• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      miR-138-5p在癌癥發(fā)展中的研究進(jìn)展

      2022-05-09 16:09:01朱家焱吳映媚劉志輝周迎春
      關(guān)鍵詞:胰腺癌癌細(xì)胞靶向

      朱家焱 吳映媚 劉志輝 周迎春

      【摘要】 隨著癌癥發(fā)病率的逐年增加,癌癥已經(jīng)成為全世界國家的主要死亡原因。早期診斷、早期治療對癌癥發(fā)病起到最關(guān)鍵的作用。癌癥的發(fā)生不僅是由于體內(nèi)的基因突變,其表觀遺傳學(xué)的紊亂調(diào)控也是其發(fā)生的重要原因。近年來,micro RNAs在多種疾病中的生物進(jìn)程受到關(guān)注,miR-138-5p在癌癥的發(fā)生發(fā)展過程中可以起到抑癌基因的作用進(jìn)而抑制癌細(xì)胞的侵入、轉(zhuǎn)移和凋亡。在靶向治療的應(yīng)用方面,miR-138-5p在癌癥的發(fā)生發(fā)展和診治過程中發(fā)揮著重要的作用。本文就miR-138-5p在癌癥發(fā)展中的研究進(jìn)展作一簡要綜述。

      【關(guān)鍵詞】 miR-138-5p 癌癥 抑癌基因

      Research Progress of miR-138-5p in Cancer Development/ZHU Jiayan, WU Yingmei, LIU Zhihui, ZHOU Yingchun. //Medical Innovation of China, 2022, 19(09): -184

      [Abstract] As the incidence of cancer increases year by year, cancer has become the main cause of death in countries all over the world. Early diagnosis and early treatment play the most critical role in the incidence of cancer. The occurrence of cancer is not only due to genetic mutations in the body, but also the disordered regulation of its epigenetics is also an important reason for its occurrence. In recent years, the biological processes of micro RNAs in a variety of diseases have attracted attention, miR-138-5p can act as a tumor suppressor gene in the development and progression of cancer, thereby inhibiting the invasion, metastasis and apoptosis of cancer cells. In the application of targeted therapy, miR-138-5p plays an important role in the development, diagnosis and treatment of cancer. This paper reviews the recent progress of miR-138-5p’s role in development of cancer.

      [Key words] miR-138-5p Cancer Tumor suppressor gene

      First-author’s address: The First Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, China

      doi:10.3969/j.issn.1674-4985.2022.09.044

      腫瘤是全世界國家的一大死亡原因。腫瘤的發(fā)生是由體內(nèi)和體外等諸多因素共同造成的。人類基因組中的RNA大多是非編碼RNA(non-coding RNA,ncRNA),包括snRNA、lncRNA、microRNA、circRNA等,均不編碼蛋白質(zhì)。microRNA是指長度20~22個(gè)核苷酸的非編碼RNA,參與許多調(diào)節(jié)途徑包括發(fā)育、病毒防御、造血過程、器官形成、細(xì)胞增殖和凋亡、脂肪代謝等。

      1 癌癥

      癌癥是全世界所有國家的主要死亡原因。除了現(xiàn)有的負(fù)擔(dān)之外,隨著人口增長、年齡增長和采取增加癌癥風(fēng)險(xiǎn)的生活方式行為,癌癥病例和死亡人數(shù)預(yù)計(jì)將迅速增加[1]。腫瘤是由多因素共同作用誘發(fā)的機(jī)體局部組織細(xì)胞增生所形成的新生物,如分子遺傳變異(基因突變、基因拷貝數(shù)變異、全新基因的產(chǎn)生、染色體異常改變、端粒酶活性存在等)[2],外界因素(煙霧、輻射、病毒、不良生活習(xí)慣等)。腫瘤的形成是一個(gè)長期而漸進(jìn)的過程,但是一般都會經(jīng)歷以下幾個(gè)過程:癌前病變階段、原位癌、浸潤癌、局部或區(qū)域性淋巴結(jié)轉(zhuǎn)移、遠(yuǎn)處播散。因此,在腫瘤發(fā)生早期階段的及時(shí)診斷和治療對患者的預(yù)后尤為重要。當(dāng)今,腫瘤的主要治療手段有:化療、放療、手術(shù),還有近幾年興起的免疫療法和靶向治療。研究者依然致力于尋找有效的治療靶點(diǎn)。

      2 miRNA

      2.1 miRNA的發(fā)現(xiàn)與來源 微小RNA(microRNAs)是20~22個(gè)核苷酸(nt)組成的廣泛分布于病毒、植物以及人類等各種生物體中的內(nèi)源性非蛋白編碼小分子RNA,通過靶向結(jié)合mRNA的3’非翻譯區(qū)(3-untranslated region,3’UTR),導(dǎo)致靶基因降解,進(jìn)而阻斷蛋白編碼基因的表達(dá)來影響其靶基因的生物學(xué)功能[3]。1993年,Lee等[4]在秀麗小桿線蟲中發(fā)現(xiàn)了lin-4基因,其產(chǎn)物長度為22個(gè)nt的非編碼小RNA,可以和另一個(gè)lin-14基因編碼的mRNA進(jìn)行配對結(jié)合,進(jìn)一步調(diào)控lin-14蛋白的翻譯和生成。到目前為止,人體中的多種miRNA在癌癥的發(fā)生發(fā)展過程中作為原癌基因或抑癌基因來控制相關(guān)蛋白的表達(dá)[5]。在胃癌、乳腺癌、非小細(xì)胞肺癌等的癌癥細(xì)胞系中都證明了,調(diào)控miRNA可以調(diào)節(jié)相關(guān)蛋白的合成,進(jìn)一步控制腫瘤細(xì)胞的增殖、遷移和侵襲能力[6-8]。

