張周穎 郭雯 楊石建
摘要:? 根壓是植物根部產(chǎn)生的一種靜水壓力,廣泛存在于多種植物中。在蒸騰作用很弱的情況下,根壓不但可驅(qū)動水分從根部流向冠層葉片,緩解因白天強烈蒸騰而導(dǎo)致的水分虧缺,而且在木質(zhì)部導(dǎo)管栓塞修復(fù)方面具有重要作用。雖然國內(nèi)外學(xué)者對根壓的產(chǎn)生已有一些解釋,普遍接受的觀點有滲透理論、代謝理論和水分向上共同運輸假說等,但根壓產(chǎn)生的機制至今仍是科學(xué)家爭議的焦點之一。根壓的測定方法雖有直接和間接測定、損傷和無損傷測定之分,但較為先進(jìn)的根壓測定技術(shù)仍需進(jìn)一步改善和提升。受水通道蛋白、遺傳因素、生境等因素的影響,根壓的大小存在差異,即使是較低的根壓也會影響農(nóng)作物生長。在促進(jìn)轉(zhuǎn)運蛋白質(zhì)、酶、氨基酸、激素及鈣元素等在農(nóng)作物木質(zhì)部和韌皮部之間流通方面,適當(dāng)大小的根壓發(fā)揮重要作用,且有助于提高農(nóng)作物產(chǎn)量。因此,加深對植物根壓的認(rèn)識和理解具有重要的生物學(xué)意義。該文從根壓的定義和產(chǎn)生機制、具有根壓的植物類群、根壓的測定方法和大小、影響根壓的主要因素及根壓在植物科學(xué)研究領(lǐng)域的意義和影響等多個方面分別進(jìn)行了歸納總結(jié),并結(jié)合當(dāng)前研究熱點和研究成果,針對植物根壓研究過程中遇到的問題和后續(xù)研究趨勢及方向進(jìn)行了展望。
關(guān)鍵詞: 根壓, 靜水壓力, 木質(zhì)部栓塞, 水分運輸, 影響因素
中圖分類號:? Q945文獻(xiàn)標(biāo)識碼:? A文章編號:? 1000-3142(2022)04-0714-14
Recent advances in research on root pressure of plants
ZHANG Zhouying GUO Wen YANG Shijian
( 1. College of Ecology & Environmental Science, Yunnan University, Kunming 650500, China;
2. Yunnan Key Laboratory of Plant
Reproductive Adaption and Evolutionary Ecology, Kunming 650500, China;
3. Laboratory of Ecology and Evolutionary
Biology, Yunnan University, Kunming 650500, China )
Abstract:? Root pressure is a positive hydraulic pressure that generated by plant roots. As a common physiological phenomenon in many plants, root pressure can drive the sap flow from roots to canopy leaves, which alleviates plant water deficits caused by strong transpiration during the day. It also plays an important role in xylem embolism refilling. At present, there are many explanations for the generation of root pressure. The generally accepted views include the osmotic theory, the metabolic theory, and the uphill water co-transport hypothesis, but the mechanism of root pressure is still the focus of controversy among the plant scientists. There are direct and indirect methods for measuring root pressure, but the more advanced techniques of measuring root pressure still need to be improved. Under the influence of many factors such as aquaporin, genetic factors and habitats, there are differences in the magnitude of root pressure, and moderate root pressure has important significance for crops growth. Therefore, it is of great biological significance to deepen our understanding of root pressure. Here we discussed root pressure from the following perspectives: the definition and mechanism of root pressure generation; plant groups with root pressure; the methods for measuring root pressure; the main factors about influencing root pressure; the significance and implications of root pressure in various fields of plant science studies. Lastly, based on current research topics and some new results on root pressure, we discussed future perspectives on root pressure of plants.
Key words: root pressure, hydraulic pressure, xylem embolism, water transport, influence factors
水是一切生命活動必不可少的物質(zhì)。植物通過根部吸收土壤水分后,由基部向頂部運輸幾米甚至是幾十或上百米的高度,從而滿足植物地上部分的用水需求。植物完成水分的吸收、運輸、散失等過程均需要克服重力、原生質(zhì)體和質(zhì)外體運輸阻力及土壤的毛細(xì)管力等多種阻力。若沒有足夠大的動力克服這些阻力,則植物無法完成正常的水分代謝過程(Dixon, 1914; 尚念科,2012)。在植物的水分運輸過程中,除蒸騰拉力能由下往上拉動水分外,根壓(root pressure)也能推動水分在導(dǎo)管或管胞中向上運輸(Zachary, 2009)。由于植物根部生理活動,存在于皮層中的離子和可溶性有機物等不斷通過內(nèi)皮層進(jìn)入中柱并使皮層內(nèi)外產(chǎn)生滲透差。在滲透差梯度驅(qū)動下,水分從外界流入中柱內(nèi)導(dǎo)管或管胞,從而積累并產(chǎn)生了正的靜水壓力(Taiz et al., 2015)。葉片吐水或莖干傷流均是根壓存在的有力證明(Singh, 2016a)。
