張亞茹 文世林 張雪冬 李文意 陳功 李雅 王子鑫 李倩倩 魏兵
摘? ? 要:目的:明確孤獨(dú)癥譜系障礙(ASD)兒童動(dòng)作協(xié)調(diào)能力與運(yùn)動(dòng)區(qū)皮質(zhì)靜息功能連接的關(guān)系。方法:共招募11名ASD兒童和20名典型發(fā)展兒童(TD)。應(yīng)用兒童協(xié)調(diào)能力測量量表(M-ABC2)測試動(dòng)作協(xié)調(diào)能力,用近紅外光譜技術(shù)(fNIRS)監(jiān)測運(yùn)動(dòng)區(qū)皮質(zhì)靜息態(tài)的血氧信號(hào)變化,并用“FC-NIRS”軟件計(jì)算運(yùn)動(dòng)區(qū)皮質(zhì)的靜息功能連接(RSFC)強(qiáng)度。結(jié)果:ASD組的M-ABC2總分顯著低于同齡的TD組[t (n=29)=-11.550,p=0.000],且精細(xì)動(dòng)作能力(U=0,Z=-4.561,p=0.000)、手眼協(xié)調(diào)能力[t (n=29)=
-10.204,p=0.000]及靜態(tài)和動(dòng)態(tài)平衡能力[t (n=29)=-5.752,p=0.000]存在顯著差異。ASD組的RSFC強(qiáng)度均值顯著低于TD組[在HbO信號(hào)水平上,t (n=29)=-3.740,p=0.001],且腦右側(cè)運(yùn)動(dòng)區(qū)存在差異的功能連接“邊”的數(shù)量多于左側(cè)。M-ABC總分與運(yùn)動(dòng)區(qū)RSFC均值之間存在顯著相關(guān)[在HbO信號(hào)水平上,r=0.497,p=0.004],但在M-ABC2各二級(jí)指標(biāo)上均與RSFC無相關(guān)性。結(jié)論:孤獨(dú)癥譜系障礙兒童的動(dòng)作協(xié)調(diào)能力和運(yùn)動(dòng)區(qū)靜息功能連接強(qiáng)度的發(fā)展均滯后于同齡的典型發(fā)展兒童,但是動(dòng)作協(xié)調(diào)能力的損傷不一定與運(yùn)動(dòng)區(qū)功能連接強(qiáng)度的減弱有關(guān)。
關(guān)鍵詞:孤獨(dú)癥譜系障礙; 動(dòng)作協(xié)調(diào)能力; 運(yùn)動(dòng)區(qū)皮質(zhì); 靜息功能連接; 近紅外光譜技術(shù)
中圖分類號(hào):G 804.55? ? ? ? ? ?學(xué)科代碼:040303? ? ? ? ? ?文獻(xiàn)標(biāo)識(shí)碼:A
Abstract:Objective: To clarify the relationship between motor coordination ability and resting function of motor cortex in children with autism spectrum disorder (ASD).Methods: A total of 11 children with ASD and 20 typically developing(TD)children were recruited. First, the Movement Assessment Battery for Children - second edition (M-ABC2) Checklist was administered to assess the motor coordination ability. Second, changes in the motor area's blood oxygen signals in resting states were collected by functional near infrared spectroscopy (fNIRS). Finally, FC-NIRS software was used to calculate the Resting State Functional Connectivity (RSFC) of the cortical motor area. Results: the total scores of the M-ABC2 of the ASD children were significant lower than the age-matched TD children (t(n=29) =-11.550, p=0.000), and the differences were also significant in fine hands motor ability (U=0,Z=-4.561,p=0.000), hand-eye coordination ability (t(n=29)= -10.204, p=0.000), and static and dynamic balance ability (t(n=29) =-5.752, p=0.000). The mean value of the RSFC strength of ASD children was significant lower than the control group (at the HbO signals level, t(n=29) =-3.740, p=0.001) as well as numbers of the“edges”of the RSFC in the right motor area of the brain were greater than the left. Though there was a significant correlation between the total score of the M-ABC2 and the mean value of the RSFC strength (at the HbO signals level, r=0.497, p=0.004) within all subjects, no significant correlation was found at each group. Conclusions: Both the development of the motor coordination ability and the RSFC of the motor area of the ASD children lagged far behind the age-matched TD children, and the impairment in the motor coordination ability had no relationships to the decrease of the RSFC of the motor area.4435031E-261A-4E37-9ED9-2ECDDCBC066B
Keywords:autism spectrum disorder; coordination ability; motor area cortex; Resting State Functional Connectivity;fNIRS