      2.2 miRNA的生成與作用原理 miRNA基因大多位于基因的間隔區(qū)域,在細(xì)胞核內(nèi)大多數(shù)由RNA聚合酶Ⅱ(RNA polymerase Ⅱ)合成一個(gè)長度約為1 000 nt的長鏈RNA即初始轉(zhuǎn)錄本(primary miRNA,pri-miRNA),然后pri-miRNA被Drosha-RNase酶剪切成帶有莖環(huán)結(jié)構(gòu)的由70個(gè)核苷酸組成的miRNA前體(pre-miRNA),miRNA前體在Ras相關(guān)核蛋白的GTP酶(Ran-GTP)依賴的分子輸出蛋白5(Exportin5)的作用下從細(xì)胞核中被運(yùn)送到胞漿中,然后在胞漿中被特異性酶RNase Ⅱ-Dicer剪切成長度為19~25 nt的雙鏈miRNA,成熟的miRNA可以與靶基因的特異性蛋白結(jié)合形成miRNA沉默復(fù)合物(RNA-ininduced silencing complex,RISC),此復(fù)合物最終可以和靶基因的mRNA的3’非翻譯區(qū)(3’-UTR)結(jié)合進(jìn)而調(diào)控相關(guān)蛋白的表達(dá)[9-12]。

      2.3 miR-138-5p miR-138在脊椎動物中高度保守[13]。兩個(gè)主要轉(zhuǎn)錄物pri-miR-138-1和pri-miR-138-2分別編碼在3號染色體(3p21)和16號染色體(16q13)上,并產(chǎn)生成熟的miR-138[14-15]。而miR-138-5p是miR-138家族成員之一,位于染色體Xq38.13[16]。目前研究證明,miR-138-5p在軟骨細(xì)胞凋亡、帕金森病、骨髓間充質(zhì)干細(xì)胞分化、椎間盤退變、心臟衰竭等的發(fā)生發(fā)展過程中均發(fā)揮著重要作用。也有很多研究證明在胰腺癌、胃癌、膠質(zhì)母細(xì)胞瘤等癌癥中,miR-138-5p對癌細(xì)胞的增殖、遷移具有抑制作用[17-19]。本文主要就miR-138-5p在腫瘤生長、轉(zhuǎn)移、自噬、免疫、耐藥、診斷、預(yù)后、生物治療的研究進(jìn)展進(jìn)行綜述。

      3 miR-138-5p對腫瘤增殖的影響

      癌癥的三大特性之一是無限生長。由于各種致癌因素,正常細(xì)胞突變?yōu)榘┘?xì)胞,而癌細(xì)胞能夠無限增殖、破壞正常的細(xì)胞和鄰近組織。正是因?yàn)榘┘?xì)胞的增殖不受身體內(nèi)部控制的特點(diǎn),使得癌癥的治療變得十分的困難,因此抑制癌細(xì)胞無限增殖的特性對于抑制腫瘤發(fā)展起到重要作用。

      3.1 miR-138-5p對腫瘤細(xì)胞生長的影響 叉頭盒C1(FOXC1,601090,NG_009368.1),位于染色體6p25,是屬于FOX基因家族的轉(zhuǎn)錄因子[20]。研究發(fā)現(xiàn),F(xiàn)OXC1不僅在正常生理和病理?xiàng)l件下具有重要作用,而且是癌癥進(jìn)展的重要介質(zhì)[21]。在胰腺癌中發(fā)現(xiàn)FOXC1在胰腺癌細(xì)胞系和原發(fā)性胰腺癌組織中總體上高表達(dá),以及發(fā)現(xiàn)FOXC1下調(diào)對胰腺癌細(xì)胞生長具有抑制(抗增殖)作用[22],支持了FOXC1可能在胰腺癌中作為增殖因子的觀點(diǎn)。在前列腺癌中,Huang等[17]和Zhang等[23]分別經(jīng)過細(xì)胞實(shí)驗(yàn)和臨床腫瘤標(biāo)本實(shí)驗(yàn)驗(yàn)證了miR-138-5p與FOXC1靶向結(jié)合,并下調(diào)FOXC1分子,對腫瘤的增殖具有抑制作用。在肺癌中,必需脂肪酸DHA及其代謝產(chǎn)物resolvin D1(RvD1)經(jīng)由miR-138-5p/FOXC1途徑抑制幾種小鼠癌細(xì)胞系中的腫瘤生長[24]。

      細(xì)胞周期蛋白(cyclin)和細(xì)胞周期蛋白依賴性激酶(CDK)是細(xì)胞周期持續(xù)進(jìn)行的重要物質(zhì)。cyclin D3(CCND3)是D細(xì)胞周期蛋白家族的三個(gè)知名成員之一,在哺乳動物細(xì)胞周期機(jī)制中起著至關(guān)重要的作用[25-26]。CCND3激活后,周期蛋白依賴性激酶與CCND3結(jié)合并激活,然后CDK磷酸化一系列蛋白質(zhì)以釋放E2F轉(zhuǎn)錄因子,從而促進(jìn)從G0/G1期到S期的發(fā)展[27-29]。在膠質(zhì)母細(xì)胞瘤中,驗(yàn)證了miR-138-5p與CCND3的3’非翻譯區(qū)結(jié)合,抑制CCND3的表達(dá),進(jìn)而阻滯了細(xì)胞間期G0/G1向S期的進(jìn)程,最終抑制了膠質(zhì)母細(xì)胞瘤細(xì)胞的生長和克隆[19]。在肺癌中,細(xì)胞周期蛋白依賴性激酶8(CDK8)也被驗(yàn)證為miR-138-5p的靶基因,miR-138-5p地過表達(dá)顯著抑制CDK8的表達(dá),并顯著增加G0/G1期的細(xì)胞數(shù)量使細(xì)胞生長停滯[30]。磷脂酰肌醇三激酶/蘇氨酸特異性蛋白激酶(phosphatidylinositide 3-kinases/protein kinase B,PI3K/AKT)可能是miR-138-5p在乳腺癌中的一條重要通路。Rasoolnezhad等[31]研究顯示miR-138-5p靶向作用于PD-L1,通過抑制PI3K/AKT途徑,發(fā)揮抗細(xì)胞增殖作用。在胃癌中,miR-138-5p靶向DEK抑制胃癌細(xì)胞增殖[32]。在膀胱癌,miR-138-5p靶向BIRC5抑制Survivin的表達(dá),進(jìn)而抑制膀胱癌細(xì)胞增殖[33]。

