代佳華, 王利萍, 盛昱杰, 李澤妤
(1.北京建筑大學(xué) 理學(xué)院, 北京 100044; 2.北京工商大學(xué) 嘉華學(xué)院, 北京 101118)
1979年,KAZHDAN等[1]提出了Kazhdan-Lusztig理論, 并且指出Kazhdan-Lusztig系數(shù)是該理論的核心研究對(duì)象。在計(jì)算最低雙邊胞腔上的Kazhdan-Lu-sztig系數(shù)時(shí), 通常需要求出對(duì)應(yīng)李代數(shù)中的張量積分解。許超[2]給出了A2型李代數(shù)不可約模的張量積分解的計(jì)算方法。于桂海等[3]給出了特征數(shù)大于0的代數(shù)閉域上C2型單連通半單代數(shù)群,限制支配權(quán)所對(duì)應(yīng)的不可約模的張量積分解。魏玉麗等[4]計(jì)算出了A3型李代數(shù)的部分張量積分解。
W0={e,1,2,3,12,13,21,23,32,121,123,132,213,
232,321,323,1213,1232,1321,1323,2132,2321,
2323,3213,12132,12321,12323,13213,21321,
21323,23213,32132,121321,121323,123213,
132132,213213,232132,321323,1231213,
1232132,1321323,2132132,2321323,
12132132,12321323,21321323,121321323}
并且Λ=x1+x2+x3,Λ+=x1+x2+x3,Λr=α1+α2+α3。
在Λ中, 存在序關(guān)系λ≤μ, 即μ-λ可以寫(xiě)成關(guān)于α1,α2,α3的非負(fù)線(xiàn)性組合。
引理2如果λ∈Λ+,則以λ為首權(quán)的不可約L-模V=V(λ)是有限維的,且權(quán)集合∏(λ)被W0所置換,使得對(duì)于σ∈W0,有dimVμ=dimVσμ。
引理3(Freudenthal公式) 設(shè)V=V(λ)是首權(quán)為λ(λ∈Λ+)的不可約L-模,如果μ∈Λ,則μ在V內(nèi)的重?cái)?shù)m(μ)可從如下的遞推得到:
(1)
引理4使得V(λ)可能出現(xiàn)在V(λ′)?V(λ″)的加項(xiàng)中的λ∈Λ+,只能形如μ+λ″,μ∈∏(λ′)。當(dāng)這樣的μ+λ″都是支配權(quán)時(shí),V(μ+λ″)出現(xiàn)在張量積內(nèi),且重?cái)?shù)為mλ′,λ″μ+λ″=mλ′(μ)。
根據(jù)李代數(shù)的知識(shí), 給出了共軛元以及權(quán)重?cái)?shù)的算法:
第一步,給定任意1個(gè)首權(quán)λ。用W0中的48個(gè)元素去作用λ,從而得到共軛元,定義為S(λ)(λ∈Λ+)。此處:
λ=aα1+bα2+cα3
(2)
式中:a,b,c均為實(shí)數(shù)。
第二步,找到所有比λ低的支配權(quán)μ:
μ=aiα1+biα2+ciα3
(3)
式中:ai,bi,ci均為實(shí)數(shù), 且滿(mǎn)足
用第一步的方法得到μ的共軛元集S(μ)(μ∈Λ+)。
第四步,首權(quán)λ的重?cái)?shù)為1。
表1 層
第五步,在算某個(gè)支配權(quán)的重?cái)?shù)時(shí),按照水平高度表,然后利用Freudenthal公式即可得到該支配權(quán)的重?cái)?shù)。
