ=3α1+5α2+3α3。由內(nèi)積的關(guān)系式得到:(2x1+δ,2x1+δ)=15, (x2+δ,x2+δ)=13, (2x1,α1)=1。

      由Freudenthal公式得出m(x2)=1,(δ,δ)=7,(2x3-2x2,α3)=2,(-x1+2x2-x3,α2)=1,(2x1-x2,α1)=1。

      由Freudenthal公式得到m(0)=3。命題得證。

      類(lèi)似方法可以得到下面6個(gè)命題。

      命題2設(shè)V=V(2x2)是首權(quán)為2x2的不可約L-模,則μ∈∏(2x2)時(shí), 有:

      命題3設(shè)V=V(λ)是首權(quán)為λ的不可約L-模,λ=x1,x2,x3。如果μ∈∏(λ), 則μ在V內(nèi)的重?cái)?shù)m(μ)=1。

      命題4設(shè)V=V(2x3)是首權(quán)為2x3的不可約L-模,則μ∈∏(2x3)時(shí), 有:

      命題5設(shè)V=V(x1+x3)是首權(quán)為x1+x3的不可約L-模,則μ∈∏(x1+x3)時(shí), 有:

      命題6設(shè)V=V(x1+x2)是首權(quán)為x1+x2的不可約L-模,則μ∈∏(x1+x2)時(shí), 有:

      命題7設(shè)V=V(x2+x3)是首權(quán)為x2+x3的不可約L-模,則μ∈∏(x2+x3)時(shí),有:

      2.2 C3型李代數(shù)的張量積分解

      定理1根據(jù)引理4, 得到以下結(jié)論:

      第一, 當(dāng)λ′∈{x1,x2,x3}時(shí), 對(duì)任意λ″∈Λ+,有mλ′,λ″,μ+λ″=1。

      第二,當(dāng)λ′=2x1,λ″∈{2x1,2x2,2x3,x1+x2,x1+x3,x2+x3}時(shí),mλ′,λ″,λ″=3, 其余重?cái)?shù)為1。

      第三,當(dāng)λ′=2x2時(shí),對(duì)任意λ″∈Λ+,有mλ′,λ″,λ″=6。當(dāng)λ″=2x2時(shí),mλ′,λ″,2x1+x2=mλ′,λ″,x1+x3=mλ′,λ″,x2=mλ′,λ″,3x2=mλ′,λ″,x1+x2+x3=3,mλ′,λ″,2x1=mλ′,λ″,2x3=2, 其余重?cái)?shù)為1; 當(dāng)λ″=2x3時(shí),mλ′,λ″,2x3+x2=mλ′,λ″,x1+x3=3,mλ′,λ″,2x1+2x3=mλ′,λ″,x3+x2+x1=mλ′,λ″,2x3=mλ′,λ″,2x2=2,其余重?cái)?shù)為1;當(dāng)λ″=x1+x2時(shí),mλ′,λ″,2x1+x2=3,mλ′,λ″,x1+2x2=mλ′,λ″,2x1+x3=mλ′,λ″,x3=mλ′,λ″,3x1=mλ′,λ″,x2+x3=2,其余重?cái)?shù)為1;當(dāng)λ″=x1+x3時(shí),mλ′,λ″,x1+x2+x3=mλ′,λ″,2x3=mλ′,λ″,2x2=3,mλ′,λ″,3x1+x3=mλ′,λ″,2x1+x2=2,其余重?cái)?shù)為1;當(dāng)λ″=x2+x3時(shí),mλ′,λ″,x1+2x3=mλ′,λ″,2x1+x3=mλ′,λ″,x3=mλ′,λ″,3x1=mλ′,λ″,2x2+x3=3,mλ′,λ″,x1+2x2=mλ′,λ″,2x1+x2+x3=2,其余重?cái)?shù)為1。