      3.2 miR-138-5p對腫瘤細(xì)胞凋亡的影響 hTERT是端粒酶的催化亞基,在正常組織中被抑制,但在大多數(shù)人類腫瘤和永生組織中高表達(dá),它也可能在腫瘤發(fā)生中起重要作用[34-36]。在結(jié)直腸癌中,miR-138-5p與hTERT的3’UTR結(jié)合,引起結(jié)直腸癌細(xì)胞凋亡增加[37]。在人視網(wǎng)膜母細(xì)胞瘤中,miR-138-5p與丙酮酸脫氫酶激酶1(PDK1)靶向結(jié)合進(jìn)而抑制癌細(xì)胞生長,促進(jìn)癌細(xì)胞凋亡[38]。在乳腺癌中,Rasoolnezhad等[31]驗(yàn)證了miRNA-138-5p通過上調(diào)Caspase-9和Caspase-3并在亞G1期阻滯細(xì)胞周期,誘導(dǎo)乳腺癌細(xì)胞凋亡。

      4 miR-138-5p在腫瘤侵襲轉(zhuǎn)移中的作用

      4.1 miR-138-5p對上皮間質(zhì)轉(zhuǎn)化的作用 上皮-間質(zhì)轉(zhuǎn)化(EMT)代表一個(gè)生物程序,在此期間上皮細(xì)胞失去其上皮細(xì)胞表型并獲得間皮的表型。癌癥中的EMT通常與抗凋亡,侵入組織,癌癥干細(xì)胞特征和癌癥治療耐藥性有關(guān)。與EMT相關(guān)的轉(zhuǎn)錄因子有很多,其中研究最廣泛的是TWIST1、TWIST2、SNAIL1、SNAIL2、ZEB1和ZEB2,所有這些都直接抑制了E-cadherin的表達(dá),抑制上皮表型,并促進(jìn)向間質(zhì)狀態(tài)的過渡。

      ZEB2是一種轉(zhuǎn)錄因子,包含一個(gè)同源結(jié)構(gòu)域和兩個(gè)獨(dú)立的鋅指簇[39]。在EMT期間,ZEB2與E-鈣粘蛋白基因啟動子中的CACCT(G)結(jié)合,從而抑制其表達(dá)[40]。在肺腺癌中miR-138-5p靶向并下調(diào)ZEB2[41],不管肺腺癌細(xì)胞是否用TGF-β1干預(yù),敲除ZEB2依然抑制A549和H1299細(xì)胞的EMT、增殖和轉(zhuǎn)移。此外,當(dāng)miR-138-5p抑制劑和si-ZEB2共轉(zhuǎn)染到肺腺癌細(xì)胞中時(shí),si-ZEB2的抑制作用被miR-138-5p抑制劑顯著逆轉(zhuǎn),這表明,miR138-5p通過靶向ZEB2抑制肺腺癌細(xì)胞的上皮間質(zhì)轉(zhuǎn)化、生長和轉(zhuǎn)移。

      波形蛋白(Vimentin)是最豐富和高度保守的Ⅲ型中間絲蛋白之一,參與細(xì)胞黏附、遷移和各種血管功能的組織和調(diào)節(jié)。它主要在間充質(zhì)來源的細(xì)胞中表達(dá),并經(jīng)常被用作EMT的標(biāo)志[42]。在胰腺癌中,miR-138-5p直接靶向結(jié)合VIM并使其表達(dá)下降,表明VIM通常在胰腺癌細(xì)胞系和癌組織中高表達(dá),且下調(diào)VIM對胰腺癌細(xì)胞侵襲具有抑制(或抗增殖)作用[43]。

      Snail作為導(dǎo)致EMT的多種信號通路的關(guān)鍵調(diào)節(jié)因子,其表達(dá)與腫瘤轉(zhuǎn)移密切相關(guān)[44]。脊椎動物中已鑒定出三種Snail家族蛋白質(zhì):Snail1(Snail)、Snail2(Slug)和Snail3(Smuc),所有家族成員都編碼轉(zhuǎn)錄阻遏物,并共享一個(gè)具有高度保守的C末端結(jié)構(gòu)域的類似組織,該結(jié)構(gòu)域包含4~6個(gè)C2H2型鋅指,并結(jié)合到目標(biāo)基因啟動子中的E盒基序(5’-CANTG-3’)[45]。NFIB不僅能參與正常的軀體發(fā)育,它還能作為一種癌基因參與多種癌癥的發(fā)生,在結(jié)直腸癌中,Xu等[46]驗(yàn)證了miR-138-5p通過靶向結(jié)合NFIB,抑制NFIB-Snail1軸,從而抑制結(jié)直腸癌細(xì)胞的遷移和增強(qiáng)對化療藥物的敏感性。