孤獨(dú)癥譜系障礙(Autism Spectrum Disorder,ASD)是一種極其復(fù)雜的神經(jīng)發(fā)育障礙,主要特征為社會(huì)交往、語言交流障礙和重復(fù)刻板行為[1]。據(jù)世界衛(wèi)生組織(WHO)統(tǒng)計(jì),全球約有6 700萬ASD患者,且ASD患病后是發(fā)展最快的發(fā)育障礙之一[2]。ASD患者一生都會(huì)存在語言交流、社會(huì)交往方面的缺陷[3-4],這些缺陷不僅影響其參與標(biāo)準(zhǔn)化教育和就業(yè),還嚴(yán)重地影響其日常生活質(zhì)量[5],同時(shí)也會(huì)對(duì)其監(jiān)護(hù)人或家庭造成巨大負(fù)擔(dān)。
目前,ASD的病因不明,關(guān)于其病因的研究主要集中在遺傳學(xué)[6-7]及大腦的結(jié)構(gòu)和功能[8-11]等方面。其中,在大腦功能的研究中,腦區(qū)功能連接是重要的研究方向之一,該方面的研究主要探索大腦遠(yuǎn)程腦區(qū)神經(jīng)信號(hào)的相互依賴或同步[12]及連接強(qiáng)弱[13]。近年來,研究者發(fā)現(xiàn)在靜息狀態(tài)下,這些以低頻(<0.1 Hz)為特征的振蕩可以在沒有任務(wù)的情況下發(fā)生,且相關(guān)功能腦區(qū)之間存在關(guān)聯(lián)[14-15],這種關(guān)聯(lián)被稱為靜息功能連接(resting-state functional connectivity,RSFC)。RSFC旨在反映靜息狀態(tài)下自發(fā)性神經(jīng)元活動(dòng)的腦血流動(dòng)力學(xué)波動(dòng),已被研究證實(shí)的靜息態(tài)網(wǎng)絡(luò)包括:運(yùn)動(dòng)、聽覺、視覺、注意和默認(rèn)網(wǎng)絡(luò)[16],且這些網(wǎng)絡(luò)在受試者之間甚至跨物種之間是一致的[17-18]。有研究表明,患有阿爾茲海默病[17]、精神分裂癥[19]、孤獨(dú)癥[20]、癲癇[21]、多發(fā)性硬化癥[22]等疾病的患者的大腦RSFC通常會(huì)發(fā)生改變。因此,對(duì)患者腦區(qū)RSFC進(jìn)行研究將會(huì)為相應(yīng)疾病的預(yù)測、診斷和愈后康復(fù)提供參考。
ASD兒童存在廣泛的運(yùn)動(dòng)障礙,例如:步態(tài)、姿勢的協(xié)調(diào)和模仿等問題,但是這些運(yùn)動(dòng)障礙與大腦連接異常的原因不明確[23]。ASD患者在嬰兒期就可能出現(xiàn)動(dòng)作能力的異常[24],例如整體動(dòng)作能力和精細(xì)動(dòng)作能力的損傷[25-26]。在整體動(dòng)作能力方面,ASD兒童表現(xiàn)出較弱的姿勢控制力[27]、不穩(wěn)定的步態(tài)[28]及雙側(cè)協(xié)調(diào)動(dòng)作能力受損[25, 29]。同樣,與同齡的TD兒童相比,ASD兒童在瞄準(zhǔn)控制和手部靈巧[30]、視覺運(yùn)動(dòng)整合[31]和用手書寫[32]等精細(xì)動(dòng)作方面發(fā)展滯后。也有研究表明,學(xué)齡前ASD兒童的粗大動(dòng)作和精細(xì)動(dòng)作能力接近同齡的典型發(fā)展兒童(typical development,TD)[33]。但是多數(shù)研究顯示,ASD兒童在動(dòng)作能力發(fā)展上出現(xiàn)了滯后或受損,且這些問題已對(duì)其參加各類集體活動(dòng)造成了負(fù)面影響,并相應(yīng)減少了其獲得人際語言交流、社會(huì)交往和建立友誼的機(jī)會(huì)[34-35]。此外,動(dòng)作能力的發(fā)展會(huì)隨ASD兒童年齡的增長而出現(xiàn)退化的現(xiàn)象[36],從而進(jìn)一步影響其學(xué)業(yè)成績[37]和日常生活[38]。
雖然有研究表明,ASD兒童的動(dòng)作能力滯后于同齡的一般兒童[39],但是動(dòng)作能力行為指標(biāo)和運(yùn)動(dòng)區(qū)RSFC之間的關(guān)系仍不明確。在最新的研究中,Cai等[40]對(duì)ASD基因特征、神經(jīng)回路和行為學(xué)之間的因果鏈進(jìn)行了研究,在動(dòng)物模型(猴)的研究中發(fā)現(xiàn)MECP2的共表達(dá)基因顯著富集于GABA相關(guān)的信號(hào)通路,且額-頂-枕網(wǎng)絡(luò)內(nèi)β帶同步降低與異常行為表現(xiàn)相關(guān)。該研究還進(jìn)一步對(duì)ASD患者的功能連接模式進(jìn)行了驗(yàn)證,發(fā)現(xiàn)ASD患者的不良功能連接情形與猴子實(shí)驗(yàn)的結(jié)果一致。上述研究通過建立遺傳學(xué)、神經(jīng)通路和行為學(xué)的證據(jù)鏈,為解構(gòu)臨床異質(zhì)性和推進(jìn)精神障礙的準(zhǔn)確診斷提供了新依據(jù),同時(shí)也為進(jìn)一步探索動(dòng)作能力與運(yùn)動(dòng)區(qū)RSFC的關(guān)系提供了思路。
基于此,本研究提出如下假設(shè):ASD兒童和TD兒童的動(dòng)作協(xié)調(diào)能力和運(yùn)動(dòng)區(qū)RSFC均存在差異,且動(dòng)作協(xié)調(diào)能力測試得分與RSFC具有相關(guān)性。研究擬應(yīng)用fNIRS設(shè)備探索ASD兒童運(yùn)動(dòng)區(qū)RSFC的特征,并進(jìn)一步探索其與動(dòng)作協(xié)調(diào)能力的關(guān)系。
1? ?研究方法
1.1? 實(shí)驗(yàn)對(duì)象
招募北京市海淀區(qū)某特殊學(xué)校的ASD兒童11人,某小學(xué)的TD兒童20人。受試者入組標(biāo)準(zhǔn)為:1)ASD組需持有診斷證明或殘疾證;TD組需智力與精神正常,就讀于普通小學(xué)。2)年齡在8~12歲之間。3)具備遵循指令并執(zhí)行所需完成動(dòng)作任務(wù)的能力。4)剔除患有腦外傷、心肺疾病、鼻炎等疾病的受試者。5)右利手。該實(shí)驗(yàn)獲得首都體育學(xué)院倫理道德委員會(huì)的審批。實(shí)驗(yàn)前分別獲得了受試者及其父母的知情同意,由受試者父母代其簽署知情同意書,并填寫孤獨(dú)癥兒童行為量表(autism behavior checklist,ABC量表),ABC量表得分情況見圖1。
ASD組的ABC量表得分為(53.36±28.16),相應(yīng)的自閉程度等級(jí)處于水平二和水平三之間。其中6名受試者的得分高于62分(存在孤獨(dú)癥癥狀),另外5名受試者在31分左右(疑似孤獨(dú)癥癥狀)。
1.2? 動(dòng)作協(xié)調(diào)能力測試(M-ABC2)