      第四, 當(dāng)λ′=2x3時(shí),對(duì)任意λ″∈Λ+,有mλ′,λ″,λ″=4。當(dāng)λ″=2x3時(shí),mλ′,λ″,2x1+2x3=mλ′,λ″,x1+2x3=mλ′,λ″,2x2=mλ′,λ″,x1+x3=3,其余重?cái)?shù)為1; 當(dāng)λ″=x1+x2時(shí),mλ′,λ″,2x1+x2=3,mλ′,λ″,x1+2x2=mλ′,λ″,2x1+x3=mλ′,λ″,x3=mλ′,λ″,3x1=mλ′,λ″,x2+x3=3,其余重?cái)?shù)為1。

      第五,當(dāng)λ′=x1+x3,λ″=x1+x3時(shí),mλ′,λ″,x1+x2+x3=mλ′,λ″,x2=mλ′,λ″,2x1=mλ′,λ″,2x2=mλ′,λ″,2x1+x2=3,mλ′,λ″,x1+x3=4, 其余重?cái)?shù)為1。

      第六, 當(dāng)λ′=x1+x2,λ″=x1+x2時(shí),mλ′,λ″,2x1+x2+x3=mλ′,λ″,2x2=mλ′,λ″,x2=mλ′,λ″,2x1=mλ′,λ″,x1+x3=3,mλ′,λ″,x1+x2+x3=2, 其余重?cái)?shù)為1。當(dāng)λ″=x1+x3時(shí),mλ′,λ″,x1=mλ′,λ″,3x1=2,mλ′,λ″,x2+x3=mλ′,λ″,x3=mλ′,λ″,x2+x3=mλ′,λ″,2x1+x3=3, 其余重?cái)?shù)為1。

      第七,當(dāng)λ′=x2+x3,λ″={x2+x3,x1+x3}時(shí),mλ′,λ″,x3+λ″=mλ′,λ″,-x3+λ″=mλ′,λ″,2x2-x3+λ″=mλ′,λ″,2x1-x3+λ″=3mλ′,λ″,x3+x2+λ″=5, 其余為重?cái)?shù)為1。