      E-cadherin的丟失以及N-cadherin擴(kuò)增常與癌癥遷移和侵襲有關(guān)[47]。含菱形結(jié)構(gòu)域蛋白1(rhomboid domain-containing protein 1,RHBDD1)在許多癌癥中失調(diào),是癌細(xì)胞細(xì)胞生物學(xué)行為的有效調(diào)節(jié)因子[48]。值得注意的是,RHBDD1作為乳腺細(xì)胞凋亡的抑制劑和細(xì)胞增殖、遷移和侵襲的誘導(dǎo)劑[49]。在Zhao等[50]研究中,miR-138-5p過表達(dá)通過靶向結(jié)合RHBDD1,顯著增加了E-cadherin,降低了N-cadherin和Vimentin,表明miR-138-5p是RHBDD1的一個(gè)強(qiáng)有力的轉(zhuǎn)錄后調(diào)節(jié)因子,阻斷了癌細(xì)胞的遷移和侵襲。

      4.2 miR-138-5p對血管形成的作用 腫瘤為了在無氧和營養(yǎng)缺乏的環(huán)境中長到直徑超過1~2 mm,必須發(fā)展血管培養(yǎng),以有效運(yùn)輸氧氣和營養(yǎng)物質(zhì)[51]。許多miRNAs可以調(diào)控促血管生成因子生成,進(jìn)而影響腫瘤血管的形成,miR-138-5p也不例外。

      表皮生長因子受體(epidermal growth factor receptor,EGFR)通過調(diào)節(jié)細(xì)胞周期和血管生成與侵襲性腫瘤生長相關(guān)[52]。在胃癌中,EGFR在胃癌組織中過表達(dá),過表達(dá)miR-138-5p靶向結(jié)合EGFR,通過轉(zhuǎn)錄后途徑影響EGFR在胃癌細(xì)胞中的生物活性,并抑制胃癌細(xì)胞的增殖和遷移[53]。在肺癌中,miR-138-5p靶向結(jié)合EGFR的3’-UTR并調(diào)控PI3K/AKT途徑抑制了細(xì)胞的增殖、遷移和侵襲[54]。

      5 miR-138-5p在腫瘤自噬中的作用

      自噬是在細(xì)胞內(nèi)分解代謝的過程,并且通過消除受損的細(xì)胞成分來控制蛋白質(zhì)和細(xì)胞器質(zhì)量。自噬具有雙重作用,在癌癥早期,自噬能抑制癌癥的發(fā)生發(fā)展[55],在癌癥發(fā)展后期,癌癥會誘導(dǎo)自噬并且依賴于自噬,因?yàn)榘┌Y可以利用自噬的回收來維持線粒體功能和能量穩(wěn)態(tài),從而滿足增長和增殖的需求。

      自噬相關(guān)蛋白(autophagy-related proteins,ATG)在癌癥的自噬過程中起著至關(guān)重要的作用。在非小細(xì)胞肺癌中,順鉑耐藥A549細(xì)胞中,三結(jié)構(gòu)域蛋白65(tripartite motif-containing proteins 65,TRIM65)的下調(diào)經(jīng)由上調(diào)miR-138-5p并靶向結(jié)合并下調(diào)ATG7,進(jìn)而抑制自噬和順鉑耐藥[56]。在CD133、CD44陽性的肺癌干樣細(xì)胞中發(fā)現(xiàn)自噬明顯增強(qiáng),miR-138-5p被上調(diào),進(jìn)一步研究發(fā)現(xiàn)自噬有助于維持肺癌干樣細(xì)胞的自我更新和侵襲能力,而過表達(dá)的miR-138-5p通過抑制ATG7介導(dǎo)的自噬進(jìn)而阻斷肺癌干樣細(xì)胞的自我更新和侵襲發(fā)揮抗腫瘤作用[57]。沉默調(diào)節(jié)因子1(sirtuin1,SIRT1)被認(rèn)為是一種響應(yīng)氧和葡萄糖剝奪而轉(zhuǎn)移到細(xì)胞質(zhì)中的核蛋白,導(dǎo)致對凋亡的敏感性增加[58]。有報(bào)道稱SIRT1在自噬中起著至關(guān)重要的作用[59]。在胰腺癌中,研究者發(fā)現(xiàn)miR-138-5p特異性靶向SIRT1 3’非翻譯區(qū),并通過降低SIRT1的水平抑制自噬,SIRT1乙?;疐oxO1,并通過FoxO1/Rab7調(diào)節(jié)自噬[60]。SIRT1或Rab7敲除阻斷了SIRT1/FoxO1/Rab7軸,并抑制了miR-138-5p誘導(dǎo)的自噬抑制。

      6 miR-138-5p在腫瘤免疫中的作用

      miR-138-5p靶向PD-L1,下調(diào)非小細(xì)胞肺癌中PD-L1,使miR-138-5p處理的小鼠的腫瘤浸潤性樹突狀細(xì)胞上的CD80、CD86和I-ab等共刺激分子表達(dá)水平更高[61],表明樹突狀細(xì)胞的成熟性增強(qiáng),降低對樹突狀細(xì)胞(DC)的抑制作用,促進(jìn)CTL介導(dǎo)的腫瘤細(xì)胞殺傷,增加T細(xì)胞增殖。此外,miR-138-5p還靶向PD-L1,下調(diào)樹突狀細(xì)胞中的PD-L1,以減輕腫瘤浸潤性DC對T細(xì)胞的抑制。因此,miR-138-5p不僅具有抑制腫瘤細(xì)胞增殖的功能,還通過下調(diào)腫瘤細(xì)胞上的PDL1來調(diào)節(jié)免疫細(xì)胞。在乳腺癌中,miR-138-5p靶向結(jié)合乳腺癌細(xì)胞上的PD-L1,抑制PD-L1的表達(dá),并調(diào)節(jié)T細(xì)胞中的效應(yīng)細(xì)胞因子(TNF-α and IFN-γ顯著上調(diào),IL-10下調(diào)),抑制T細(xì)胞耗竭[31]。