M-ABC2是一種獲得了國際認(rèn)可且被廣泛應(yīng)用的運(yùn)動(dòng)評(píng)估工具[41],可用于篩查ASD兒童的動(dòng)作協(xié)調(diào)能力[42-44]。本研究主要應(yīng)用M-ABC2測試手部靈活性、瞄準(zhǔn)與捕捉、靜態(tài)平衡能力與動(dòng)態(tài)平衡能力3個(gè)方面,評(píng)估受試者的手部精細(xì)動(dòng)作、手眼協(xié)調(diào)動(dòng)作以及靜態(tài)平衡能力和動(dòng)態(tài)平衡能力。主試嚴(yán)格按照M-ABC2的測試標(biāo)準(zhǔn)執(zhí)行,并根據(jù)受試者的測試表現(xiàn)如實(shí)填寫相關(guān)測評(píng)記錄表。M-ABC2由8個(gè)子測試組成,這些子測試構(gòu)成了總運(yùn)動(dòng)分?jǐn)?shù),且M-ABC2結(jié)構(gòu)的有效性已通過有關(guān)研究的驗(yàn)證[45]。手動(dòng)靈活性項(xiàng)目包括3個(gè)子測試:單手釘板測試、定時(shí)雙手組裝測試和不定時(shí)繪圖測試;瞄準(zhǔn)與捕捉項(xiàng)目包括2個(gè)子測試:向目標(biāo)投擲物體和通過單手或雙手捕捉物體的測試;平衡性項(xiàng)目包括1個(gè)靜態(tài)平衡測試和2個(gè)動(dòng)態(tài)平衡測試,其中動(dòng)態(tài)平衡測試包括接腳前進(jìn)和單腳跳格。整個(gè)測試過程大約持續(xù)25 min。4435031E-261A-4E37-9ED9-2ECDDCBC066B
1.3? fNIRS測試
本研究應(yīng)用便攜式“fNIRS”系統(tǒng)(LIGHTNIRS,日本島津公司),該系統(tǒng)采用3個(gè)波長(780 nm、805 nm、830 nm)近紅外光檢測人體腦組織血氧信號(hào)的變化。按照4×2(R)和4×2(L)安裝了8個(gè)發(fā)射光極和8個(gè)接收光極。其中,單數(shù)光極配置在左側(cè)光極帽,雙數(shù)光極配置在右側(cè),共構(gòu)成20個(gè)測量通道(CH1~CH20),如圖3-(a)、圖3-(b)所示。佩戴fNIRS光極帽方法:首先,確定頭頂正中點(diǎn)(Cz),即鼻根至枕骨隆突的連線與雙側(cè)外耳孔連線的交匯點(diǎn)。在Cz點(diǎn)前1~2 cm處放置7號(hào)光發(fā)射器和2號(hào)光探測器,光極帽測量面板基本覆蓋受試者的運(yùn)動(dòng)區(qū),見圖3-(c)。戴帽完畢后,對(duì)探頭組進(jìn)行檢查和調(diào)整,以確保所有受試者佩戴光極帽的位置一致。采樣頻率設(shè)為10 Hz,在靜息狀態(tài)下連續(xù)掃描腦部5 min。
1.4? RSFC計(jì)算
將采集的原始數(shù)據(jù)導(dǎo)入 “LightNIRS”分析系統(tǒng),將HbO、HbR、HbT 3個(gè)血氧信號(hào)及光強(qiáng)信號(hào)轉(zhuǎn)化為文本格式(TXT格式)保存到存儲(chǔ)器。在“MATLAB”數(shù)據(jù)平臺(tái)上運(yùn)行“FC-NIRS”[46]軟件包,fNIRS測試數(shù)據(jù)計(jì)算的流程如下:1)質(zhì)量控制。通過質(zhì)量控制模塊檢測運(yùn)動(dòng)偽影,計(jì)算信噪比(SNR),以及標(biāo)定壞導(dǎo)并剔除不合格數(shù)據(jù)。2)預(yù)處理。在預(yù)處理階段,應(yīng)用修正的比爾-朗伯定律將每個(gè)通道的光強(qiáng)信號(hào)轉(zhuǎn)換為HbO、HbR和HbT濃度信號(hào)。采用0.01~0.1 Hz之間的帶通,消除低頻噪聲。應(yīng)用“樣條插值法”和“相關(guān)信號(hào)改進(jìn)法”減少運(yùn)動(dòng)偽影對(duì)數(shù)據(jù)的污染。此外,采用直線最小二乘擬合對(duì)線性趨勢進(jìn)行矯正。3)功能連接計(jì)算。取兩兩連接通道的平均相關(guān)系數(shù)(r值)為通道之間的功能連接值,進(jìn)一步計(jì)算群組的RSFC值。
1.5? 數(shù)理統(tǒng)計(jì)法
應(yīng)用“MATLAB”數(shù)據(jù)處理平臺(tái)對(duì)由190條“邊”組成的Z值矩陣進(jìn)行獨(dú)立樣本t檢驗(yàn),計(jì)算功能連接強(qiáng)度的整體均值和每條邊的組間差異。應(yīng)用“SPSS Statistics 22.0”軟件對(duì)RSFC和動(dòng)作協(xié)調(diào)能力的數(shù)據(jù)進(jìn)行雙變量相關(guān)分析。
2? ?研究結(jié)果
2.1? 受試者基本情況
年齡(ASD組的Shapiro-Wilk檢驗(yàn)值為0.97,n=11,p=0.85;TD組檢驗(yàn)值為0.87,n=20,p=0.01)不呈正態(tài)分布。采用U檢驗(yàn)進(jìn)行組間比較,結(jié)果顯示差異不顯著(U=80.50,Z=-1.22,p=0.22)。身高(ASD=146.82±14.10,TD=141.40±8.14,t=1.36,p=0.18)和體質(zhì)量(ASD=
38.55±11.24,TD=34.75±3.95,t=0.65,p=0.30)的組間差異也不顯著(見表1)。
2.2? ASD組M-ABC2得分情況
在M-ABC2測試結(jié)束后,將測試成績錄入“M-ABC2”測試系統(tǒng)進(jìn)行統(tǒng)一評(píng)價(jià),得到總分和各項(xiàng)子測試的標(biāo)準(zhǔn)分。對(duì)M-ABC2總分、手部精細(xì)動(dòng)作、定位與抓取能力、靜態(tài)平衡能力與動(dòng)態(tài)平衡能力4個(gè)主要指標(biāo)的得分進(jìn)行了正態(tài)性檢驗(yàn)(用Shapiro-Wilk方法檢驗(yàn))。檢驗(yàn)結(jié)果顯示,除ASD組的手部精細(xì)動(dòng)作得分(Shapiro-Wilk檢驗(yàn)值為0.850,n=11,p=0.043)未通過檢驗(yàn),其他數(shù)值均符合正態(tài)分布。根據(jù)統(tǒng)計(jì)要求,對(duì)符合正態(tài)性的指標(biāo)進(jìn)行t檢驗(yàn),而不符合正態(tài)分布的指標(biāo)則使用U檢驗(yàn)。ASD組和TD組的M-ABC2標(biāo)準(zhǔn)分對(duì)比結(jié)果如圖2所示。
ASD組的M-ABC2總得分均值(39.64±13.52)顯著低于TD組[(79.40±5.67),t(n=29)=-11.55,p=0.000]。在精細(xì)動(dòng)作能力方面,ASD組(平均秩次為6.00)與TD組(平均秩次為21.50)具有顯著差異(U=0,Z=-4.561,p=0.000);在手眼協(xié)調(diào)能力方面,ASD組(11.73±3.44)與TD組(24.80±3.04)具有顯著性差異[t (n=29)=-10.95,p=0.000];在靜態(tài)平衡能力和動(dòng)態(tài)平衡能力方面,ASD組(19.00±8.40)與TD組(30.30±2.16)具有顯著性差異[t(n=29)=-5.75,p=0.000)],見圖2-(a)。
用同樣方法對(duì)M-ABC2各子項(xiàng)目的得分進(jìn)行對(duì)比分析。本研究顯示,除“劃線”得分ASD組(平均秩次為14.18)與TD組(平均秩次為17.00)不具有顯著差異(U=90.0,p=0.427),其他項(xiàng)目均具有顯著差異,如圖2-(b)、圖2-(c)、圖2-(d)所示。上述研究表明,ASD兒童的動(dòng)作協(xié)調(diào)能力顯著滯后于TD兒童。