通過(guò)編程可以得到:
S(x1)={x1,-x1,x2-x1,x1-x2,x3-x2,x2-x3}
S(x2)={x2,-x2,x2-x1-x3,x1-x2+x3,x3-
x1,x1-x3,x1+x2-x3,-x1-x2+x3,
-x1+2x2-x3,x1-2x2+x3,2x1-x2,x2-2x1}
S(x3)={x3,-x3,2x2-x3,x3-2x2,x3-2x1,
2x1-x3,-2x1+2x2-x3,2x1-2x2+x3}
S(2x1)={2x1,-2x1,2x2-2x1,2x1-2x2,2x3-
2x2,2x2-2x3}
S(2x2)={2x2,-2x2,2x2-2x1-2x3,
2x1-2x2+2x3,2x3-2x1,
2x1-2x3,2x1+2x2-2x3,-2x1-2x2+2x3,
-2x1+4x2-2x3,2x1-4x2+2x3,4x1-2x2,2x2-4x1}
S(2x3)={2x3,-2x3,4x2-2x3,2x3-4x2,2x3-4x1,
4x1-2x3,-4x1+4x2-2x3,4x1-4x2+2x3}
S(x1+x2)={x1+x2,-x1-x2,2x2-x1,x1-2x2,
2x1-x2+x3,-2x1+x2-x3-2x1+x2+x3,
2x1-x2-x3,x1-2x2+2x3,-x1+2x2-2x3,
2x1+x2-x3,-2x1-x2+x3,3x1-x2,x2-3x1,
x1+2x2-2x3,-2x1+3x2-x3,2x1-3x2+x3,
-3x1+2x2,3x1-2x2,-x1+3x2-2x3}
S(x1+x3)={x1+x3,-x1-x3,x3+x2-x1,
x1-x2-x3,-x1-2x2+x3-x1+3x2-x3,
x1-3x2+x3,-x2+2x3,x2-2x3,3x1-2x2+x3,
-3x1+2x2-x3,-3x1+x2+x3,3x1-x2-x3,
3x2-2x3,2x3-3x2,2x1-3x2+2x3,-2x1+3x2-2x3,
-3x1+x3,3x1-x3,-3x1+3x2-x3,
3x1-3x2+x3,-2x1-x2+2x3,2x1+x2-2x3}
S(x2+x3)={x2+x3,-x2-x3,x1-x2+2x3,
-x1+x2-2x3,-3x2+2x3-x1,x1-2x3,3x1-2x3,
2x3-3x1,3x1-3x2+2x3,-3x1+3x2-2x3,
x1+3x2-2x3,-x1-3x2+2x3,x1-4x2+2x3,
-x1+4x2-2x3,-4x1+3x2-x3,4x1-3x2+x3,
-3x1-x2+2x3,3x1+x2-2x3,-4x1+x2+x3,
4x1-x2-x3,-3x1+4x2-2x3,3x1-4x2+2x3}
∏(x1)={x1,-x1,x2-x1,x1-x2,x3-x2,x2-x3}
∏(x2)={x2,-x2,x2-x1-x3,x1-x2+x3,
x3-x1,x1-x3,x1+x2-x3,-x1-x2+x3,
-x1+2x2-x3,x1-2x2+x3,
2x1-x2,x2-2x1,0}
∏(x3)={x3,-x3,2x2-x3,x3-2x2,x3-2x1,
2x1-x3,-2x1+2x2-x3,2x1-2x2+x3}
∏(2x1)={2x1,-2x1,2x2-2x1,2x1-2x2,
2x2-2x3,2x3-2x2,x1-x3,x1+x2-x3,
-x1-x2+x3,-x1+2x2-x3,
x1-2x2+x3,2x1-x2,x2-2x1,0}
∏(2x2)={2x2,-2x2,2x1-2x2+2x3,
-2x1+2x2-2x3,2x3-2x1,2x1-2x3,