目前,已有大量研究發(fā)現(xiàn)根壓是植物常見的一種生理活動,不僅廣泛存在于多種植物中,而且是木質(zhì)部栓塞修復(fù)的一種重要動力(Sperry et al., 1987; Yang et al., 2012; Leng et al., 2013)。在蒸騰作用很弱的條件下,根部產(chǎn)生正的木質(zhì)部壓力不僅可推動水分沿導(dǎo)管或管胞向上運輸,還可使氣泡溶解或水分再填充修復(fù)已發(fā)生栓塞的導(dǎo)管,緩解因白天強烈蒸騰而導(dǎo)致植物組織的水分虧缺,并為第二天的蒸騰耗水進(jìn)行水分儲存(Yang et al., 2012; Zhao et al., 2017; Nardini et al., 2018)。除修復(fù)植物木質(zhì)部栓塞和補充莖干水分外,根壓在植物生態(tài)學(xué)、植物生理學(xué)、農(nóng)學(xué)、園藝學(xué)等多個植物科學(xué)研究領(lǐng)域均具有重要生物學(xué)意義。根壓的產(chǎn)生及大小會受水通道蛋白、遺傳因素、土壤和其他諸如光合有效輻射、飽和水汽壓差及降雨等環(huán)境因素的影響(Frank, 2006; 田新立,2008; 郭建榮,2016; Sun et al., 2018)。然而,目前關(guān)于根壓產(chǎn)生的生理機制并無確切的科學(xué)解釋。從植物分子水平的角度分析水通道蛋白對根壓的影響、較為先進(jìn)的根壓測定技術(shù)的研發(fā)以及在農(nóng)藝學(xué)方面根壓的實際應(yīng)用等諸多方面都需要進(jìn)行深入挖掘和提升。因此,本文對前人在植物根壓方面的研究進(jìn)行了歸納和總結(jié),并結(jié)合當(dāng)前的研究熱點和一些研究成果提出觀點,對植物根壓的后續(xù)研究進(jìn)行展望。
1根壓的定義和產(chǎn)生機制
由根系木質(zhì)部產(chǎn)生,且導(dǎo)致被切割的莖干(或小枝)表面滲出汁液和/或未受傷的葉片邊緣吐水的靜水壓力被稱為根壓(Kramer & Kozlowski,1979; Kramer & Boyer, 1995)。該靜水壓力的形成與根部形態(tài)解剖結(jié)構(gòu)(根毛-皮層-內(nèi)皮層-中柱-導(dǎo)管或管胞)和生理活動密切相關(guān)。在正常情況下,因根部細(xì)胞生理活動,木質(zhì)部皮層細(xì)胞中的礦質(zhì)離子和有機物等在水勢梯度下通過皮層細(xì)胞進(jìn)入中柱,導(dǎo)致中柱內(nèi)滲透勢和水勢降低,促使中柱繼續(xù)向皮層吸收水分進(jìn)而產(chǎn)生正的靜水壓力(潘瑞熾,2012)。隨蒸騰速率增加,水分通過木質(zhì)部運輸并迅速流失至大氣中,較大的蒸騰拉力導(dǎo)致木質(zhì)部不會因離子等主動吸收而表現(xiàn)出正的壓力。根壓被假定認(rèn)為是在滲透和能量的共同驅(qū)動下,水分通過木質(zhì)部薄壁組織的細(xì)胞膜,可能利用了離子和糖的自由能梯度向上運輸而產(chǎn)生的靜水壓 (Wegner, 2014)。根壓的產(chǎn)生并不僅僅受由自由能梯度驅(qū)動水分穿過木質(zhì)部薄壁細(xì)胞質(zhì)膜的影響,根系的凱氏帶結(jié)構(gòu)和生理活動所引起的主動吸水也起了重要作用(Enstone et al., 2003)。
根不但能固定植株,而且能從土壤中吸收水分和溶解于水中的礦質(zhì)營養(yǎng)等以供植物生長,其中根毛區(qū)是根吸收水分的主要區(qū)域(Kramer & Boyer, 1995)。水分被植物根毛吸收后,通過三條途徑 [質(zhì)外體途徑(apoplast pathway)、共質(zhì)體途徑(symplast pathway)和跨膜途徑(transmembrane pathway)]進(jìn)入木質(zhì)部的導(dǎo)管或管胞。水分經(jīng)以上三條途徑整合后在進(jìn)入根系木質(zhì)部導(dǎo)管或管胞的過程中可能會產(chǎn)生根壓(Knipfer & Fricke, 2010; 潘瑞熾,2012; Scharwies & Dinneny, 2019)。Pickard(2003a, b)通過結(jié)合胞間連絲由靜水壓力驅(qū)動的水流,提出了一種根系水分流動的相關(guān)模型。如果內(nèi)皮層細(xì)胞內(nèi)的膨壓在其他植物細(xì)胞的壓力范圍之內(nèi)(0.4~1 MPa),則在中柱/木質(zhì)部與內(nèi)皮層之間應(yīng)該存在一種靜水壓力梯度,并且使得水分流向木質(zhì)部。盡管我們不能排除這種水流是細(xì)胞間傳遞的一部分,不一定由水通道蛋白介導(dǎo),但是水通道蛋白是根系徑向水分運輸控制位點的現(xiàn)象已被證實(Knipfer & Fricke, 2010)。
雖然已有很多理論可解釋根壓的產(chǎn)生,但根壓產(chǎn)生的機制至今仍是科學(xué)家爭議的焦點之一。目前,普遍接受的觀點有滲透理論、代謝理論和水分向上共同運輸假說。
1.1 滲透理論
當(dāng)夜晚蒸騰作用很弱或沒有時,根系輸導(dǎo)組織周圍的活細(xì)胞通過新陳代謝不斷向?qū)Ч芑蚬馨墓芮粌?nèi)泵入礦質(zhì)離子和可溶性有機物(如天冬氨酰、谷氨酰胺等),這些物質(zhì)的積累導(dǎo)致管腔內(nèi)溶液的水勢下降,而附近活細(xì)胞的水勢較高,所以水分就會沿水勢差不斷流入管腔。同時,外界土壤水分也隨水勢差從根毛、皮層、內(nèi)皮層進(jìn)入到木質(zhì)部,產(chǎn)生了正的靜水壓力,進(jìn)而推動木質(zhì)部汁液向上運輸(董忠民,2003; Singh, 2016b)。在此過程中,根系起了滲透計的作用。水分從水勢較高的土壤,經(jīng)過根系內(nèi)皮層細(xì)胞組成的半透膜,進(jìn)入水勢較低的木質(zhì)部管腔 (董忠民,2003)。因為內(nèi)皮層細(xì)胞壁上的凱氏帶環(huán)繞在內(nèi)皮層徑向壁和橫向壁上,而細(xì)胞質(zhì)牢牢地附著在凱氏帶上,所以水分既不能作徑向運動,也不能在細(xì)胞壁和質(zhì)膜之間移動,只能由水通道蛋白(aquaporin, AQP)運輸并通過內(nèi)皮層的原生質(zhì)體。因此,根系內(nèi)皮層則具有半透膜的作用(潘瑞熾,2012; Logvenkov & Stein, 2013)。
對根壓產(chǎn)生的解釋,曾被普遍接受的觀點是基于根系細(xì)胞溶質(zhì)主動積聚并被分泌到木質(zhì)部,隨后沿水勢梯度進(jìn)行水分滲透移動。因此,“滲透計模型”是把木質(zhì)部汁液與外部介質(zhì)分開的內(nèi)皮層視為半透膜。多細(xì)胞的根系組織就像半透膜一樣,通過響應(yīng)溶質(zhì)的積累,在木質(zhì)部中建立了正的靜水壓力。當(dāng)蒸騰作用很弱時,根系細(xì)胞繼續(xù)將溶質(zhì)泵入木質(zhì)部,而內(nèi)外皮層有助于防止溶質(zhì)泄露。持續(xù)積累的溶質(zhì)降低了中柱的水勢,水分從根系皮層不斷流入所產(chǎn)生的靜水壓力推動木質(zhì)部汁液流動。雖然內(nèi)皮層薄壁組織的結(jié)構(gòu)有限制,但只要木質(zhì)部傳導(dǎo)系統(tǒng)滲透梯度持續(xù)存在,靜水壓力就可以促使水和溶質(zhì)進(jìn)入木質(zhì)部并在管腔中向上移動。根壓的產(chǎn)生似乎是伴隨著無機鹽向木質(zhì)部傳導(dǎo)系統(tǒng)的主動運輸。