2.3? ASD組運(yùn)動(dòng)區(qū)RSFC的特征
通過腦網(wǎng)絡(luò)軟件(FC-NIRS)的計(jì)算,得到了3種血氧信號(hào)水平(HbO、HbR和HbT)的RSFC值。正態(tài)性檢驗(yàn)結(jié)果顯示:在HbO信號(hào)水平上,ASD組的RSFC值(Shapiro-Wilk檢驗(yàn)值為0.654,n=11,p=0.000)未通過正態(tài)性檢驗(yàn),但是其他各血氧信號(hào)水平的各組數(shù)值均符合正態(tài)分布。t檢驗(yàn)和U檢驗(yàn)結(jié)果顯示,在HbO信號(hào)水平上,ASD組(平均秩次為8.45)與TD組(平均秩次為20.15)具有顯著性差異(U=27,Z=-3.427,p=0.000)。在HbR(t (n=29)=-3.87,p=0.000)和HbT(t (n=29)=-2.78,p=0.000)信號(hào)水平上,RSFC均值同樣具有顯著性差異。本研究進(jìn)一步比較了ASD組和TD組運(yùn)動(dòng)區(qū)的190條“邊”的組間差異(數(shù)據(jù)呈正態(tài)分布,Shapiro-Wilk檢驗(yàn),獨(dú)立樣本t檢驗(yàn))。結(jié)果顯示,在ASD組和TD組運(yùn)動(dòng)區(qū)的190條“邊”的比較中(經(jīng)FDR校正后),HbO有19 條“邊”(見圖3-f),HbR有23條“邊”,HbT為0,存在顯著差異。本研究進(jìn)一步將這些存在差異的“邊”所對(duì)應(yīng)分布的左右運(yùn)動(dòng)區(qū)進(jìn)行提?。ㄒ姳?),結(jié)果顯示,右側(cè)運(yùn)動(dòng)區(qū)功能連接存在差異的“邊”最多(n=20),其次是左-右運(yùn)動(dòng)區(qū)的“邊”(n=15),左側(cè)運(yùn)動(dòng)區(qū)功能連接存在差異的“邊”最少(n=7),且在HbO和HbR信號(hào)水平上,所有的t值均為負(fù)值。上述結(jié)果表明,相比TD組,ASD組運(yùn)動(dòng)區(qū)RSFC強(qiáng)度在右側(cè)腦區(qū)的差異最大。4435031E-261A-4E37-9ED9-2ECDDCBC066B
2.4? 運(yùn)動(dòng)區(qū)RSFC與動(dòng)作協(xié)調(diào)能力得分的關(guān)系
取HbO和HbR兩種信號(hào)(HbT信號(hào)的信效度相對(duì)較低)的RSFC均值,按總體和各群組對(duì)RSFC均值與M-ABC2總分及二級(jí)動(dòng)作協(xié)調(diào)能力指標(biāo)進(jìn)行相關(guān)性檢驗(yàn),結(jié)果如圖4和圖5所示。
在總體上,RSFC均值與M-ABC2總分存在顯著相關(guān)性(HbO信號(hào)水平,r=0.50,p=0.004;HbR信號(hào)水平,r=0.69,p=0.000),見圖4。本研究進(jìn)一步對(duì)RSFC均值和M-ABC2二級(jí)指標(biāo)進(jìn)行了相關(guān)性檢驗(yàn)。結(jié)果顯示,在HbO信號(hào)水平時(shí),手部靈活性(r=0.572,p=0.001)、瞄準(zhǔn)與捕捉(r=0.496,p=0.005)及靜態(tài)平衡能力與動(dòng)態(tài)平衡能力(r=0.509,p=0.003)均具有顯著相關(guān)性。在HbR信號(hào)水平時(shí),手部靈活性(r=0.708,p=0.000)、瞄準(zhǔn)與捕捉(r=0.603,p=0.000)、靜態(tài)平衡能力與動(dòng)態(tài)平衡能力(r=0.577,p=0.001)也具有顯著相關(guān)性。以上結(jié)果說明兒童動(dòng)作協(xié)調(diào)能力可能與運(yùn)動(dòng)區(qū)RSFC有關(guān)。
但是在各群組中,ASD組的RSFC均值與M-ABC2總分及二級(jí)指標(biāo)之間均無相關(guān)性,且TD組也無顯著相關(guān)性。結(jié)果表明,ASD兒童在手部精細(xì)動(dòng)作、定位與抓取能力、靜態(tài)平衡能力與動(dòng)態(tài)平衡能力方面存在的發(fā)展障礙與運(yùn)動(dòng)區(qū)的RSFC減弱不一定具有直接相關(guān)性。
3? ?討論
3.1? ASD組M-ABC2測試過程表現(xiàn)出的非典型特征
M-ABC2測試結(jié)果顯示,ASD組的得分普遍低于TD組。同時(shí),在測試過程中,相比同齡TD組,ASD組的行為也表現(xiàn)出了非典型特征。例如,在手動(dòng)靈活性的測試中,在最后一次測試時(shí)表現(xiàn)出了煩躁或試圖終止測試的問題行為;在穿線測試時(shí),手指動(dòng)作較為笨拙,容易出現(xiàn)前后繞著穿的問題;描畫軌跡時(shí),手部肌肉僵硬、按筆較重或不看描畫軌跡就行筆,且錯(cuò)誤次數(shù)明顯多于TD組;在雙手接球的測試中,接球動(dòng)作僵硬,缺少主動(dòng)接球的意識(shí);在投擲豆袋測試中,不看墊子就將豆袋扔出,且投擲力度調(diào)整不精確;在單足站立測試中,難以找到平衡點(diǎn),容易出現(xiàn)任務(wù)失敗;在跳格的測試中,不看格子,身體動(dòng)作僵硬。
雖然大多數(shù)受試者家長反映其在康復(fù)機(jī)構(gòu)接受過動(dòng)作能力的康復(fù)訓(xùn)練,受試者已具備一定的動(dòng)作能力基礎(chǔ),但是此次測試的結(jié)果卻不令人滿意。此外,對(duì)個(gè)別難于理解的項(xiàng)目,主試在測試前給被試反復(fù)示范并組織練習(xí)直至其掌握測試要領(lǐng),未出現(xiàn)不理解動(dòng)作目的而進(jìn)行測試的情況。因此,上述情況出現(xiàn)的原因可能是:ASD兒童動(dòng)作技能泛化和遷移能力弱,或存在已習(xí)得的運(yùn)動(dòng)技能出現(xiàn)遺忘或退化的現(xiàn)象。
3.2? ASD兒童動(dòng)作協(xié)調(diào)能力發(fā)展滯后的可能性原因
ASD兒童普遍存在手勢功能障礙[33],且在臨床上約有67%的高功能ASD兒童有嚴(yán)重的精細(xì)動(dòng)作障礙[47]。ASD兒童精細(xì)動(dòng)作能力發(fā)展滯后的可能性原因是:模仿能力受損和運(yùn)動(dòng)計(jì)劃不良[48]、難以理解運(yùn)動(dòng)目標(biāo)[49]。本研究顯示,ASD組精細(xì)運(yùn)動(dòng)技能滯后于TD組,與已有的相關(guān)研究結(jié)果一致。精細(xì)動(dòng)作能力發(fā)展的滯后可能會(huì)對(duì)其早期學(xué)習(xí)和生活自理能力產(chǎn)生較大影響[50],因此,應(yīng)該重視對(duì)ASD兒童進(jìn)行精細(xì)動(dòng)作技能的干預(yù)訓(xùn)練。