2x1+2x2-2x3,-2x1-2x2+2x3,2x1-4x2+2x3,
-2x1+4x2-2x3,4x1-2x2,2x2-4x1,x1+x3,
-x1-x3,x3+x2-x1,x1-x2-x3,x1+2x2-x3,
-x1-2x2+x3-x1+3x2-x3,x1-3x2+x3,-x2+2x3,
x2-2x3,3x1-2x2+x3,-3x1+2x2-x3,-3x1+x2+x3,
3x1-x2-x3,3x2-2x3,2x3-3x2,2x1-3x2+2x3,
-2x1+3x2-2x3,-3x1+x3,3x1-x3,
-3x1+3x2-x3,3x1-3x2+x3,-2x1-x2+2x3,
2x1+x2-2x3,2x1,-2x1,2x2-2x1,2x1-2x2,
2x2-2x3,2x3-2x2,x2,-x2,x1-x2+x3,
-x1+x2-x3,x3-x1,x1-x3,x1+x2-x3,
-x1-x2+x3,-x1+2x2-x3,x1-2x2+x3,
2x1-x2,x2-2x1,0}
∏(2x3)={2x3,-2x3,4x2-2x3,2x3-4x2,
4x1-4x2+2x3,-4x1+4x2-2x3,2x3-4x12x2,
-2x2,2x1-2x2+2x3,-2x1+2x2-2x3,2x3-2x1,
2x1+2x2-2x3,-2x1-2x2+2x3,2x1-4x2+2x3,
4x1-2x2,2x2-4x1,x1+x3,-x1-x3,x3+x2-x1,
x1-x2-x3,-x1-2x2+x3-x1+3x2-x3,
x1-3x2+x3,-x2+2x3,x2-2x3,-3x1+2x2-x3,
-3x1+x2+x3,3x1-x2-x3,3x2-2x3,
2x3-3x2,2x1-3x2+2x3,-2x1+3x2-2x3,
-3x1+x3,3x1-x3,3x1-3x2+x3,-2x1-x2+2x3,
2x1+x2-2x3,2x1,-2x1,2x2-2x1,2x2-2x3,2x3-2x2,
x2,-x2,x1-x2+x3,-x1+x2-x3,x3-x1,
x1+x2-x3,-x1-x2+x3,-x1+2x2-x3,
x1-2x2+x3,2x1-x2,0}
∏(x1+x3)={x1+x3,-x1-x3,x3+x2-x1,
x1-x2-x3,x1+2x2-x3,-x1-2x2+x3,
-x1+3x2-x3,x1-3x2+x3,-x2+2x3,x2-2x3,
3x1-2x2+x3,-3x1+2x2-x3,-3x1+x2+x3,
3x1-x2-x3,3x2-2x3,2x3-3x2,2x1-3x2+2x3,
-2x1+3x2-2x3,-3x1+x3,3x1-x3,-3x1+3x2-x3,
3x1-3x2+x3,-2x1-x2+2x3,2x1+x2-2x3,
2x1,-2x1,2x2-2x1,2x2-2x3,2x3-2x2,x2,
-x2,x1-x2+x3,-x1+x2-x3,x3-x1,x1-x3,
-x1-x2+x3,-x1+2x2-x3,x1-2x2+x3,
2x1-x2,x2-2x1,0}
∏(x1+x2)={x1+x2,-x1-x2,2x2-x1,
x1-2x2,2x1-x2+x3,-2x1+x2-x3-2x1+x2+x3,
2x1-x2-x3,-3x1+2x2,-x1+2x2-2x3,
2x1+x2-x3,-2x1-x2+x3,3x1-x2,x1+2x2-2x3,
-2x1+3x2-x3,2x1-3x2+x3,3x1-2x2,
-x1+3x2-2x3,x1-3x2+2x3,x1,-x1,x3-x2,
x1-x2,x2-x1x3,-x3,2x2-x3,x3-2x2,