1.2 代謝理論
繼滲透理論提出后,Zholkevich等(1991)提出代謝理論(Dustmamatov & Zholkevich,2008)。他們認(rèn)為根系內(nèi)部的水流與外界土壤溶液及根樁分泌滲出液之間存在滲透梯度,為代謝過程參與根壓產(chǎn)生奠定了基礎(chǔ)。1966年,有研究學(xué)者提出植物體內(nèi)發(fā)生的水分主動運輸是以代謝能量為代價 (Oertli, 1966)。后來研究學(xué)者借鑒了前人探究根系徑向輸水的方法,提出了植物的水分主動運輸既涉及滲透成分,也涉及非滲透成分,并提出兩者區(qū)別在于是否涉及代謝過程(Patlak et al., 1963)。目前,已有研究表明在遞質(zhì)的刺激作用下,由G蛋白引發(fā)的代謝過程參與了產(chǎn)生根壓的水分主動運輸 (Dustmamatov & Zholkevich, 2008)。
由木質(zhì)部管腔中溶質(zhì)滲透勢產(chǎn)生的根壓不但與內(nèi)皮層內(nèi)外的水勢差有關(guān),而且與根系的生理代謝有關(guān)。為了持續(xù)維持水分流動所需的溶質(zhì)梯度,根系通過木質(zhì)部薄壁組織中細(xì)胞膜驅(qū)動著溶質(zhì)和水分的聯(lián)合轉(zhuǎn)運,溶質(zhì)還需要根系代謝能量來補充(Wegner, 2014)。這一水分主動運輸過程所需要的腺苷三磷酸(ATP)是由植物呼吸代謝提供,故呼吸代謝在根系吸收水分過程中具有關(guān)鍵作用(Wilson & Kramer, 1949)。除作為滲透物質(zhì)直接調(diào)節(jié)滲透梯度外,可溶性有機物還可通過影響呼吸代謝而影響礦質(zhì)離子的吸收、積累和轉(zhuǎn)運(Kramer & Boyer, 1995)。
1.3 水分向上共同運輸假說
大量研究表明,細(xì)胞膜上存在著運輸陽離子、陰離子及水分子的多種共同轉(zhuǎn)運體(co-transporters)(Gamba, 2005; Zeuthen, 2010)。當(dāng)木質(zhì)部薄壁細(xì)胞的膜電位低于K+的能斯特電位時,水分子被水通道蛋白運輸進(jìn)入細(xì)胞質(zhì)基質(zhì),少數(shù)固定數(shù)量的水分子則會與K+、Cl-相互耦合,由K+和氯化物的共同轉(zhuǎn)運體(potassium-chloride co-transporter type, KCC type)運出至薄壁細(xì)胞并釋放水分和溶質(zhì)。隨后K+通過K+內(nèi)流通道,H+和Cl-通過Cl-2H+協(xié)同轉(zhuǎn)運體分別又進(jìn)入細(xì)胞質(zhì)基質(zhì)補充溶質(zhì)。需要注意的是,在Cl-通過Cl--2H+協(xié)同轉(zhuǎn)運體轉(zhuǎn)運時,H+的運轉(zhuǎn)需要消耗1分子ATP,且為保證整個過程不斷循環(huán),需要激活的H+-ATP酶來維持H+的梯度(Wegner, 2014),這是Wegner基于水分共同運輸模型(Zeuthen, 2010)提出的水分向上共同運輸假說(uphill water co-transport hypothesis),它整合了滲透和代謝理論,認(rèn)為當(dāng)有離子和可溶性糖的自由能梯度時,水通道蛋白能促進(jìn)水分在木質(zhì)部薄壁細(xì)胞內(nèi)運輸,積極主動地驅(qū)動水分向上轉(zhuǎn)運。由于水分通過薄壁組織的細(xì)胞膜時依靠滲透勢,而滲透勢的維持需要不斷地消耗代謝能量補充溶質(zhì),從而保持水分進(jìn)入膜內(nèi)時所需的溶質(zhì)梯度(Dustmamatov et al., 2004; Zholkevich et al., 2007; Wegner, 2014)。因此,該假說強調(diào)在解釋根壓產(chǎn)生的機制時需考慮水分和溶質(zhì)進(jìn)入植物根部的需求(Wegner, 2014; Singh, 2016b)。
Singh在該模型的基礎(chǔ)上作了一些修改,并提出了當(dāng)木質(zhì)部薄壁細(xì)胞的膜電位低于K+的能斯特電位時,1個水分子與1個K+緊緊耦合,通過K+內(nèi)流通道進(jìn)入細(xì)胞質(zhì)基質(zhì);而當(dāng)木質(zhì)部薄壁細(xì)胞的膜電位高于K+的能斯特電位時,3個水分子與1個K+緊緊耦合,通過K+外流通道進(jìn)入木質(zhì)部薄壁細(xì)胞,從而實現(xiàn)水分移動。在整個過程中,K+內(nèi)流通道和K+外流通道的功能可通過膜電位振蕩的協(xié)調(diào)實現(xiàn)相互轉(zhuǎn)換。當(dāng)膜電位被質(zhì)子泵的活性超極化時,K+的循環(huán)會消耗代謝能量,從而驅(qū)動凈水流從細(xì)胞質(zhì)基質(zhì)進(jìn)入質(zhì)外體,促使水分移動(Singh, 2016b)。在水分向上共同運輸假說提出之前,滲透理論已被人們相對普遍接受,但它并沒有得到所有學(xué)者的認(rèn)可(Kramer & Boyer, 1995)。基于前人研究,水分向上共同運輸假說是目前解釋根壓產(chǎn)生機制的最新理論,然而該理論仍需在不同生境、不同生長狀態(tài)的植物中進(jìn)行嚴(yán)格的檢驗或驗證(Singh, 2016b)。
2產(chǎn)生根壓的植物類群
作為一種常見的生理現(xiàn)象,根壓廣泛存在于多種植物中(Zachary, 2009)。例如在木本植物中,具有明顯根壓的物種有糖楓(Acer saccharum)(Sperry et al., 1988)、樺樹(Betula lenta和B. populifolia) (Sperry, 1993)、胡楊(Populus euphratica)(司建華等,2007)、櫟樹(Quercus robur)(Steudle & Meshcheryakov, 1996)、核桃(Juglans regia)(Améglio et al., 2001)。一些重要的農(nóng)業(yè)經(jīng)濟(jì)作物,如番茄(Solanum lycopersicum)(White, 1938)、葡萄(Vitis vinifera)(Sperry et al., 1987)、向日葵(Helianthus annuus)(Dustmamatov et al., 2004)、獼猴桃屬(Actinidia)(Clearwater et al., 2007)植物等也具有根壓。Fisher等(1997)研究發(fā)現(xiàn)熱帶109種藤本植物中有61種具有根壓,且15種具有黎明前吐水現(xiàn)象;王華芳(2015)也發(fā)現(xiàn)云南西雙版納熱帶雨林常見的32種木質(zhì)藤本均具有根壓,這表明根壓是藤本植物中常見的生理現(xiàn)象。在草本植物中,香蕉(Musa nana)(Davis, 1961)、非洲虎尾草(Chloris gayana)、梯牧草(Phleum pratense) (Ogata et al., 1985)、蕨類(Pentagramma triangularis和Pellaea andromedifolia) (Holmlund et al., 2020)、甘蔗(Saccharum officinarum)(Neufeld et al., 1992)、草甸羊茅(Festuca pratensis)、玉米(Zea mays)(Lu et al., 2002)、水稻(Oryza sativa)(Stiller et al., 2003)等存在根壓,特別是在缺乏次生生長且木質(zhì)化程度較高的一些草本植物(如棕櫚、竹子)中,根壓較為明顯(Davis, 1961; Wang et al., 2011; Cao et al., 2012;Yang et al.,2015)。