ASD兒童對(duì)力的掌握和調(diào)節(jié)存在問題[51],且存在明顯的動(dòng)作協(xié)調(diào)能力缺陷[52]。在投擲和接物的操縱測試中,ASD兒童可能會(huì)表現(xiàn)出動(dòng)作協(xié)調(diào)能力發(fā)展滯后,物體操縱能力不佳,動(dòng)作模仿能力不足,以及動(dòng)作發(fā)展障礙的問題[53]。在定位與捕捉運(yùn)動(dòng)測試時(shí),ASD兒童在投擲或接球過程中很難控制投球或接球的力量和方向[54],與同齡的TD兒童相比,6~10歲的ASD兒童在運(yùn)用特定運(yùn)動(dòng)技能(例如飛奔、跳躍)和物體控制技能(例如擊打、運(yùn)球、接球、橫滾)時(shí)存在明顯的障礙[39]。
ASD兒童存在站立平衡和姿勢矯正的障礙[55],有研究表明其足底壓力中心(COP)的標(biāo)準(zhǔn)化正中側(cè)外擺值和質(zhì)心分離值顯著高于TD兒童[56]。如果要維持單腿平衡,需要人體精準(zhǔn)地響應(yīng)下肢本體感受器的傳入反饋,通過對(duì)下肢肌肉進(jìn)行增益調(diào)整來維持平衡[57]。上述過程除需感覺運(yùn)動(dòng)控制系統(tǒng)的主動(dòng)參與,還需綜合多個(gè)感覺系統(tǒng)(例如視覺、前庭覺和本體感覺系統(tǒng))整合信息,并基于神經(jīng)反饋迅速矯正動(dòng)作[58],ASD兒童可能在感知覺信息的整合方面存在缺陷,致使其難以在非平衡條件下保持身體姿勢的穩(wěn)定。而在日常生活中,平衡能力很重要,例如完成穿衣、洗澡、騎自行車等各類活動(dòng)[59],ASD兒童在平衡能力上的缺陷可能會(huì)嚴(yán)重影響其自理能力、社交能力和生活質(zhì)量[60]。
3.3? 運(yùn)動(dòng)區(qū)RSFC與ASD兒童動(dòng)作協(xié)調(diào)能力的關(guān)系
ASD兒童大腦運(yùn)動(dòng)區(qū)功能連接異??赡苁菍?dǎo)致其難以熟練執(zhí)行手勢[40],以及難于使用工具和模仿手勢[53]的原因。輔助運(yùn)動(dòng)區(qū)(SMA)和初級(jí)運(yùn)動(dòng)皮層的活動(dòng)與步態(tài)啟動(dòng)有關(guān)[61],且與手和腳的有節(jié)奏運(yùn)動(dòng)和肢體協(xié)調(diào)高度相關(guān)[62]。運(yùn)動(dòng)皮層對(duì)維持正常步態(tài)具有重要作用[63-64],在動(dòng)態(tài)平衡任務(wù)執(zhí)行過程中,大腦輔助運(yùn)動(dòng)皮層可控制身體不發(fā)生左右擺動(dòng)[65]。因此,運(yùn)動(dòng)區(qū)皮質(zhì)功能連接的異??赡軙?huì)嚴(yán)重影響動(dòng)作的協(xié)調(diào)性和身體姿勢的穩(wěn)定性[66]。
有研究表明,運(yùn)動(dòng)區(qū)功能連接以及跨網(wǎng)絡(luò)的神經(jīng)通路可能與動(dòng)作協(xié)調(diào)能力有關(guān)[67-68],軀體運(yùn)動(dòng)區(qū)位于大腦中央溝的前側(cè),主要通過空間感覺和運(yùn)動(dòng)規(guī)劃來控制人體的運(yùn)動(dòng)[69]。在本研究中,左腦和右腦的運(yùn)動(dòng)區(qū)RSFC存在顯著的組間差異,如表2所示,ASD組右腦運(yùn)動(dòng)區(qū)有多條功能連接“邊”的強(qiáng)度顯著低于對(duì)照組。本研究結(jié)果佐證了:1)ASD兒童的運(yùn)動(dòng)區(qū)RSFC未出現(xiàn)偏側(cè)化異常;2)兒童動(dòng)作協(xié)調(diào)能力可能與大腦運(yùn)動(dòng)區(qū)功能連接(RSFC)有關(guān)。
又有研究表明,運(yùn)動(dòng)系統(tǒng)存在利手之間的不對(duì)稱性[70],例如右利手者的大腦左側(cè)中央溝比左利手者深,反之,左利手者的大腦右側(cè)中央溝比右利手者深。功能性磁共振成像(fMRI)研究表明,初級(jí)運(yùn)動(dòng)皮層(M1)具有明顯的利手半球優(yōu)勢,且半球優(yōu)勢與動(dòng)作表征能力相關(guān)[71]。在本研究中,ASD受試者均為右利手,測試結(jié)果顯示其左腦運(yùn)動(dòng)區(qū)的RSFC強(qiáng)度優(yōu)于右腦運(yùn)動(dòng)區(qū),且與TD組相比,左腦運(yùn)動(dòng)區(qū)存在差異“邊”的數(shù)量少于右腦(見表2)。這表明,ASD兒童的大腦運(yùn)動(dòng)區(qū)的發(fā)展與TD兒童一致,也存在利手的不對(duì)稱性,未出現(xiàn)偏側(cè)化異常的現(xiàn)象。4435031E-261A-4E37-9ED9-2ECDDCBC066B
還有研究發(fā)現(xiàn),與TD兒童相比,在第3個(gè)月和第6個(gè)月時(shí)ASD兒童的兄弟姐妹表現(xiàn)出更多的動(dòng)作發(fā)展問題。例如,早期運(yùn)動(dòng)發(fā)展延遲、運(yùn)動(dòng)率低、運(yùn)動(dòng)變異性大、人際同步性弱[72]等。學(xué)齡ASD兒童的動(dòng)作能力也存在預(yù)期的發(fā)展滯后[73],與TD兒童相比,其在基礎(chǔ)運(yùn)動(dòng)等多項(xiàng)測試中得分較低[74]。雖然ASD兒童動(dòng)作能力發(fā)展明顯滯后,但由于其臨床表現(xiàn)的多樣性和復(fù)雜性,很難對(duì)其潛在的神經(jīng)生物學(xué)機(jī)制進(jìn)行解釋。近年來,有研究將ASD個(gè)體的腦網(wǎng)絡(luò)連通異常與特定癥狀進(jìn)行關(guān)聯(lián)分析[75-77],例如:有研究者通過fMRI技術(shù)測試ASD患者腦網(wǎng)絡(luò)同步或功能連接異常[78]時(shí)發(fā)現(xiàn),相比對(duì)照組,ASD患者大腦皮層區(qū)域的功能連接數(shù)量不足。此外,有一項(xiàng)靜息態(tài)fMRI研究顯示,ASD患者雖然在胼胝體體積和灰質(zhì)半球間連通性均出現(xiàn)了顯著降低,但未見兩者之間存在直接的關(guān)聯(lián),這表明結(jié)構(gòu)和功能指標(biāo)是用來衡量半球間連通性的兩個(gè)不同方面[79]。雖然本研究支持運(yùn)動(dòng)區(qū)RSFC與動(dòng)作協(xié)調(diào)能力有關(guān)的觀點(diǎn),但是不足以證明ASD兒童動(dòng)作協(xié)調(diào)能力受損與運(yùn)動(dòng)區(qū)RSFC降低直接相關(guān),這個(gè)問題仍有待進(jìn)一步研究論證。
3.4? 研究不足之處
1)雖然fNIRS設(shè)備有良好的生態(tài)效度,對(duì)腦動(dòng)噪聲的容忍度較高,但是ASD兒童的安坐能力較差,選擇合適的受試者比較困難,本研究僅納入了11名ASD受試者,樣本量偏小且年齡均值稍大于對(duì)照組。2)研究采用ABC量表對(duì)ASD受試者的自閉程度進(jìn)行了評(píng)估,但是未對(duì)其智力發(fā)展水平等進(jìn)行控制。