      V(x1)?V(x1)=V(2x1)⊕V(x2)⊕V(0);
      V(x1)?V(x2)=V(x1+x2)⊕V(x3)⊕V(x1);
      V(x1)?V(x3)=V(x1+x3)⊕V(x2);
      V(x1)?V(2x1)=V(3x1)⊕V(x1+x2)⊕V(x1);
      V(x1)?V(2x2)=V(x1+2x2)⊕V(x2+x3)⊕
      V(x1+x2);
      V(x1)?V(2x3)=V(x1+2x3)⊕V(x2+x3);
      V(x1)?V(x1+x2)=V(2x1+x2)⊕V(2x2)⊕
      V(x1+x3)⊕V(2x1)⊕V(x2);
      V(x1)?V(x1+x3)=V(2x1+x3)⊕V(x1+x2)⊕
      V(x2+x3)⊕V(x3);
      V(x1)?V(x2+x3)=V(x1+x2+x3)⊕V(2x2)⊕
      V(2x3)⊕V(x1+x3);
      V(x2)?V(x2)=V(2x2)⊕V(x1+x3)⊕V(0)⊕
      V(2x1);
      V(x2)?V(x3)=V(x1+x2)⊕V(x2+x3)⊕V(x1);
      V(x2)?V(2x1)=V(2x1+x2)⊕V(x1+x3)⊕
      V(2x2)⊕V(2x1);
      V(x3)?V(x3)=V(2x3)⊕V(2x1)⊕V(0)⊕V(2x2);
      V(x2)?V(2x2)=V(3x2)⊕V(x1+x2+x3)⊕
      V(x1+x3)⊕V(2x1+x2)⊕V(x2)⊕V(2x2);
      V(x2)?V(2x3)=V(x2+2x3)⊕V(x1+x2+x3)⊕
      V(x1+x3)⊕V(2x3);
      V(x2)?V(x1+x2)=V(x1+2x2)⊕V(2x1+x3)⊕
      V(x2+x3)⊕V(3x1)⊕V(x1)⊕V(x3)V(x1+x2);
      V(x2)?V(x2+x3)=V(x3+2x2)⊕V(x1+2x3)⊕
      V(x1+2x2)⊕V(2x1+x3)⊕V(x1+x2)⊕V(x3)⊕
      V(x2+x3);
      V(x2)?V(x1+x3)=V(x1+x2+x3)⊕V(2x3)⊕
      V(2x1+x2)⊕V(2x2)⊕V(2x1)⊕V(x2)⊕
      V(x1+x3);
      V(x3)?V(2x1)=V(x3+2x1)⊕V(x3);
      V(x3)?V(2x2)=V(2x2+x3)⊕V(2x1+x3)⊕
      V(x3);
      V(x3)?V(2x3)=V(3x3)⊕V(2x2+x3)⊕
      V(2x1+x3)⊕V(x3);
      V(2x1)?V(2x1)=V(4x1)⊕V(2x1+x2)⊕
      V(2x2)⊕V(x1+x3)⊕3V(2x1)⊕V(x2)⊕V(0);
      V(x3)?V(x1+x3)=V(2x3+x1)⊕V(x1)⊕
      V(3x1)⊕V(x1+2x2);
      V(x3)?V(x2+x3)=V(2x3+x2)⊕V(x2)⊕
      V(3x2)⊕V(2x1+x2);
      V(2x1)?V(2x2)=V(2x1+2x2)⊕V(3x2)⊕
      V(x1+x2+x3)⊕V(2x3)⊕V(2x1+x2)⊕
      3V(2x2)⊕V(x2)⊕V(x1+x3)⊕V(2x1);
      V(2x1)?V(2x3)=V(2x1+2x3)⊕V(x1+x2+x3)⊕
      V(x2+2x3)⊕3V(2x3)⊕V(2x2)⊕V(x1+x3);
      V(2x1)?V(x1+x2)=V(3x1+x2)⊕3V(x1+x2)⊕
      V(2x1+x3)⊕V(x3)⊕V(x1)⊕3V(x1)⊕
      V(x2+x3)⊕V(x1+2x2);
      V(2x1)?V(x1+x3)=V(3x1+x3)⊕
      V(x1+x2+x3)⊕V(2x3)⊕V(2x1+x2)⊕
      V(2x2)⊕3V(x1+x3)⊕V(2x1)⊕V(x2);
      V(2x1)?V(x2+x3)=V(x1+2x2)⊕
      V(2x1+x2+x3)⊕V(x3)⊕V(x1+x2)⊕
      V(2x2+x3)⊕V(x1+2x3)⊕V(2x1+x3)⊕
      3V(x2+x3);
      V(2x2)?V(x1+x2)=
      V(x1+3x2)⊕V(2x1+x2+x3)⊕
      V(2x2+x3)⊕V(x1+2x3)⊕2V(3x1+x2)⊕
      3V(x1+2x2)⊕3V(2x1+x3)⊕3V(x2+x3)⊕
      3V(3x1)⊕6V(x1+x2)⊕3V(x3)⊕3V(x1);
      V(2x2)?V(2x3)=V(3x2)⊕V(x1+3x3)⊕
      V(2x2+2x3)⊕V(2x1+2x2)⊕
      2V(2x1+2x3)⊕3V(x2+2x3)⊕V(3x1+x3)⊕
      V(x1+2x2+x3)⊕2V(x1+x2+x3)⊕2V(2x3)⊕
      6V(2x3)⊕2V(2x2)⊕3V(x1+x3)⊕V(2x1)⊕V(x2);
      V(2x2)?V(x2+x3)=V(3x2+x3)⊕
      V(x1+x2+2x3)⊕V(x1+3x2)⊕