3根壓的測定方法
目前根壓的測定方法有多種(表1),我們可以將其歸納為直接和間接兩種測定方式。其中,直接測定包括損傷和非損傷的測定技術(shù);間接測定是通過非損傷技術(shù)測定葉片厚度或夜間莖干直徑的微小變化程度,然后利用相關(guān)模型將實際測量值與預(yù)測值進(jìn)行比較,從而計算得出根壓大小。
3.1 直接測定
3.1.1 損傷測定技術(shù)損傷測定包括壓力計法、根壓力探針技術(shù)以及根壓力室技術(shù)等。壓力計法可通過氣泡壓力計(bubble manometer)直接測定枝條樁或離體根段的壓力(田新立, 2008; 王福升等, 2011; De Swaef et al., 2013)。具體操作方法:用酒精燈將玻璃毛細(xì)管的一端封死,注蒸餾水至該毛細(xì)管內(nèi)的1/3處,并套緊硅膠軟管后再將毛細(xì)管注滿水,做成簡易氣泡壓力計。于前一天太陽落山后,將選取好樣本的枝條或莖干截去,截面用單面刀片削平整后選取大小合適的硅膠軟管套緊在枝條樁或莖干樁上,最后向這個硅膠軟管注滿蒸餾水并將氣泡壓力計連接該軟管(圖1)。在該裝置連接一個夜晚后,在第二天日出前用“T”字型短尺分別測量與大氣壓平衡前后玻璃毛細(xì)管內(nèi)氣泡的長短(長度),計算公式(Ewers et al., 1997; Singh, 2016b)如下:
P= 100×[( L/ L)-1]。
式中:P表示根壓或樣本木質(zhì)部壓力的大?。╧Pa);L表示與外界大氣平衡后玻璃毛細(xì)管內(nèi)氣泡的長度(mm);L表示與外界大氣平衡前玻璃毛細(xì)管內(nèi)氣泡的長度(mm)。由于氣泡壓力計操作簡單和成本較低,當(dāng)研究物種較多時,它曾被廣泛使用,但該方法具有一定的局限性,即只能測定凌晨時段的根壓(Wang et al., 2011; 郭建榮,2016; Singh, 2016b)。
電子壓力傳感器的應(yīng)用為連續(xù)測定根壓帶來極大便利(Cao et al., 2012; Yang et al., 2015)。先在植物莖干基部用枝剪剪斷由莖干延伸的枝條,并對保留的枝條樁橫切面用新單面刀片切割幾次(用以去除被擠壓變形的木質(zhì)部),然后將枝條樁與盛滿蒸餾水的硅膠軟管連接,同時該軟管通過三通管連接一個電子壓力傳感器(圖2)(在連接使用前,壓力傳感器需在實驗室進(jìn)行相關(guān)系數(shù)的校準(zhǔn))。根壓的測定將從前一天傍晚開始一直持續(xù)到第二天上午,同時需確保正確連接儀器和測定整個過程中裝置內(nèi)沒有氣泡且密閉性良好。由于白天蒸騰耗水強烈,即使傍晚光照強度較低,葉片很可能因沒有完全停止氣孔蒸騰導(dǎo)致枝條樁吸取硅膠軟管內(nèi)蒸餾水并產(chǎn)生氣泡。因此,在連接好裝置后,電子壓力傳感器的信號線需連上數(shù)據(jù)采集器查看數(shù)據(jù)是否正常。若發(fā)現(xiàn)異常,則需檢查連接壓力傳感器的硅膠軟管是否存在氣泡;若有氣泡,則需及時排除或重新連接。
根壓力探針技術(shù)也可測定枝條或離體根段的木質(zhì)部壓力(Steudle et al., 1993; 萬賢崇等, 2007; Knipfer & Fricke, 2010)。在測定枝條時,將枝條第一片葉片下方的枝條切斷后,在剩下的枝條上固定一個壓力探針,用橡膠密封住微型壓力傳感器,幾小時后即可測定根壓的大?。⊿teudle & Jeschke, 1983)。而在測定離體根段時,先在水下切除植物個體的根(確保根頂端部分未被損傷),將根通過一個不透氣的硅膠密封連接帶有壓力傳感器的測定設(shè)備,并使根部壓力保持穩(wěn)定,大約數(shù)小時后測定系統(tǒng)便建立起穩(wěn)定的壓力。另外,根系真空灌注法(Knipfer & Fricke, 2010)和外用氣壓法(Singh, 2016b)也屬于根壓力探針技術(shù)的范疇。雖然根壓探針技術(shù)在野外操作不易,但能實時連續(xù)測定根壓,因此,它是目前常用的方法之一(Steudle et al., 1993; Henzler et al., 1999)。
3.1.2 非損傷測定技術(shù)非損傷測定技術(shù)包括等壓法、木質(zhì)部壓力探針技術(shù)、細(xì)胞壓力探針技術(shù)等。等壓法是將不同濃度的非滲透溶液分別加入帶根的培養(yǎng)基中,觀察吐水過程,當(dāng)吐水結(jié)束時就可認(rèn)為根壓的大小與溶液滲透勢的數(shù)值相等(Klepper & Kaufmann, 1966; Steudle & Jeschke, 1983; Zhu et al., 2010)。木質(zhì)部壓力探針技術(shù)可以直接測量植株木質(zhì)部壓力、液流和溶質(zhì)組成的日變化和季節(jié)變化(Balling & Zimmermann, 1990; Liu et al., 2009)。Clearwater等(2007)通過安裝在獼猴桃根系木質(zhì)部中的壓力傳感器測定根壓。由一個壓力傳感器通過一個有機玻璃腔體連接到一個尖端通過高溫拉制而成的錐形玻璃毛細(xì)管(直徑為10 μm),毛細(xì)管及腔內(nèi)充滿除去氣泡的蒸餾水。測定時,將毛細(xì)管尖端在顯微鏡下刺入植物根系的木質(zhì)部導(dǎo)管后即可開始記錄導(dǎo)管內(nèi)汁液的壓力變化(圖3)。
細(xì)胞壓力探針技術(shù)把壓力傳感器和金屬桿密封連接到充滿硅油的微型壓力室,然后把毛細(xì)管裝滿硅油也連接到微型壓力室,使探針插入到單個細(xì)胞中。通過螺旋鈕操縱金屬桿來改變彎月面位置可以引起膨壓變化從而形成壓力梯度(Azaizeh et al., 1992; 劉小芳等,2008)。該方法具有一定的局限性,即在整個安裝過程中不僅要確保整個密封系統(tǒng)內(nèi)沒有氣泡,并選取大小適合的根系細(xì)胞作為測定對象,而且還要防止壓力探針被堵塞和刺穿細(xì)胞等。
3.2 間接測定
根壓的間接測定是應(yīng)用其他非損傷的測定技術(shù)。有學(xué)者提出將實際測量得到的葉片厚度或莖干直徑的微小變化程度與相關(guān)模型預(yù)測的值進(jìn)行比較。他們認(rèn)為若夜間葉片厚度或莖干直徑大小的測量值高于相關(guān)模型的預(yù)測值,則認(rèn)為是植物產(chǎn)生的根壓造成了葉片厚度或莖干直徑在預(yù)測值和測量值之間的差值(De Swaef & Steppe, 2012; De Swaef et al., 2012, 2013)。目前,已有的葉片膜片鉗壓力探針技術(shù)和精確度較高的線性變量位移傳感器(LVDTs)可用來分別測定葉片厚度和莖干直徑的微變化(De Swaef & Steppe, 2012)。研究者們根據(jù)相關(guān)模型可以通過這兩項技術(shù)間接獲得植物根壓的大小。然而,由于葉片厚度或莖干直徑大小的微小變化不一定都能被儀器設(shè)備所檢測到,因此,該方法的實際應(yīng)用也存在一定的局限性(Singh, 2016b)。