4? ?結(jié)論
孤獨(dú)癥譜系障礙兒童的動(dòng)作協(xié)調(diào)能力和大腦運(yùn)動(dòng)區(qū)的靜息功能連接強(qiáng)度均滯后于同年齡段以上能力和腦功能有典型的發(fā)展特征的兒童,但是動(dòng)作協(xié)調(diào)能力的受損不一定與大腦運(yùn)動(dòng)區(qū)功能連接強(qiáng)度的減弱有關(guān)。
參考文獻(xiàn):
[1]? GESCHWIND D H, LEVITT P. Autism spectrum disorders: developmental disconnection syndromes[J]. Curr Opin Neurobiol, 2007, 17(1): 103.
[2] JON BAIO E E A. Prevalence of autism spectrum disorder among children aged 8 years — autism and developmental disabilities monitoring network, 11 sites, united states, 2014[J]. Morbidity and Mortality Weekly Report, 2018,67(6):1.
[3]? WOOLFENDEN S, SARKOZY V, RIDLEY G, et al. A systematic review of the diagnostic stability of autism spectrum disorder[J]. Research in Autism Spectrum Disorders, 2012, 6(1): 345.
[4]? WORLEY J A, MATSON J L. Comparing symptoms of autism spectrum disorders using the current DSM-IV-TR diagnostic criteria and the proposed DSM-V diagnostic criteria[J]. Research in Autism Spectrum Disorders, 2012, 6(2): 965.
[5]? FRITH U. Autism: a very short introduction[M]. New York: Oxford University, 2008:110.
[6]? ABRAHAMS B S, GESCHWIND D H. Advances in autism genetics: on the threshold of a new neurobiology[J]. Nat Rev Genet, 2008,9(5): 341.
[7]? DALLAGLIO L, MUKA T, CECIL C, et al. The role of epigenetic modifications in neurodevelopmental disorders: a systematic review[J]. Neurosci Biobehav Rev, 2018, 94: 17.
[8]? ANAGNOSTOU E, TAYLOR M J. Review of neuroimaging in autism spectrum disorders: what have we learned and where we go from here[J]. Mol Autism, 2011, 2(1): 4.
[9]? HERNANDEZ L M, RUDIE J D, GREEN S A, et al. Neural signatures of autism spectrum disorders: insights into brain network dynamics[J]. Neuropsychopharmacology, 2015,40(1): 171.
[10]? PHILIP R C, DAUVERMANN M R, WHALLEY H C, et al. A systematic review and meta-analysis of the fMRI investigation of autism spectrum disorders[J]. Neurosci Biobehav Rev, 2012, 36(2): 901.4435031E-261A-4E37-9ED9-2ECDDCBC066B
[11]? RAKIC M, CABEZAS M, KUSHIBAR K, et al. Improving the? detection of autism spectrum disorder by combining structural and functional MRI information[J]. Neuroimage Clin, 2020, 25: 102181.
[12]? WANG K, MENG L, LIANG W, et al. Altered functional connectivity in early alzheimers disease: a resting-state fMRI study[J]. Human Brain Mapping, 2010, 28(10):967.
[13]? CORDES D, HAUGHTON V M, ARFANAKIS K, et al. Mapping functionally related regions of brain with functional connectivity MR imaging[J]. AJNR Am J Neuroradiol, 2000, 21(9): 1636.
[14]? LOWE M J, MOCK B J, SORENSON J A. Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations[J]. NeuroImage, 1998, 7(2):119.
[15]? BISWAL B, YETKIN F Z, HAUGHTON V M, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI[J]. Magn Reson Med, 1995, 34(4): 537.
[16]? DE LUCA M ,BECKMANN C F ,DE STEFANO N , et al. fMRI resting state networks define distinct modes of long-distance interactions in the human brain[J]. NEUROIMAGE, 2006, 29(4): 1359.
[17]? GREICIUS M D, SRIVASTAVA G, REISS A L, et al. Default-mode network activity distinguishes alzheimers disease from healthy aging: evidence from functional MRI[J]. Proc Natl Acad Sci U S A, 2004, 101(13): 4637.