      6V(x2+x3)⊕2V(2x1+x2+x3)⊕3V(2x2+x3)⊕
      V(3x1+x2)⊕V(x1)⊕3V(x1+2x3)⊕
      2V(x1+2x2)⊕3V(2x1+x3)⊕V(3x3)⊕
      V(3x1)⊕3V(x1+x2)⊕3V(x3);
      V(2x2)?V(x1+x3)=V(x1+2x2+x3)⊕
      V(x2+2x3)⊕V(2x1+2x2)⊕
      V(3x2)⊕V(3x2)⊕2V(3x1+x3)⊕V(4x1)⊕
      3V(2x3)⊕V(0)⊕2V(2x1+x2)⊕3V(2x2)⊕
      6V(x1+x3)⊕3V(2x2);
      V(2x3)?V(2x3)=V(4x3)⊕V(2x2+2x3)⊕
      V(x1+3x3)⊕V(4x2)⊕V(2x1)⊕V(x2)⊕
      V(x1+2x2+x3)⊕2V(2x1+2x3)⊕
      V(2x1+2x2)⊕2V(x1+2x3)⊕V(3x1+x3)⊕
      V(3x2)⊕2V(x1+x2+x3)⊕V(4x1)⊕4V(2x3)⊕
      V(2x1+x2)⊕2V(2x2)⊕2V(x1+x3);
      V(2x3)?V(x1+x2)=V(x1+3x2)⊕
      V(x1+x2+2x3)⊕V(x1+2x3)⊕
      2V(2x1+x3)⊕V(2x1+x2+x3)⊕V(2x2+x3)⊕
      2V(3x1+x2)⊕2V(x1+2x2)⊕2V(x2+x3)⊕
      2V(3x1)⊕4V(x1+x2)⊕2V(x3)⊕V(x1);
      V(2x3)?V(x1+x3)=V(x1+3x3)⊕
      V(x1+2x2+x3)⊕V(2x1+2x3)⊕
      V(x2+2x3)⊕V(2x1+2x2)⊕V(3x2)⊕V(0)⊕
      2V(3x1+x3)⊕V(4x1)⊕2V(2x3)⊕2V(2x1+x2)⊕
      2V(2x2)⊕4V(x1+x3)⊕2V(2x1)⊕2V(x2);
      V(x1+x2)?V(x1+x3)=V(2x1+x2+x3)⊕
      V(2x2+x3)⊕V(3x1+x2)⊕2V(x1+2x3)⊕
      V(2x2+x1)⊕3V(2x1+x3)⊕3V(x2+x3)⊕
      2V(3x1)⊕3V(x1+x2)⊕3V(x3)⊕
      2V(x1)⊕V(2x2+x3);
      V(x1+x3)?V(x1+x3)=V(2x1+2x3)⊕
      V(0)⊕V(x2+2x3)⊕V(3x2)⊕
      V(4x1)⊕V(2x1+2x2)⊕V(3x1+x3)⊕
      3V(x3+x2+x1)⊕3V(x2)⊕3V(2x2)⊕3V(2x1)⊕
      3V(2x1+x2)⊕4V(x1+x3).

      3 結(jié)論

      本文通過(guò)李代數(shù)知識(shí)和Matlab計(jì)算出了C3型李代數(shù)的部分張量積分解,得到如下結(jié)論:

      2)通過(guò)張量積分解的相關(guān)公式計(jì)算出某些C3型李代數(shù)的張量積分解表達(dá)式,給出了具體的數(shù)值,從而將理論上的解釋和公式體現(xiàn)出具體的應(yīng)用。

      猜你喜歡
      張量積重?cái)?shù)共軛
      微分在代數(shù)證明中的兩個(gè)應(yīng)用
      一個(gè)帶重啟步的改進(jìn)PRP型譜共軛梯度法
      一個(gè)改進(jìn)的WYL型三項(xiàng)共軛梯度法
      A3型李代數(shù)的張量積分解
      巧用共軛妙解題
      一種自適應(yīng)Dai-Liao共軛梯度法
      四種半張量積及其代數(shù)關(guān)系
      Gorenstein投射模的張量積
      以較低截?cái)嘀財(cái)?shù)分擔(dān)超平面的亞純映射的唯一性問(wèn)題
      有限生成G-投射模的張量積
      资源县| 宁波市| 武强县| 靖安县| 高安市| 花莲市| 察雅县| 宿松县| 淳化县| 巨野县| 朔州市| 方城县| 兴海县| 黑河市| 高清| 阿瓦提县| 康马县| 乾安县| 池州市| 晋宁县| 霍州市| 宁乡县| 屯门区| 克东县| 卢氏县| 安龙县| 祁门县| 遂溪县| 鲜城| 翁牛特旗| 黔西| 棋牌| 辽宁省| 禄劝| 纳雍县| 沈丘县| 包头市| 永州市| 台北县| 仪征市| 道孚县|