綜上所述,目前還沒有任何一種技術(shù)能夠完全滿足所有條件,并且簡單而準(zhǔn)確地測定植物的根壓。因此,Singh(2016b)提出需要綜合考慮植物的不同類型、年齡結(jié)構(gòu)特征或生存策略的差異,開發(fā)一種簡易操作、價格低廉、測定結(jié)果可靠且適用于所有情況的根壓的非損傷測定技術(shù)。
4根壓的大小
與蒸騰拉力相比,根壓造成的水流相對較小,尤其是在蒸騰拉力較高的情況下,當(dāng)溶質(zhì)被流入木質(zhì)部的水分稀釋后,根壓則傾向于消失但并不是不存在(Singh, 2016b)。除此之外,當(dāng)空氣或土壤相對溫暖濕潤、早春時節(jié)的植物葉片還未展開時,根壓會很明顯,但當(dāng)葉片展開后,植物體內(nèi)的水分快速流動,根壓就無法被直接檢測到(Singh, 2016b)。之前有學(xué)者研究植物吐水或傷流的速率或體積,發(fā)現(xiàn)許多植物的根部在某些特定條件下會產(chǎn)生大小不同的根壓,并顯示不同的日間或季節(jié)差異(Kramer & Kozlowski,1979; Kundt & Gruber,2006)。這些大小差異也可能是根壓測定技術(shù)的不同而造成的(Singh, 2016b),例如,利用根壓探針技術(shù)測定根壓大小范圍在0~500 kPa之間,比利用壓力室測定的根壓大小范圍偏大(Wei et al., 1999)。物種差異也在一定程度上影響了植物根壓的大小。例如,孝順竹(Bambusa multiplex)的最大根壓為18.5 kPa,矢竹(Pseudosasa japonica)的最大根壓為28.8 kPa,金鑲玉竹(Phyllostachys aureosulcata)的最大根壓為8.0 kPa(王福升等,2011)。除根壓測定技術(shù)及植物種間差異外,有研究提出了在探討根壓的大小時還需要考慮植株自身的高度。例如,在高度為18 m的Doliocarpus brevipedicellatus莖干基部附近測得根壓為64 kPa,而64 kPa的根壓只能將水分推送到7.1 m的高度,因此,在該植株7.1 m處及以上位置高度處測得的木質(zhì)部壓力趨于零(Scholander et al., 1957; Ewers et al., 1997)。總之,在不同地區(qū)、不同季節(jié),根壓的大小也會因不同物種而存在差異。例如,番茄的根壓能達(dá)到600 kPa,某些禾草的根壓高達(dá)1 000 kPa,某些沙漠植物的根壓達(dá)到6 000 kPa (White et al., 1958; Kundt & Gruber, 2006)。由此可見,根壓是常見的一種生理現(xiàn)象,其大小在空間和時間上均有所不同 (Scholander et al., 1957; Putz 1983; Cochard et al., 1994; Ewers et al., 1997; Tyree, 2003a, b; Kundt & Gruber, 2006; Zwieniecki & Holbrook, 2009; Wang et al., 2015)。
5影響根壓的主要因素
內(nèi)皮層細(xì)胞上的轉(zhuǎn)運蛋白導(dǎo)致離子從質(zhì)外體途徑進(jìn)入共質(zhì)體途徑,造成內(nèi)外皮層存在滲透差,水分沿這種滲透差進(jìn)入內(nèi)皮層(Maurel et al., 2008; 潘瑞熾,2012)。水分運輸除了依賴這種滲透差外,根壓的產(chǎn)生也依賴這種內(nèi)外皮層的滲透差,故任何影響轉(zhuǎn)運蛋白的因素都會間接影響根壓的有無及其大小。另外,有研究發(fā)現(xiàn)根壓的產(chǎn)生和大小會因遺傳因素、土壤因素及其他環(huán)境因子的變化而各不相同(White et al., 1958; Kundt & Gruber, 2006)。
5.1 水通道蛋白因素
就根系吸水調(diào)控而言,植物具有被稱為AQP的水通道蛋白家族(major intrinsic protein, MIP)。AQP存在于植物的不同部位,根部70%~80%的水分由AQP來運輸,因此,AQP是水分進(jìn)入植物細(xì)胞的主要調(diào)控位點(于秋菊等,2002),其表達(dá)水平與根壓大小顯著相關(guān)(Sun et al., 2018)。大量研究表明,除受水分子動能的影響外,植物AQP活性還受水通道門控(gating)的調(diào)控(Quiroga et al., 2019)。直接影響水通道門控的因素有磷酸化、聚合調(diào)控、糖基化、甲基化、陽離子、滲透壓和溶質(zhì)梯度等(Maurel et al., 2008; Gheorghe, 2010)。
磷酸化是AQP活性調(diào)控的一種重要方式?;铙w試驗、質(zhì)譜分析及免疫檢測均表明植物AQP的3個亞類,PIP、TIP和NIP都能夠被磷酸化(Kaldenhoff & Fischer, 2006; 李紅梅等, 2010; 張璐和杜相革,2014)。AQP單體發(fā)生異聚化也可調(diào)控AQP活性,例如在玉米(Heinen et al., 2009)、煙草(Nicotiana tabacum)(Gheorghe, 2010)、含羞草(Mimosa pudica)(李紅梅等,2010)中都有研究發(fā)現(xiàn)不同質(zhì)膜內(nèi)在蛋白相互作用下形成的異源四聚體能增加膜對水分的滲透性。AQP的糖基化和甲基化作用也參與AQP活性調(diào)節(jié)。前人運用免疫熒光標(biāo)記已經(jīng)證明,甘露醇誘導(dǎo)的滲透脅迫可導(dǎo)致冰葉日中花(Mesembryanthemum crystallinum)水通道蛋白亞家族TIP的McTIP1;2在液泡膜上的重新分布且涉及它的糖基化和cAMP-依賴的信號轉(zhuǎn)導(dǎo)(Vera-Estrella et al., 2004; 李紅梅等,2010)。Ye & Wiera(2004)研究發(fā)現(xiàn),高濃度滲透溶質(zhì)控制水通道蛋白開關(guān)的機制可能是內(nèi)聚力-張力模式,滲透溶質(zhì)被排出通道從而引起通道孔內(nèi)張力發(fā)生變化,蛋白變形后導(dǎo)致通道開關(guān)關(guān)閉。植物根系導(dǎo)水率會受AQP活性變化的影響,例如用HgCl2處理后根系導(dǎo)水率明顯下降(Wan & Zwiazek, 1999; Javot & Maurel, 2002)。在AQP的NPA區(qū)域有對Hg2+敏感的保守Cys殘基,Hg2+與之結(jié)合可改變蛋白空間構(gòu)象,導(dǎo)致水通道受阻從而影響水分子的轉(zhuǎn)運,抑制水分的跨膜流動(張璐和杜相革,2014)。另外,在植物木質(zhì)部栓塞修復(fù)過程中,木質(zhì)部周邊薄壁細(xì)胞的AQP表達(dá)增加或活性增加可能有助于促進(jìn)水分進(jìn)入管腔并降低水勢(Brodersen & Mcelrone, 2010)。盡管AQP與根系水分吸收有著密切聯(lián)系(Baiges et al., 2002; Aroca et al., 2012),但是植物產(chǎn)生根壓的過程是否涉及AQP基因的激活或相對表達(dá)水平的增加,仍有待進(jìn)一步研究。