[18]? VINCENT J L, PATEL G H, FOX M D, et al. Intrinsic functional architecture in the anaesthetized monkey brain[J]. Nature, 2007, 447(7140): 83.
[19]? LITTOW H, HUOSSA V, KARIJALAINEN S, et al. Aberrant functional connectivity in the default mode and central executive networks in subjects with schizophrenia - a whole-brain resting-state ICA study[J]. Front Psychiatry, 2015, 6:26.
[20]? JUST M A, CHERKASSKY V L, KELLER T A, et al. Functional and anatomical cortical underconnectivity in autism: evidence from an fMRI study of an executive function task and corpus callosum morphometry[J]. Cereb Cortex, 2007, 17(4):951.[21]? LUI S, OUYANG L, CHEN Q, et al. Differential interictal activity of the precuneus/posterior cingulate cortex revealed by resting state functional MRI at 3T in generalized vs. partial seizure[J]. Journal of Magnetic Resonance Imaging, 2008, 27(6):1214.
[22]? LOWE M J, PHILLIPS M D, LURITO J T, et al. Multiple sclerosis: low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity initial results[J]. Radiology, 2002, 224(1): 184.4435031E-261A-4E37-9ED9-2ECDDCBC066B
[23]? JUST M A, KELLER T A, MALAVE V L, et al. Autism as a neural systems disorder: a theory of frontal-posterior underconnectivity[J]. Neuroscience & Biobehavioral Reviews,? 2012, 36(4): 1292.
[24]? ANJANA N, BHAT R J. Current perspectives on motor functioning in infants, children, and adults with autism spectrum disorders[J]. American Physical Therapy, 2011, 91(7):1116.
[25]? FOURNIER K A, HASS C J, NAIK S K, et al. Motor coordination in autism spectrum disorders: a synthesis and meta-analysis[J]. Journal of Autism and Developmental Disorders, 2010, 40(10):1227.
[26]? MARSH K L, ISENHOWER R W, RICHARDSON M J, et al. Autism and social disconnection in interpersonal rocking[J]. Front Integr Neurosci, 2013, 7: 4.
[27]? SACREY L A, GERMANI T, BRYSON S E, et al. Reaching and grasping in autism spectrum disorder: a review of recent literature[J]. Front Neurol, 2014, 5: 6.
[28]? HILTON C L, ZHANG Y, WHILTE M R, et al. Motor impairment in sibling pairs concordant and discordant for autism spectrum disorders[J]. Autism, 2012, 16(4): 430.
[29]? DZIUK M A, GIDLEY L J, APOSTU A, et al. Dyspraxia in autism: association with motor, social, and communicative deficits[J]. Dev Med Child Neurol, 2007, 49(10): 734.
[30]? ISENHOWER R W, MARSH K L, RICHARDSON M J, et al. Rhythmic bimanual coordination is impaired in young children with autism spectrum disorder[J]. Research in Autism Spectrum Disorders, 2012, 6(1): 25.
[31]? KOPP S, BECKUNG E, GILLBERG C. Developmental coordination disorder and other motor control problems in girls with autism spectrum disorder and/or attention-deficit/hyperactivity disorder[J]. Research in Developmental Disabilities, 2010, 31(2): 350.
[32]? KUNSHKI A, CHAU T, ANAGONSTOU E. Handwriting difficulties in children with autism spectrum disorders: a scoping review[J]. Journal of Autism and Developmental Disorders, 2011, 41(12):1706.
[33]? PROVOST B H S L. Levels of gross and fine motor development in young children with autism spectrum disorder[J]. Physical and Occupational Therapy in Pediatrics, 2007, 3(27): 21.
[34]? FREITAG C M, KLESER C, SCHNEIDER M, et al. Quantitative assessment of neuromotor function in adolescents with high functioning autism and asperger syndrome[J]. Journal of Autism and Developmental Disorders, 2007, 37(5):948.
[35]? BHAT A N, LANDA R J, JAMES C C. Current perspectives on motor functioning in infants, children, and adults with autism spectrum disorders[J]. Physical Therapy, 2011, 91(7): 1116.4435031E-261A-4E37-9ED9-2ECDDCBC066B
[36]? BROWN T, LALOR A. The movement assessment battery for children-second edition (MABC-2): A review and critique[J]. Physical & Occupational Therapy in Pediatrics, 2009, 29(1):86.
[37]? KITA Y, SUZUKI K, HIRATA S, et al. Applicability of the movement assessment battery for children-second edition to Japanese children: a study of the age band 2[J]. Brain and Development, 2016, 38(8):706.
[38]? AMENT K, MEJJA A, BUHLMAN R, et al. Evidence for specificity of motor impairments in catching and balance in children with autism[J]. Journal of Autism and Developmental Disorders, 2015, 45(3):742.
[39]? PAN C Y T C. Fundamental movement skills in children diagnosed with autism spectrum disorders and attention deficit hyperactivity disorder[J]. Journal of Autism and Developmental Disorders, 2009(39): 1694.
[40]? CAI D C, WANG Z, BO T, et al. MECP2 Duplication causes aberrant GABA pathways, circuits and behaviors in transgenic monkeys: neural mappings to patients with autism[J]. J Neurosci, 2020, 40(19):3799.
[41]? MISSIUNA C R. Exploring assessment tools and the tar- get intervention for children with developmental coordination disorder[J]. Phys Occup Ther Pediatr,? 2006, 26(1/2):71.
[42]? CRAIG F, LORENZO A, LUCARELLI E, et al. Motor competency and social communication skills in preschool children with autism spectrum disorder[J]. Autism Res, 2018, 11(6): 893.
[43]? LIU T, KELLY J, DAVIS L, et al. Nutrition, BMI and motor competence in children with autism spectrum disorder[J]. Medicina (Kaunas), 2019, 55(5):135.
[44]? LIU T, BRESLIN C M. The effect of a picture activity schedule on performance of the MABC-2 for children with autism spectrum disorder[J]. Res Q Exerc Sport, 2013, 84(2): 206.
[45]? SCHULZ J H. Structural validity of the movement ABC-2 test[J]. Res Develop Disabil, 2011(32): 1361.
[46]? XU J, LIU X, ZHANG J, et al. FC-NIRS: A functional connectivity analysis tool for near-infrared spectroscopy data[J]. Biomed Res Int, 2015:1.
[47]? MANJIVIONA J P. Comparison of asperger syndrome and high-functioning autistic children on a test of motor impairment[J]. Journal of Autism and Developmental Disorders, 1995(25):23.
[48]? DEMYER M K, HINGTGEN J N, JACKSON R K. Infantile autism reviewed: a decade of research[J]. Schizophrenia Bulletin, 1981, 7(3): 388.