      7 miR-138-5p在臨床腫瘤中的作用

      7.1 miR-138-5p在腫瘤診斷和預(yù)后中的作用 腫瘤嚴(yán)重影響患者的生活質(zhì)量,早診斷早治療至關(guān)重要。最近這些年,不同腫瘤中miRNA的表達(dá)差異成為大家研究的熱點(diǎn),與腫瘤標(biāo)志物相結(jié)合,有助于腫瘤的篩查和預(yù)后診斷。

      Zhao等[16]分析發(fā)現(xiàn),與結(jié)直腸正常組織相比,miR-138-5p在結(jié)直腸癌組織中低表達(dá),miR-138-5p低表達(dá)與晚期臨床分期、淋巴結(jié)轉(zhuǎn)移、較差的總體生存率相關(guān),此外還是結(jié)直腸癌患者生存不良的獨(dú)立預(yù)后因素。另外miRNAs可用于肺癌的早期診斷,利用血清hsa-miR-138-5p作為生物標(biāo)志物來區(qū)分良性結(jié)節(jié)和惡性結(jié)節(jié),可以降低CT掃描的假陽性率[62]。Yang等[63]發(fā)現(xiàn)miR-138-5p在人類肝細(xì)胞癌組織中和肝細(xì)胞癌細(xì)胞系明顯表達(dá)下調(diào),同時(shí),與肝細(xì)胞癌的高分期和遠(yuǎn)處轉(zhuǎn)移密切相關(guān),此外,miR-138-5p水平較低的肝細(xì)胞癌患者的總生存期明顯縮短。在區(qū)分肌肉浸潤性膀胱癌和非肌肉浸潤性膀胱癌時(shí)[64],可發(fā)現(xiàn)miR-138-5p在肌肉浸潤性膀胱癌中顯著降低,另外還觀察到miR-138-5p在腫瘤分期pT2和pT3~4的腫瘤之間的進(jìn)一步下調(diào),表明低表達(dá)與侵襲性表型相關(guān)。

      7.2 miR-138-5p在腫瘤耐藥中的作用 腫瘤耐藥在腫瘤的發(fā)生發(fā)展和治療過程中,是一個(gè)必然經(jīng)歷的環(huán)節(jié),也是在腫瘤治療上的一個(gè)極為重要的難題。在鼻咽癌,GAO等[65]發(fā)現(xiàn)了miR-138-5p通過靶向下調(diào)EIF4EBP1,EIF4EBP1的沉默增強(qiáng)了鼻咽癌細(xì)胞的輻射敏感性。在結(jié)直腸癌,miR138-5p靶向NFIB-Snail1軸以抑制結(jié)直腸癌細(xì)胞的遷移和氟尿嘧啶、多柔比星和順鉑化療耐藥性[46]。在胃癌中,miR-138-5p在順鉑耐藥的SGC7901/DDP細(xì)胞系中的表達(dá)水平明顯較低,Ning等[66]表明,上調(diào)miR-138-5p可能通過靶向抑制ERCC1和ERCC4的表達(dá)來增強(qiáng)DNA損傷修復(fù)和順鉑敏感性。在非小細(xì)胞肺癌,可以通過上調(diào)miR-138-5p的表達(dá)抑制GPR124增強(qiáng)肺癌細(xì)胞吉非替尼的敏感性[67]。前列腺癌中,高表達(dá)miR-138-5p靶向結(jié)合并抑制EZH2,提高了前列腺癌細(xì)胞對多西紫杉醇的敏感性[68]。肝癌中,miR-138-5p的增高可以靶向抑制長非編碼RNA UCA1,通過抑制AKT/mTOR途徑增強(qiáng)肝細(xì)胞癌細(xì)胞奧沙利鉑的敏感性[69]。

      8 結(jié)語與展望

      腫瘤是造成死亡的一大原因,許多研究致力于揭示腫瘤的發(fā)生發(fā)展及其惡性生物學(xué)行為,但是其形成、轉(zhuǎn)移和耐藥機(jī)制至今仍不明確。miRNA與癌癥之間的緊密聯(lián)系已經(jīng)被大量研究證明,其中miR-138-5p在不同腫瘤組織和腫瘤細(xì)胞較正常組織相比存在顯著差異,且其在腫瘤發(fā)生、侵襲、轉(zhuǎn)移、耐藥的過程中發(fā)揮不可或缺的作用,因此miR-138-5p在癌癥中的診斷和治療中的價(jià)值日益凸顯。

      總而言之,近年來miR-138-5p在腫瘤領(lǐng)域的研究越來越深入,其中被闡明的作用機(jī)制只是冰山一角,仍有很多未被闡明的機(jī)制。miR-138-5p不僅可以作為腫瘤診斷預(yù)后判斷的指標(biāo),為腫瘤的生物治療提供靶點(diǎn),還可能為臨床治療提供了新方向,而其中的更多機(jī)制,值得去探討。

      參考文獻(xiàn)

      [1] TORRE L A,SIEGEL R L,WARD E M,et al.Global Cancer Incidence and Mortality Rates and Trends--An Update[J].Cancer Epidemiol Biomarkers Prev,2016,25(1):16-27.