5.2 遺傳因素
在自然界中,根壓產(chǎn)生和調(diào)控的遺傳因素對根壓大小具有一定影響(Mitchell et al., 1991; Dorais et al., 2001; Lafitte & Courtois, 2002)。例如,對不同品種水稻幼苗吐水和傷流量的研究已表明晚熟水稻比早熟水稻吐水量多(Fujii & Tanaka, 1957)。郭建榮(2016)通過對比四種基因型的離體楊樹苗木,發(fā)現(xiàn)不同基因型之間根壓最大值也存在顯著性差異。另外,Sun等(2018)在基因組與竹筍保持水分平衡關(guān)系的研究中提出相關(guān)基因參與了根壓的調(diào)控,并用毛竹幼苗原位雜交實驗證明了與根壓有關(guān)的兩個基因分別是PeTIP4;1和PeTIP4;2。
5.3 土壤因素
5.3.1 土壤溫度和根系周圍的溫度如前所述,根壓是一個與能量相關(guān)的過程,參與根系活動的酶類會受溫度調(diào)控,通過影響根系呼吸代謝和水分運輸而影響根壓產(chǎn)生。土壤溫度和根系周圍的溫度升高或降低是直接影響酶活性的重要因素。當(dāng)土壤溫度下降時,植株根系最大根壓值會降低,且將根的溫度從15 ℃冷卻到4 ℃時,植物葉片會停止吐水,而將溫度升高時,其吐水速率則會上升(Pedersen, 1993; Ewers et al., 2001; 郭建榮和萬賢崇, 2017a,b)。因此,根壓會受土壤溫度和根系周圍溫度的影響(Singh, 2016b)。
5.3.2 土壤水分及礦質(zhì)元素土壤水分變化會對根壓的產(chǎn)生和大小造成一定的影響(Zarebanadkouki et al., 2018)。當(dāng)植物受到干旱脅迫,水分含量低于45%時,生長在沙土中的錦紫蘇(Coleus scutellarioides)、向日葵和番茄就不會再產(chǎn)生根壓(Zaitseva & Minashina, 1998)。若復(fù)水,植物又開始產(chǎn)生根壓(Singh, 2016b)。另外,水稻的吐水量會隨葉片水勢的升高而增加,這表明降低根部土壤水分可能會影響根系水通道蛋白的活性或是抑制水分進(jìn)入內(nèi)皮層細(xì)胞(Katsuhara et al., 2008; Heinen et al., 2009)。除土壤水分的影響外,土壤中礦質(zhì)元素也是影響根壓的另一重要因素。在研究核桃根壓時,Ewers等(2001)發(fā)現(xiàn)土壤礦質(zhì)元素尤其是硝酸鹽減少時,核桃的木質(zhì)部壓力在60~100 kPa之間,而當(dāng)增加硝酸鹽濃度后的4 h內(nèi)木質(zhì)部壓力便增至130 kPa。
5.4 其他環(huán)境因素
王華芳等(2015)對藤本植物的研究發(fā)現(xiàn),當(dāng)光合有效輻射在一定范圍內(nèi)升高時,增強的植物蒸騰作用所產(chǎn)生的負(fù)壓會增加,導(dǎo)致根壓快速下降,且與光合有效輻射升高幾乎保持時間同步。當(dāng)夜間飽和水汽壓差和蒸騰速率處于最低水平且基本保持不變時,根壓值會維持在較高水平,但正午時刻的飽和水汽壓差達(dá)到最大時,根壓值則基本處于最低狀態(tài)。針對降雨量對根壓的影響,前人的研究已表明藤竹(Rhipidocladum racemiflorum)的根壓在降雨后會立即升高(Cochard et al., 1994),但王華芳(2015)研究發(fā)現(xiàn)降水對根壓的影響甚微。因此,降雨對根壓的影響程度還有待深入研究。
6根壓的意義和影響
6.1 根壓在生理生態(tài)學(xué)方面的意義和影響
在干旱地區(qū),因降雨稀少產(chǎn)生的水分脅迫限制了植物的生長發(fā)育,嚴(yán)重時甚至?xí)?dǎo)致植物死亡。植物在水分脅迫時,木質(zhì)部導(dǎo)管或管胞在巨大的張力作用下容易導(dǎo)致氣泡進(jìn)入管腔而形成氣穴,嚴(yán)重的氣穴則會形成栓塞,導(dǎo)致植物水分運輸功能喪失,最終使得植物體內(nèi)水分虧缺,蒸騰速率下降,氣孔關(guān)閉等(Tyree & Zimmermann, 2002; Gullo, 2010; Klein et al., 2018)。根壓已被證明是在水分虧缺時植物修復(fù)栓塞化導(dǎo)管的一種重要生理機制(Yang et al., 2012; Gleason et al., 2017; Holmlund et al., 2020; Cuneo et al., 2020)。例如:一些沙漠植物的根壓(高達(dá)6 MPa)能夠保障植物從干旱的土壤中吸收水分,并使其生態(tài)適應(yīng)能力增強(White et al., 1958; Kundt & Gruber, 2006);竹子、棕櫚等木質(zhì)化程度較高的單子葉植物,由于其自身缺乏次生生長,當(dāng)水力功能喪失時,并不能像其他木本植物一樣,通過形成層產(chǎn)生新的木質(zhì)部來替代栓塞化的導(dǎo)管,根壓對此類植物修復(fù)因水分虧缺導(dǎo)致的栓塞化導(dǎo)管就顯得尤為重要(Saha et al., 2009; Yang et al., 2012);Wang等(2011)監(jiān)測了分布于熱帶和亞熱帶53種亞洲竹種的根壓,結(jié)果表明監(jiān)測的所有竹種均具有根壓,其中一些竹種較大的根壓能使葉片發(fā)生夜間吐水現(xiàn)象;竹子通過夜間根壓能修復(fù)栓塞化的導(dǎo)管,使其水力功能保持完整,有助于植株在水分虧缺時仍能存活和生長(Cao et al., 2012; Yang et al., 2012)。
在溫帶森林中,凍融交替現(xiàn)象普遍存在,即低溫使植物木質(zhì)部導(dǎo)管或管胞內(nèi)的汁液結(jié)冰,汁液內(nèi)的氣泡因不溶于冰而被析出,木質(zhì)部管腔內(nèi)就會產(chǎn)生氣穴;當(dāng)氣溫回升導(dǎo)致木質(zhì)部冰晶融化時,氣泡在木質(zhì)部負(fù)壓的作用下擴大體積,造成導(dǎo)管栓塞而威脅植物生長(Tyree & Sperry, 1989; Gullo, 2010; Choat et al., 2011)。已有研究發(fā)現(xiàn)根壓是修復(fù)凍融交替導(dǎo)致的木質(zhì)部栓塞的一種重要機制(Tyree & Yang, 1992)。例如,樺木(Betula papyrifera)在早春展葉前利用根壓修復(fù)栓塞化的導(dǎo)管,恢復(fù)導(dǎo)管的水分傳導(dǎo)功能(Hao et al., 2013)。又如針對長白山自然保護(hù)區(qū)常見的三類功能型(只產(chǎn)生根壓、同時產(chǎn)生根壓和莖壓、不產(chǎn)生根壓和莖壓)溫帶散孔材和環(huán)孔材樹種的水力結(jié)構(gòu)特性進(jìn)行研究,發(fā)現(xiàn)相比于不產(chǎn)生根壓和莖壓的樹種,只產(chǎn)生根壓和同時產(chǎn)生根壓與莖壓的樹種均有較強的凍融疲勞抗性,更能修復(fù)冬季低溫造成的栓塞化導(dǎo)管,但同時產(chǎn)生根壓和莖壓的樹種水力導(dǎo)度較低,只產(chǎn)生根壓的樹種對干旱引起的氣穴化抗性較低,這表明不同功能型樹種應(yīng)對木質(zhì)部栓塞的策略不同,木質(zhì)部導(dǎo)水安全性與高效性之間的權(quán)衡促使這三類功能型樹種在凍融交替現(xiàn)象常見的溫帶地區(qū)能共存(Yin et al., 2018)。