2x1-2x2+x3,-2x1+2x2-x3,2x1-x3,x3-2x1}
∏(x2+x3)={x2+x3,-x2-x3,x1-x2+2x3,
-x1+x2-2x3,3x2-x3,x1-2x3,3x1-3x2+2x3,
-3x1+3x2-2x3,2x3-3x1,3x1-2x3,-x1-3x2+2x3,
-x1+4x2-2x3,x1-4x2+2x3,4x1-3x2+x3,
3x1+x2-2x3,-3x1-x2+2x3,-4x1+x2+x3,
4x1-x2-x3,3x1-4x2+2x3x1+x2,-x1-x2,
2x2-x1,x1-2x2,2x1-x2+x3,-2x1+x2+x3,
2x1-x2-x3,x1-2x2+2x3,-x1+2x2-2x3,
2x1+x2-x3,-2x1-x2+x3,3x1-x2,
x2-3x1,-2x1+3x2-x3,2x1-3x2+x3,
-3x1+2x2,3x1-2x2,x1-3x2+2x3,x1,-x1,
x3-x2,x2-x3,x1-x2,x2-x1,x3,-x3,
2x2-x3,x3-2x2,2x1-2x2+x3,-2x1+2x2-x3}
由引理2和引理3得到關(guān)于重?cái)?shù)的命題:
命題1設(shè)V=V(2x1)是首權(quán)為2x1的不可約L-模,則μ∈∏(2x1)時(shí), 有:
證明: 首權(quán)λ=2x1=2α1+2α2+α3,比其低的支配權(quán)有x2=α1+2α2+α3和0。
從而∏(2x1)=S(2x1)∪S(x2)∪S(0)?!?2x1)中的權(quán)按照水平排列, 見(jiàn)表2。
表2 重?cái)?shù)
2x3-2x2和2x2-2x1是2x1的共軛元, 由引理2得出兩者的重?cái)?shù)均為1。然后計(jì)算m(x2)。
由引理1得到,δ=3α1+5α2+3α3。由內(nèi)積的關(guān)系式得到:(2x1+δ,2x1+δ)=15, (x2+δ,x2+δ)=13, (2x1,α1)=1。
由Freudenthal公式得出m(x2)=1,(δ,δ)=7,(2x3-2x2,α3)=2,(-x1+2x2-x3,α2)=1,(2x1-x2,α1)=1。
由Freudenthal公式得到m(0)=3。命題得證。
類(lèi)似方法可以得到下面6個(gè)命題。
命題2設(shè)V=V(2x2)是首權(quán)為2x2的不可約L-模,則μ∈∏(2x2)時(shí), 有:
命題3設(shè)V=V(λ)是首權(quán)為λ的不可約L-模,λ=x1,x2,x3。如果μ∈∏(λ), 則μ在V內(nèi)的重?cái)?shù)m(μ)=1。
命題4設(shè)V=V(2x3)是首權(quán)為2x3的不可約L-模,則μ∈∏(2x3)時(shí), 有:
命題5設(shè)V=V(x1+x3)是首權(quán)為x1+x3的不可約L-模,則μ∈∏(x1+x3)時(shí), 有:
命題6設(shè)V=V(x1+x2)是首權(quán)為x1+x2的不可約L-模,則μ∈∏(x1+x2)時(shí), 有:
命題7設(shè)V=V(x2+x3)是首權(quán)為x2+x3的不可約L-模,則μ∈∏(x2+x3)時(shí),有:
定理1根據(jù)引理4, 得到以下結(jié)論:
第一, 當(dāng)λ′∈{x1,x2,x3}時(shí), 對(duì)任意λ″∈Λ+,有mλ′,λ″,μ+λ″=1。
第二,當(dāng)λ′=2x1,λ″∈{2x1,2x2,2x3,x1+x2,x1+x3,x2+x3}時(shí),mλ′,λ″,λ″=3, 其余重?cái)?shù)為1。