      [2]王斐,侯雨杉,楊冬.腫瘤發(fā)生發(fā)展和轉(zhuǎn)移過程中的分子進(jìn)化機(jī)制[J].中國科學(xué):生命科學(xué),2020,50(12):1418-1426.

      [3] BHASKARAN M,MOHAN M.MicroRNAs: history, biogenesis, and their evolving role in animal development and disease[J].Vet Pathol,2014,51(4):759-774.

      [4] LEE R C,F(xiàn)EINBAUM R L,AMBROS V.The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J].Cell,1993,75(5):843-854.

      [5] SHENOUDA S K,ALAHARI S K.MicroRNA function in cancer: oncogene or a tumor suppressor?[J].Cancer Metastasis Rev,2009,28(3-4):369-378.

      [6] NI J,YANG Y,LIU D,et al.MicroRNA-429 inhibits gastric cancer migration and invasion through the downregulation of specificity protein 1[J].Oncol Lett,2017,13(5):3845-3849.

      [7] QIN W Y,F(xiàn)ENG S C,SUN Y Q,et al.MiR-96-5p promotes breast cancer migration by activating MEK/ERK signaling[J/OL].J Gene Med,2020,22(8):e3188.

      [8] CHEN T,ZHU J,CAI T,et al.Suppression of non-small cell lung cancer migration and invasion by hsa-miR-486-5p via the TGF-beta/SMAD2 signaling pathway[J].J Cancer,2019,10(24):6014-6024.

      [9] HUTVAGNER G,MCLACHLAN J,PASQUINELLI A E,et al.

      A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA[J].Science,2001,293(5531):834-838.

      [10] GREGORY R I,YAN K P,AMUTHAN G,et al.The Microprocessor complex mediates the genesis of microRNAs[J].Nature,2004,432(7014):235-240.

      [11] KWAK P B,TOMARI Y.The N domain of Argonaute drives duplex unwinding during RISC assembly[J].Nat Struct Mol Biol,2012,19(2):145-151.

      [12] LEE Y,AHN C,HAN J,et al.The nuclear RNase Ⅲ Drosha initiates microRNA processing[J].Nature,2003,425(6956):415-419.

      [13] OBERNOSTERER G,LEUSCHNER P J,ALENIUS M,et al.Post-transcriptional regulation of microRNA expression[J].RNA,2006,12(7):1161-1167.

      [14] XU C,F(xiàn)U H,GAO L,et al.BCR-ABL/GATA1/miR-138 mini circuitry contributes to the leukemogenesis of chronic myeloid leukemia[J].Oncogene,2014,33(1):44-54.

      [15] ZHAO X,YANG L,HU J,et al.miR-138 might reverse multidrug resistance of leukemia cells[J].Leuk Res,2010,34(8):1078-1082.

      [16] ZHAO L,YU H,YI S,et al.The tumor suppressor miR-138-5p targets PD-L1 in colorectal cancer[J].Oncotarget,2016,7(29):45370-45384.

      [17] HUANG H,XIONG Y,WU Z,et al.MIR-138-5P inhibits the progression of prostate cancer by targeting FOXC1[J/OL].Mol Genet Genomic Med,2020,8(4):e1193.

      [18] ZHANG W,LIAO K,LIU D.MiR-138-5p Inhibits the Proliferation of Gastric Cancer Cells by Targeting DEK[J].Cancer Manag Res,2020,12:8137-8147.

      [19] WU H,WANG C,LIU Y,et al.miR-138-5p suppresses glioblastoma cell viability and leads to cell cycle arrest by targeting cyclin D3[J].Oncol Lett,2020,20(5):264.

      [20] NISHIMURA D Y,SWIDERSKI R E,ALWARD W L,et al.The forkhead transcription factor gene FKHL7 is responsible for glaucoma phenotypes which map to 6p25[J].Nat Genet,1998,19(2):140-147.

      [21] HAN B,BHOWMICK N,QU Y,et al.FOXC1: an emerging marker and therapeutic target for cancer[J].Oncogene,2017,36(28):3957-3963.

      [22] YU C,WANG M,LI Z,et al.MicroRNA-138-5p regulates pancreatic cancer cell growth through targeting FOXC1[J].Cell Oncol (Dordr),2015,38(3):173-181.

      [23] ZHANG D,LIU X,ZHANG Q,et al.miR-138-5p inhibits the malignant progression of prostate cancer by targeting FOXC1[J].Cancer Cell Int,2020,20:297.

      [24] BAI X,SHAO J,ZHOU S,et al.Inhibition of lung cancer growth and metastasis by DHA and its metabolite, RvD1, through miR-138-5p/FOXC1 pathway[J].J Exp Clin Cancer Res,2019,38(1):479.

      [25] SHERR C J,ROBERTS J M.Living with or without cyclins and cyclin-dependent kinases[J].Genes Dev,2004,18(22):2699-2711.

      [26] SANKARAN V G,ORKIN S H,WALKLEY C R.Rb intrinsically promotes erythropoiesis by coupling cell cycle exit with mitochondrial biogenesis[J].Genes Dev,2008,22(4):463-475.

      [27] LIN J,JINNO S,OKAYAMA H.Cdk6-cyclin D3 complex evades inhibition by inhibitor proteins and uniquely controls cell’s proliferation competence[J].Oncogene,2001,20(16):2000-2009.

      [28] WANG G L,SHI X,SALISBURY E,et al.Cyclin D3 maintains growth-inhibitory activity of C/EBPalpha by stabilizing C/EBPalpha-cdk2 and C/EBPalpha-Brm complexes[J].Mol Cell Biol,2006,26(7):2570-2582.