已有研究發(fā)現(xiàn)木質(zhì)藤本在熱帶森林中的空間分布范圍比在溫帶森林中更為廣泛,但造成木質(zhì)藤本這種分布格局差異的原因仍不清楚(Gentry, 1991; Jiménez-Castillo & Lusk, 2013)。較大直徑的木質(zhì)部導(dǎo)管在溫帶地區(qū)更可能遭受凍融交替導(dǎo)致的栓塞(Cochard & Tyree, 1990; Sperry & Sullivan, 1992; Sperry et al., 1994),而熱帶地區(qū)的木質(zhì)藤本具有較粗的導(dǎo)管(Ewers & Fisher, 1991)。目前,還不清楚熱帶藤本較粗的導(dǎo)管是否能通過莖干的生長或周期性的修復(fù)而避免栓塞(Cobb et al., 2007; Lens et al., 2013)。然而,如果木質(zhì)藤本這類多年生的植物無法通過根壓修復(fù)栓塞化的導(dǎo)管,則其分布可能會被限制在水分充足且沒有結(jié)冰低溫的生境中。就木質(zhì)藤本的全球分布格局而言,其豐富度與緯度之間存在顯著的負(fù)相關(guān)關(guān)系。因此,根壓似乎對木質(zhì)藤本植物生態(tài)適應(yīng)及物種分布范圍起一定的作用。
植物根系對礦質(zhì)元素的主動吸收會造成滲透勢,從而使水分發(fā)生定向流動并在根部產(chǎn)生根壓。研究表明根壓能夠修復(fù)木質(zhì)部的栓塞及補充植物莖干的水分(Zhao et al., 2017; Nardini et al., 2018; Yin et al., 2018)。在蒸騰作用沒有或很弱的條件下,植物根系會產(chǎn)生正的木質(zhì)部壓力,推動水分沿著導(dǎo)管或管胞向上運輸,使氣泡溶解或水分再填充進(jìn)而修復(fù)栓塞化導(dǎo)管。例如,根壓是葡萄藤、竹子等植物在夜間修復(fù)栓塞化導(dǎo)管的主要機制(Yang et al., 2012; Knipfer et al., 2015; Brodersen et al., 2017)。像竹子這樣相對高大的草本植物能依靠最大根壓修復(fù)植株冠層輸導(dǎo)組織的栓塞,進(jìn)而影響植株莖稈的最大生長高度(Cao et al., 2012)。在發(fā)生栓塞的導(dǎo)管中,若根壓不足以驅(qū)動水分到達(dá)冠層,則其針對栓塞的修復(fù)功能有限。例如,藤本植物的根壓變化范圍一般在2~148 kPa之間(Ewers et al., 1997; Fisher et al., 1997; Tibbetts & Ewers, 2000; 王華芳,2015),表明其最大根壓只能將導(dǎo)管內(nèi)部的水柱推到14 m的高度,而藤本植物的高度大多高于14 m,因此,推測根壓對高于14 m的藤本植物中氣穴化導(dǎo)管的修復(fù)作用有限(王華芳,2015)。另外,夜間根壓被認(rèn)為對水稻木質(zhì)部栓塞化導(dǎo)管的修復(fù)很重要(Stiller et al., 2003)。因此,我們可以利用根壓對栓塞化導(dǎo)管的修復(fù)能力來甄選耐旱的水稻品種,因為低的根壓與水稻的干旱敏感性有關(guān)(Lafitte & Courtois, 2002)。
正的根壓能積極地驅(qū)動水分向上運輸,對白天因過度蒸騰而導(dǎo)致水分虧缺的儲水組織進(jìn)行水分補充(Yang et al., 2015; Zhao et al., 2017; Wu et al., 2019)。例如,正的根壓是瓜多竹(Guadua angustifolia)水分運輸和水分補充的一種主要驅(qū)動力(Zachary, 2009)。根壓不但能為水稻等農(nóng)作物的枝葉提供水分(Singh et al., 2009),而且能對因春季無葉片導(dǎo)致無蒸騰拉力的樹木補充水分(Sperry et al., 1987)。因此,根壓能夠防止農(nóng)作物和樹木因水分虧缺而倒伏(Sperry et al., 1987; Clearwater et al., 2007)。
另外,根壓還可用來追蹤營養(yǎng)元素和激素在植物各器官中的轉(zhuǎn)移和運輸(Lafitte & Courtois, 2002; Lian et al., 2004; Singh & Singh, 2013),或者提高蛋白質(zhì)、化感物質(zhì)以及根部重金屬鰲合物的重組和運輸?shù)龋↘omarnytsky et al., 2000; Xiao et al., 2006; Singh & Singh, 2013; Singh, 2016b)。例如,有學(xué)者通過檢測具有根壓的卷心菜,在其葉片吐水液中發(fā)現(xiàn)了鈣離子的積累(Tibbitts, 1977)。在大麥的葉片尖端氣孔保衛(wèi)細(xì)胞上,發(fā)現(xiàn)有大量細(xì)菌聚集并存在于吐水液中,而這些吐水液除了含有無機鹽外,還含有糖、氨基酸和維生素等(Dieffenbach et al., 1980)。
6.2 根壓在農(nóng)藝學(xué)方面的意義和影響
雖然根壓對于較高的木本、藤本、竹類、落葉植物的栓塞修復(fù)可能存在著一定的局限性,但是,對于農(nóng)業(yè)園藝作物,如植株矮小的核桃、番茄、萵苣(Lactuca sativa)等可能具有重要作用(Singh & Singh, 1989; Tanner & Beevers, 1999; Singh et al., 2009)。即使根壓不能完全修復(fù)發(fā)生栓塞的導(dǎo)管,也可為這些農(nóng)業(yè)及園藝作物的水分運輸提供補充(Fisher et al., 1997; Zachary, 2009; Yang et al., 2015)。然而,隨著當(dāng)前全球氣候變暖,減少能源使用已成為溫室栽培中的重要問題之一。荷蘭已是世界上最大的溫室產(chǎn)業(yè)國,大約6 000家公司在10 500 hm2土地上實現(xiàn)了超過70億歐元的產(chǎn)值,占其農(nóng)業(yè)總產(chǎn)值的40%。荷蘭每平方米的溫室年均消耗約為40 m3的天然氣,消耗總量為42億m3的天然氣,占據(jù)消費總額的10%。由此可見,能夠控制溫濕度的溫室使用了大量能源(Heuvelink et al., 2008)。因此,很有必要發(fā)展新的節(jié)能策略和作物管理方式,并使溫室栽培作物在適宜條件下產(chǎn)生最利于其生長的根壓 (Jackson et al., 2000; Heuvelink et al., 2008; Singh, 2016b)。如果溫室通過大量耗能的方式始終保持恒定的環(huán)境條件,根壓的過度發(fā)生可能會影響農(nóng)產(chǎn)品的收獲量(Jackson et al., 2000; Heuvelink et al., 2008; Singh, 2016b)。根壓也與植物的某些病害有關(guān)(Johnson, 1936)。例如,根壓的增加可能會導(dǎo)致植物細(xì)胞的破裂,從而使病菌乘虛而入,逐漸擴散并造成植物組織受損(Johnson, 1936)。將壓力較高的水分直接作用于植物,植株根系會在短時間內(nèi)迅速出現(xiàn)不同程度的腫脹、吐水和浸泡的現(xiàn)象,使受到浸泡的番茄和煙草根系極易感染細(xì)菌(Johnson, 1936)。此外,過高的根壓可能會使番茄或萵苣發(fā)生生理功能失調(diào),影響水果蔬菜的品質(zhì)(Maaswinkel & Welles, 1986; Dorais et al., 2001; De Swaef et al., 2013)。因此,需要研究并確定農(nóng)作物所需要的根壓適合范圍(Singh, 2016b)。但到目前為止,對于大多數(shù)農(nóng)作物所需要的根壓適合范圍和驅(qū)動及影響根壓產(chǎn)生的諸多環(huán)境因子等問題還有待進(jìn)一步研究。