第三,當(dāng)λ′=2x2時(shí),對(duì)任意λ″∈Λ+,有mλ′,λ″,λ″=6。當(dāng)λ″=2x2時(shí),mλ′,λ″,2x1+x2=mλ′,λ″,x1+x3=mλ′,λ″,x2=mλ′,λ″,3x2=mλ′,λ″,x1+x2+x3=3,mλ′,λ″,2x1=mλ′,λ″,2x3=2, 其余重?cái)?shù)為1; 當(dāng)λ″=2x3時(shí),mλ′,λ″,2x3+x2=mλ′,λ″,x1+x3=3,mλ′,λ″,2x1+2x3=mλ′,λ″,x3+x2+x1=mλ′,λ″,2x3=mλ′,λ″,2x2=2,其余重?cái)?shù)為1;當(dāng)λ″=x1+x2時(shí),mλ′,λ″,2x1+x2=3,mλ′,λ″,x1+2x2=mλ′,λ″,2x1+x3=mλ′,λ″,x3=mλ′,λ″,3x1=mλ′,λ″,x2+x3=2,其余重?cái)?shù)為1;當(dāng)λ″=x1+x3時(shí),mλ′,λ″,x1+x2+x3=mλ′,λ″,2x3=mλ′,λ″,2x2=3,mλ′,λ″,3x1+x3=mλ′,λ″,2x1+x2=2,其余重?cái)?shù)為1;當(dāng)λ″=x2+x3時(shí),mλ′,λ″,x1+2x3=mλ′,λ″,2x1+x3=mλ′,λ″,x3=mλ′,λ″,3x1=mλ′,λ″,2x2+x3=3,mλ′,λ″,x1+2x2=mλ′,λ″,2x1+x2+x3=2,其余重?cái)?shù)為1。
第四, 當(dāng)λ′=2x3時(shí),對(duì)任意λ″∈Λ+,有mλ′,λ″,λ″=4。當(dāng)λ″=2x3時(shí),mλ′,λ″,2x1+2x3=mλ′,λ″,x1+2x3=mλ′,λ″,2x2=mλ′,λ″,x1+x3=3,其余重?cái)?shù)為1; 當(dāng)λ″=x1+x2時(shí),mλ′,λ″,2x1+x2=3,mλ′,λ″,x1+2x2=mλ′,λ″,2x1+x3=mλ′,λ″,x3=mλ′,λ″,3x1=mλ′,λ″,x2+x3=3,其余重?cái)?shù)為1。
第五,當(dāng)λ′=x1+x3,λ″=x1+x3時(shí),mλ′,λ″,x1+x2+x3=mλ′,λ″,x2=mλ′,λ″,2x1=mλ′,λ″,2x2=mλ′,λ″,2x1+x2=3,mλ′,λ″,x1+x3=4, 其余重?cái)?shù)為1。
第六, 當(dāng)λ′=x1+x2,λ″=x1+x2時(shí),mλ′,λ″,2x1+x2+x3=mλ′,λ″,2x2=mλ′,λ″,x2=mλ′,λ″,2x1=mλ′,λ″,x1+x3=3,mλ′,λ″,x1+x2+x3=2, 其余重?cái)?shù)為1。當(dāng)λ″=x1+x3時(shí),mλ′,λ″,x1=mλ′,λ″,3x1=2,mλ′,λ″,x2+x3=mλ′,λ″,x3=mλ′,λ″,x2+x3=mλ′,λ″,2x1+x3=3, 其余重?cái)?shù)為1。
第七,當(dāng)λ′=x2+x3,λ″={x2+x3,x1+x3}時(shí),mλ′,λ″,x3+λ″=mλ′,λ″,-x3+λ″=mλ′,λ″,2x2-x3+λ″=mλ′,λ″,2x1-x3+λ″=3mλ′,λ″,x3+x2+λ″=5, 其余為重?cái)?shù)為1。
V(x1)?V(x1)=V(2x1)⊕V(x2)⊕V(0);
V(x1)?V(x2)=V(x1+x2)⊕V(x3)⊕V(x1);