      [29] SONG S,WU S,WANG Y,et al.17β-estradiol inhibits human umbilical vascular endothelial cell senescence by regulating autophagy via p53[J].Exp Gerontol,2018,114:57-66.

      [30] XING S,XU Q,F(xiàn)AN X,et al.Downregulation of miR-138-5p promotes non-small cell lung cancer progression by regulating CDK8[J].Mol Med Rep,2019,20(6):5272-5278.

      [31] RASOOLNEZHAD M,SAFARALIZADEH R,HOSSEINPOURFEIZI M A,et al.MiRNA-138-5p: A strong tumor suppressor targeting PD-L-1 inhibits proliferation and motility of breast cancer cells and induces apoptosis[J].Eur J Pharmacol,2021,896:173933.

      [32] ZHANG W,LIAO K,LIU D.MiR-138-5p Inhibits the Proliferation of Gastric Cancer Cells by Targeting DEK[J].Cancer Manag Res,2020,12:8137-8147.

      [33] YANG R,LIU M,LIANG H,et al.miR-138-5p contributes to cell proliferation and invasion by targeting Survivin in bladder cancer cells[J].Mol Cancer,2016,15(1):82.

      [34] NOEL J F,WELLINGER R J.Exposing secrets of telomere-telomerase encounters[J].Cell,2012,150(3):453-454.

      [35] GREIDER C W,BLACKBURN E H.Telomeres, telomerase and cancer[J].Sci Am,1996,274(2):92-97.

      [36] KIM N W,PIATYSZEK M A,PROWSE K R,et al.Specific association of human telomerase activity with immortal cells and cancer[J].Science,1994,266(5193):2011-2015.

      [37] WANG X,ZHAO Y,CAO W,et al.miR-138-5p acts as a tumor suppressor by targeting hTERT in human colorectal cancer[J].Int J Clin Exp Pathol,2017,10(12):11516-11525.

      [38] WANG Z,YAO Y J,ZHENG F,et al.Mir-138-5p acts as a tumor suppressor by targeting pyruvate dehydrogenase kinase 1 in human retinoblastoma[J].Eur Rev Med Pharmacol Sci,2017,21(24):5624-5629.

      [39] QIAO Y,SHIUE C N,ZHU J,et al.AP-1-mediated chromatin looping regulates ZEB2 transcription: new insights into TNFalpha-induced epithelial-mesenchymal transition in triple-negative breast cancer[J].Oncotarget,2015,6(10):7804-7814.

      [40] WEI X,LI Q,LI Y,et al.Prediction of survival prognosis of non-small cell lung cancer by APE1 through regulation of Epithelial-Mesenchymal Transition[J].Oncotarget,2016,7(19):28523-28539.

      [41] ZHU D,GU L,LI Z,et al.MiR-138-5p suppresses lung adenocarcinoma cell epithelial-mesenchymal transition, proliferation and metastasis by targeting ZEB2[J].Pathol Res Pract,2019,215(5):861-872.

      [42] DAVE J M,BAYLESS K J.Vimentin as an integral regulator of cell adhesion and endothelial sprouting[J].Microcirculation,2014,21(4):333-344.

      [43] YU C,WANG M,CHEN M,et al.Upregulation of microRNA?138?5p inhibits pancreatic cancer cell migration and increases chemotherapy sensitivity[J].Mol Med Rep,2015,12(4):5135-5140.

      [44] WANG Y,SHI J,CHAI K,et al.The Role of Snail in EMT and Tumorigenesis[J].Curr Cancer Drug Targets,2013,13(9):963-972.

      [45] NIETO M A.The snail superfamily of zinc-finger transcription factors[J].Nat Rev Mol Cell Biol,2002,3(3):155-166.

      [46] XU W,CHEN B,KE D,et al.MicroRNA-138-5p targets the NFIB-Snail1 axis to inhibit colorectal cancer cell migration and chemoresistance[J].Cancer Cell Int,2020,20:475.

      [47] MARTIN F T,DWYER R M,KELLY J,et al.Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: stimulation of epithelial to mesenchymal transition (EMT)[J].Breast Cancer Res Treat,2010,124(2):317-326.

      [48] LIU X N,TANG Z H,ZHANG Y,et al.Lentivirus-mediated silencing of rhomboid domain containing 1 suppresses tumor growth and induces apoptosis in hepatoma HepG2 cells[J].Asian Pac J Cancer Prev,2013,14(1):5-9.

      [49] ZHANG X,ZHAO Y,WANG C,et al.Rhomboid domain-containing protein 1 promotes breast cancer progression by regulating the p-Akt and CDK2 levels[J].Cell Commun Signal,2018,16(1):65.

      [50] ZHAO C,LING X,LI X,et al.MicroRNA-138-5p inhibits cell migration, invasion and EMT in breast cancer by directly targeting RHBDD1[J].Breast Cancer,2019,26(6):817-825.

      [51] CARMELIET P.VEGF as a key mediator of angiogenesis in cancer[J].Oncology,2005,69(Suppl 3):4-10.

      [52] HONG L,HAN Y,BRAIN L.The role of epidermal growth factor receptor in prognosis and treatment of gastric cancer[J].Expert Rev Gastroenterol Hepatol,2014,8(1):111-117.

      [53] WANG Y,ZHANG H,GE S,et al.Effects of miR?138?5p and miR?204?5p on the migration and proliferation of gastric cancer cells by targeting EGFR[J].Oncol Rep,2018,39(6):2624-2634.