[49]? FABBRI-DESTRO M C. Planning actions in autism[J]. Experimental Brain Research, 2009(192): 521.4435031E-261A-4E37-9ED9-2ECDDCBC066B
[50]? JASMIN E, JASMIN E, COUTURE M, et al. Sensori-motor and daily living skills of preschool children with autism spectrum disorders[J]. Journal of Autism and Developmental Disorders, 2009, 39(2):231.
[51]? MARI M M. Autism and movement disturbance[J]. Autism: Mind and brain, 2003: 225.
[52]? GHAZIUDDIN M B. Clumsiness in autism and asperger syndrome: a further report[J]. Journal of Intellectual Disability Research, 1998, 1(42): 43.
[53]? EGGLESTON M, WATKINS W, FRAMPTON C, et al. Coordination difficulties and self-esteem: the views of children, adolescents, and their parents[J]. Aust Occup Ther J, 2020, 67(5):437.
[54]? REID G O C J. The autism spectrum disorders: physical activity instruction.[J]. Palaestra, 2003, 2(19): 20.
[55]? PAPADOPOULOS N, MCGINLEY J, TONGE B, et al. Motor proficiency and emotional/behavioural disturbance in autism and aspergers disorder: another piece of the neurological puzzle?[J]. Autism, 2012, 16(6): 627.
[56]? FOURNIER K A, KIMBERG C I, RADONOVICH K J, et al. Decreased static and dynamic postural control in children with autism spectrum disorders[J]. Gait Posture, 2010, 32(1): 6.
[57]? GOWEN E, HAMILTON A. Motor abilities in autism: a review using a computational context[J]. J Autism Dev Disord, 2013, 43(2): 323.
[58] STEINDL R K. Effect of age and sex on maturation of sensory systems and balance control[J]. Developmental Medicine and Child Neurology, 2006(48): 477.
[59]? JASMIN E C. Sensori-motor and daily living skills of preschool cwith autism spectrum disorders[J]. Journal of Autism and Developmental Disorders, 2009, 2(39):231.
[60]? LEARY M R. Moving on autism and movement disturbance[J]. Mental Retardation, 1996, 1(34):39.
[61]? YAZAWA S, SHIBASAKI H, IKEDA A, et al. Cortical mechanism underlying externally cued gait initiation studied by contingent negative variation[J]. Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control, 1997, 105(5): 390.
[62]? DEBAERE F, SWINNEN S P, BEATSE E, et al. Brain areas involved in interlimb coordination: a distributed network[J]. Neuroimage, 2001, 14(5): 947.
[63]? SUZUKI M, MIYAI I, ONO T, et al. Activities in the frontal cortex and gait performance are modulated by preparation: an fNIRS study[J]. NeuroImage, 2008, 39(2): 600.
[64]? SUZUKI M, MIYAI I, ONO T, et al. Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: an optical imaging study[J]. Neuroimage, 2004, 23(3): 1020.4435031E-261A-4E37-9ED9-2ECDDCBC066B
[65]? KARIM H, SCHMIDT B, DART D, et al. Functional near-infrared spectroscopy (fNIRS) of brain function during active balancing using a video game system[J]. Gait & Posture,? 2012, 35(3): 367.
[66]? DUYSENS J, SEVERENS M, NIENHUIS B. How can active cycling produce less brain activity than passive cycling?[J]. Clinical Neurophysiology, 2013, 124(2): 217.
[67]? BARBER A D, SRINIVASAN P, JOEL S E, et al. Motor“dexterity”: evidence that left hemisphere lateralization of motor circuit connectivity Is associated with better motor performance in children[J]. Cerebral Cortex, 2012, 22(1):51.
[68]? SEIDLER R, ERDENIZ B, KOPPELMANS V, et al. Associations between age, motor function, and resting state sensorimotor network connectivity in healthy older adults[J]. NeuroImage, 2015, 108: 47.
[69]? FRANCESCHINI M A, FANTINI S, THOMPSON J H, et al. Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging[J]. Psychophysiology, 2003, 40(4): 548.
[70]? AMUNTS K, J?魧NCKE L, MOHLBERG H, et al. Interhemispheric asymmetry of the human motor cortex related to handedness and gender[J]. Neuropsychologia, 2000, 38(3): 304.
[71]? HAMMOND G. Correlates of human handedness in primary motor cortex: a review and hypothesis[J]. Neurosci Biobehav Rev, 2002, 26(3): 285.
[72]? STAPLES K L, REID G. Fundamental movement skills and autism spectrum disorders[J]. Journal of Autism and Developmental Disorders, 2010, 40(2): 209.
[73]? BERKELEY S L. Locomotor and object control skills of children diagnosed with autism[J]. Adapted Physical Activity Quarterly, 2001(18): 405.
[74]? LANDA R, GARRETT-MAYER E. Development in infants with autism spectrum disorders:a prospective study[J]. Journal of Child Psychology and Psychiatry, 2006, 47(6): 629.
[75]? DINSTEIN I, PIERCE K, EYLER L, et al. Disrupted neural synchronization in toddlers with autism[J]. Neuron, 2011, 70(6): 1218.
[76]? WENG S, WIGGINS J L, PELTIER S J, et al. Alterations of resting state functional connectivity in the default network in adolescents with autism spectrum disorders[J]. Brain Research, 2010, 1313(1): 202.
[77]? UDDIN L Q, SUPEKAR K, LYNCH C J, et al. Salience network-based classification and prediction of symptom severity in children with autism[J]. JAMA Psychiatry, 2013, 70(8): 869.
[78]? JUST M A, CHERKASSKY V L, KELLER T A, et al. Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity[J]. Brain, 2004, 127( 8): 1811.
[79]? ANDERSON J S, DRUZGAL T J, FROEHLICH A, et al. Decreased interhemispheric functional connectivity in autism[J]. Cereb Cortex, 2011, 21(5): 1134.
收稿日期:2021-04-28
基金名稱:北京市社會(huì)科學(xué)基金項(xiàng)目(19YTB011)。
第一作者簡介:張亞茹(1995—),女,碩士,研究方向?yàn)樘飶嚼碚撆c方法,E-mail:591471705@qq.com。
通信作者簡介:文世林(1980—),男,博士,副教授,研究方向?yàn)樯眢w活動(dòng)促進(jìn)腦健康,E-mail:313811819@qq.com。
作者單位:1.首都體育學(xué)院,北京 100191;2. 北京市健翔學(xué)校,北京 100086。
1.Capital University of Physical Education and Sports, Beijing 100191, China ; 2.Beijing Jianxiang School,Beijing 100086, China.4435031E-261A-4E37-9ED9-2ECDDCBC066B
首都體育學(xué)院學(xué)報(bào)2022年2期