V(x1)?V(x3)=V(x1+x3)⊕V(x2);
V(x1)?V(2x1)=V(3x1)⊕V(x1+x2)⊕V(x1);
V(x1)?V(2x2)=V(x1+2x2)⊕V(x2+x3)⊕
V(x1+x2);
V(x1)?V(2x3)=V(x1+2x3)⊕V(x2+x3);
V(x1)?V(x1+x2)=V(2x1+x2)⊕V(2x2)⊕
V(x1+x3)⊕V(2x1)⊕V(x2);
V(x1)?V(x1+x3)=V(2x1+x3)⊕V(x1+x2)⊕
V(x2+x3)⊕V(x3);
V(x1)?V(x2+x3)=V(x1+x2+x3)⊕V(2x2)⊕
V(2x3)⊕V(x1+x3);
V(x2)?V(x2)=V(2x2)⊕V(x1+x3)⊕V(0)⊕
V(2x1);
V(x2)?V(x3)=V(x1+x2)⊕V(x2+x3)⊕V(x1);
V(x2)?V(2x1)=V(2x1+x2)⊕V(x1+x3)⊕
V(2x2)⊕V(2x1);
V(x3)?V(x3)=V(2x3)⊕V(2x1)⊕V(0)⊕V(2x2);
V(x2)?V(2x2)=V(3x2)⊕V(x1+x2+x3)⊕
V(x1+x3)⊕V(2x1+x2)⊕V(x2)⊕V(2x2);
V(x2)?V(2x3)=V(x2+2x3)⊕V(x1+x2+x3)⊕
V(x1+x3)⊕V(2x3);
V(x2)?V(x1+x2)=V(x1+2x2)⊕V(2x1+x3)⊕
V(x2+x3)⊕V(3x1)⊕V(x1)⊕V(x3)V(x1+x2);
V(x2)?V(x2+x3)=V(x3+2x2)⊕V(x1+2x3)⊕
V(x1+2x2)⊕V(2x1+x3)⊕V(x1+x2)⊕V(x3)⊕
V(x2+x3);
V(x2)?V(x1+x3)=V(x1+x2+x3)⊕V(2x3)⊕
V(2x1+x2)⊕V(2x2)⊕V(2x1)⊕V(x2)⊕
V(x1+x3);
V(x3)?V(2x1)=V(x3+2x1)⊕V(x3);
V(x3)?V(2x2)=V(2x2+x3)⊕V(2x1+x3)⊕
V(x3);
V(x3)?V(2x3)=V(3x3)⊕V(2x2+x3)⊕
V(2x1+x3)⊕V(x3);
V(2x1)?V(2x1)=V(4x1)⊕V(2x1+x2)⊕
V(2x2)⊕V(x1+x3)⊕3V(2x1)⊕V(x2)⊕V(0);
V(x3)?V(x1+x3)=V(2x3+x1)⊕V(x1)⊕
V(3x1)⊕V(x1+2x2);
V(x3)?V(x2+x3)=V(2x3+x2)⊕V(x2)⊕
V(3x2)⊕V(2x1+x2);
V(2x1)?V(2x2)=V(2x1+2x2)⊕V(3x2)⊕
V(x1+x2+x3)⊕V(2x3)⊕V(2x1+x2)⊕
3V(2x2)⊕V(x2)⊕V(x1+x3)⊕V(2x1);
V(2x1)?V(2x3)=V(2x1+2x3)⊕V(x1+x2+x3)⊕
V(x2+2x3)⊕3V(2x3)⊕V(2x2)⊕V(x1+x3);
V(2x1)?V(x1+x2)=V(3x1+x2)⊕3V(x1+x2)⊕
V(2x1+x3)⊕V(x3)⊕V(x1)⊕3V(x1)⊕
V(x2+x3)⊕V(x1+2x2);
V(2x1)?V(x1+x3)=V(3x1+x3)⊕
V(x1+x2+x3)⊕V(2x3)⊕V(2x1+x2)⊕
V(2x2)⊕3V(x1+x3)⊕V(2x1)⊕V(x2);
V(2x1)?V(x2+x3)=V(x1+2x2)⊕
V(2x1+x2+x3)⊕V(x3)⊕V(x1+x2)⊕
V(2x2+x3)⊕V(x1+2x3)⊕V(2x1+x3)⊕
3V(x2+x3);
V(2x2)?V(x1+x2)=