      [54] CUI D,F(xiàn)ENG Y,SHI K,et al.Long non-coding RNA TRPM2-AS sponges microRNA-138-5p to activate epidermal growth factor receptor and PI3K/AKT signaling in non-small cell lung cancer[J].Ann Transl Med,2020,8(20):1313.

      [55] WHITE E,MEHNERT J M,CHAN C S.Autophagy, Metabolism, and Cancer[J].Clin Cancer Res,2015,21(22):5037-5046.

      [56] PAN X,CHEN Y,SHEN Y,et al.Knockdown of TRIM65 inhibits autophagy and cisplatin resistance in A549/DDP cells by regulating miR-138-5p/ATG7[J].Cell Death Dis,2019,10(6):429.

      [57] ZHOU Q,CUI F,LEI C,et al.ATG7-mediated autophagy involves in miR-138-5p regulated self-renewal and invasion of lung cancer stem-like cells derived from A549 cells[J].Anticancer Drugs,2021,32(4):376-385.

      [58] PALMIROTTA R,CIVES M,DELLA-MORTE D,et al.Sirtuins and Cancer: Role in the Epithelial-Mesenchymal Transition[J].Oxid Med Cell Longev,2016,2016:3031459.

      [59] HARIHARAN N,MAEJIMA Y,NAKAE J,et al.Deacetylation of FoxO by Sirt1 Plays an Essential Role in Mediating Starvation-Induced Autophagy in Cardiac Myocytes[J].Circ Res,2010,107(12):1470-1482.

      [60] TIAN S,GUO X,YU C,et al.miR-138-5p suppresses autophagy in pancreatic cancer by targeting SIRT1[J].Oncotarget,2017,8(7):11071-11082.

      [61] SONG N,LI P,SONG P,et al.MicroRNA-138-5p Suppresses Non-small Cell Lung Cancer Cells by Targeting PD-L1/PD-1 to Regulate Tumor Microenvironment[J].Front Cell Dev Biol,2020,8:540.

      [62] HE Y,REN S,WANG Y,et al.Serum microRNAs improving the diagnostic accuracy in lung cancer presenting with pulmonary nodules[J].J Thorac Dis,2018,10(8):5080-5085.

      [63] YANG G,GUO S,LIU H T,et al.MiR-138-5p predicts negative prognosis and exhibits suppressive activities in hepatocellular carcinoma HCC by targeting FOXC1[J].Eur Rev Med Pharmacol Sci,2020,24(17):8788-8800.

      [64] BAUMGART S,MESCHKAT P,EDELMANN P,et al.MicroRNAs in tumor samples and urinary extracellular vesicles as a putative diagnostic tool for muscle-invasive bladder cancer[J].J Cancer Res Clin Oncol,2019,145(11):2725-2736.

      [65] GAO W,LAM J W,LI J Z,et al.MicroRNA-138-5p controls sensitivity of nasopharyngeal carcinoma to radiation by targeting EIF4EBP1[J].Oncol Rep,2017,37(2):913-920.

      [66] NING J,JIAO Y,XIE X,et al.miR-138-5p modulates the expression of excision repair cross-complementing proteins ERCC1 and ERCC4, and regulates the sensitivity of gastric cancer cells to cisplatin[J].Oncol Rep,2019,41(2):1131-1139.

      [67] GAO Y,F(xiàn)AN X,LI W,et al.miR-138-5p reverses gefitinib resistance in non-small cell lung cancer cells via negatively regulating G protein-coupled receptor 124[J].Biochem Biophys Res Commun,2014,446(1):179-186.

      [68] QIU X,WANG W,LI B,et al.Targeting Ezh2 could overcome docetaxel resistance in prostate cancer cells[J].BMC Cancer,2019,19(1):27.

      [69] HUANG G,LI L,LIANG C,et al.Upregulated UCA1 contributes to oxaliplatin resistance of hepatocellular carcinoma through inhibition of miR-138-5p and activation of AKT/mTOR signaling pathway[J/OL].Pharmacol Res Perspect,2021,9(1):e720.

      (收稿日期:2021-08-11)

      基金項(xiàng)目:廣東省教育廳自然科學(xué)基金(2017KZDXM019)

      ①廣州中醫(yī)藥大學(xué)第一臨床醫(yī)學(xué)院 廣東 廣州 510405

      ②廣州中醫(yī)藥大學(xué)第一附屬醫(yī)院

      通信作者:周迎春

      猜你喜歡
      胰腺癌癌細(xì)胞靶向
      胰腺癌治療為什么這么難
      如何判斷靶向治療耐藥
      MUC1靶向性載紫杉醇超聲造影劑的制備及體外靶向?qū)嶒?yàn)
      毛必靜:靶向治療,你了解多少?
      肝博士(2020年5期)2021-01-18 02:50:18
      癌細(xì)胞最怕LOVE
      假如吃下癌細(xì)胞
      癌細(xì)胞最怕Love
      奧秘(2017年5期)2017-07-05 11:09:30
      STAT1和MMP-2在胰腺癌中表達(dá)的意義
      正常細(xì)胞為何會“叛變”? 一管血可測出早期癌細(xì)胞
      早診早治趕走胰腺癌
      桃园市| 永安市| 江达县| 家居| 日土县| 济阳县| 渭南市| 兰西县| 南江县| 会昌县| 弥渡县| 铜川市| 唐山市| 原阳县| 康定县| 高安市| 来宾市| 平凉市| 青阳县| 罗定市| 勐海县| 尼木县| 出国| 前郭尔| 阳城县| 敦化市| 铜陵市| 九龙坡区| 自贡市| 剑河县| 阳新县| 湖州市| 阿拉善盟| 阿坝| 祥云县| 佛山市| 五华县| 乐清市| 特克斯县| 威信县| 天门市|