V(x1+3x2)⊕V(2x1+x2+x3)⊕
V(2x2+x3)⊕V(x1+2x3)⊕2V(3x1+x2)⊕
3V(x1+2x2)⊕3V(2x1+x3)⊕3V(x2+x3)⊕
3V(3x1)⊕6V(x1+x2)⊕3V(x3)⊕3V(x1);
V(2x2)?V(2x3)=V(3x2)⊕V(x1+3x3)⊕
V(2x2+2x3)⊕V(2x1+2x2)⊕
2V(2x1+2x3)⊕3V(x2+2x3)⊕V(3x1+x3)⊕
V(x1+2x2+x3)⊕2V(x1+x2+x3)⊕2V(2x3)⊕
6V(2x3)⊕2V(2x2)⊕3V(x1+x3)⊕V(2x1)⊕V(x2);
V(2x2)?V(x2+x3)=V(3x2+x3)⊕
V(x1+x2+2x3)⊕V(x1+3x2)⊕
6V(x2+x3)⊕2V(2x1+x2+x3)⊕3V(2x2+x3)⊕
V(3x1+x2)⊕V(x1)⊕3V(x1+2x3)⊕
2V(x1+2x2)⊕3V(2x1+x3)⊕V(3x3)⊕
V(3x1)⊕3V(x1+x2)⊕3V(x3);
V(2x2)?V(x1+x3)=V(x1+2x2+x3)⊕
V(x2+2x3)⊕V(2x1+2x2)⊕
V(3x2)⊕V(3x2)⊕2V(3x1+x3)⊕V(4x1)⊕
3V(2x3)⊕V(0)⊕2V(2x1+x2)⊕3V(2x2)⊕
6V(x1+x3)⊕3V(2x2);
V(2x3)?V(2x3)=V(4x3)⊕V(2x2+2x3)⊕
V(x1+3x3)⊕V(4x2)⊕V(2x1)⊕V(x2)⊕
V(x1+2x2+x3)⊕2V(2x1+2x3)⊕
V(2x1+2x2)⊕2V(x1+2x3)⊕V(3x1+x3)⊕
V(3x2)⊕2V(x1+x2+x3)⊕V(4x1)⊕4V(2x3)⊕
V(2x1+x2)⊕2V(2x2)⊕2V(x1+x3);
V(2x3)?V(x1+x2)=V(x1+3x2)⊕
V(x1+x2+2x3)⊕V(x1+2x3)⊕
2V(2x1+x3)⊕V(2x1+x2+x3)⊕V(2x2+x3)⊕
2V(3x1+x2)⊕2V(x1+2x2)⊕2V(x2+x3)⊕
2V(3x1)⊕4V(x1+x2)⊕2V(x3)⊕V(x1);
V(2x3)?V(x1+x3)=V(x1+3x3)⊕
V(x1+2x2+x3)⊕V(2x1+2x3)⊕
V(x2+2x3)⊕V(2x1+2x2)⊕V(3x2)⊕V(0)⊕
2V(3x1+x3)⊕V(4x1)⊕2V(2x3)⊕2V(2x1+x2)⊕
2V(2x2)⊕4V(x1+x3)⊕2V(2x1)⊕2V(x2);
V(x1+x2)?V(x1+x3)=V(2x1+x2+x3)⊕
V(2x2+x3)⊕V(3x1+x2)⊕2V(x1+2x3)⊕
V(2x2+x1)⊕3V(2x1+x3)⊕3V(x2+x3)⊕
2V(3x1)⊕3V(x1+x2)⊕3V(x3)⊕
2V(x1)⊕V(2x2+x3);
V(x1+x3)?V(x1+x3)=V(2x1+2x3)⊕
V(0)⊕V(x2+2x3)⊕V(3x2)⊕
V(4x1)⊕V(2x1+2x2)⊕V(3x1+x3)⊕
3V(x3+x2+x1)⊕3V(x2)⊕3V(2x2)⊕3V(2x1)⊕
3V(2x1+x2)⊕4V(x1+x3).
本文通過(guò)李代數(shù)知識(shí)和Matlab計(jì)算出了C3型李代數(shù)的部分張量積分解,得到如下結(jié)論:
2)通過(guò)張量積分解的相關(guān)公式計(jì)算出某些C3型李代數(shù)的張量積分解表達(dá)式,給出了具體的數(shù)值,從而將理論上的解釋和公式體現(xiàn)出具體的應(yīng)用。