7問題和展望
基于上述對植物根壓研究的歸納和總結(jié),根壓的未來研究可從以下幾個方面進(jìn)行。
(1)改進(jìn)根壓的測定技術(shù)。目前,還沒有任何一種技術(shù)能夠完全滿足所有條件的應(yīng)用,能夠簡單且準(zhǔn)確地測定根壓大小。因此,需要針對植物的不同類型、生長特征和實際情況等,研發(fā)或改進(jìn)出簡單可靠且價格低廉的實用技術(shù),從而實現(xiàn)連續(xù)動態(tài)的準(zhǔn)確測定根壓。
(2)闡明植物根壓與栓塞修復(fù)機制的關(guān)系。由于干旱誘導(dǎo)和凍融交替會使某些植物面臨輸水系統(tǒng)中栓塞的威脅和水分虧缺,有根壓存在的植物能夠及時修復(fù)水力系統(tǒng)功能,恢復(fù)正常的水分供應(yīng),但沒有根壓的植物也能與產(chǎn)生根壓的植物共存,這意味著根壓可能與其他影響木質(zhì)部栓塞抗性的因素共同決定著不同生態(tài)型植物類群的自然分布特性。
(3)揭示根壓的臨界閾值。未來氣候變化會使溫室栽培的可利用資源面臨巨大挑戰(zhàn),如根壓的過度發(fā)生將可能影響農(nóng)作物收成。因此,需要研究并確定大多數(shù)農(nóng)作物需要的根壓適合范圍或臨界閾值,從而為未來創(chuàng)造農(nóng)作物所需根壓的發(fā)生環(huán)境、育種栽培及豐產(chǎn)豐收等提供重要參考依據(jù)。
參考文獻(xiàn):
AMEGLIO T, EWERS FW, COCHARD H, et al., 2001. Winter stem xylem pressure in walnut trees: effects of carbohydrates, cooling and freezing [J]. Tree Physiol, 21(6): 387-394.
AROCA R, PORCEL R, RUIZ-LOZANO JM, 2012. Regulation of root water uptake under abiotic stress conditions [J]. J Exp Bot, 63(1): 43-57.
AZAIZEH H, GUNSE B, STEUDLE E, 1992. Effects of NaCl and CaCl2 on water transport across root cells of maize (Zea mays L.) seedlings [J]. Plant Physiol, 99(3): 886-894.
BAIGES I, SCHAFFNER AR, AFFENZELLER MJ, et al., 2002. Plant aquaporins [J]. Physiol Plant, 115(2): 175-182.
BALLING A, ZIMMERMANN U, 1990. Comparative measurements of the xylem pressure of Nicotiana plants by means of the pressure bomb and pressure probe [J]. Planta, 182(3): 325-338.
BAI XF, ZHU JJ, 2013. Techniques and methods for the practical use of xylem pressure probes [J]. Plant Sci J, 31(6): 603-608. [柏新富, 朱建軍, 2013. 植物木質(zhì)部壓力探針測定技術(shù)與方法 [J]. 植物科學(xué)學(xué)報, 31(6): 603-608.]
BRODERSEN CR, KNIPFER T, MCELRONE AJ, 2017. In vivo visualization of the final stages of xylem vessel refilling in grapevine (Vitis vinifera) stems [J]. New Phytol, 217(1): 117-126.
BRODERSEN CR, MCELRONE AJ, 2010. The dynamics of embolism repair in xylem: in vivo visualizations using high-resolution computed tomography [J]. Plant Physiol, 154(3): 1088-1095.
CAO KF, YANG SJ, ZHANG YJ, et al., 2012. The maximum height of grasses is determined by roots [J]. Eco Lett, 15(7): 666-672.
CHOAT B, MEDEK DE, STUART SA, et al., 2011. Xylem traits mediate a trade-off between resistance to freeze-thaw-induced embolism and photosynthetic capacity in overwintering evergreens [J]. New Phytol, 191(4): 996-1005.
CLEARWATER MJ, BLATTMANN P, LUO Z, et al., 2007. Control of scion vigour by kiwifruit rootstocks is correlated with spring root pressure phenology [J]. J Exp Bot, 58(7): 1741-1751.
COBB AR, CHOAT B, HOLBROOK NM, 2007. Dynamics of freeze-thaw embolism in Smilax rotundifolia (Smilacaceae) [J]. Am J Bot, 94(4): 640-649.
COCHARD H, EWERS FW, TYREE MT, 1994. Water relations of a tropical vine-like bamboo (Rhipidocladum racemiflorum): root pressures, vulnerability to cavitation and seasonal changes in embolism [J]. J Exp Bot, 45(277): 1085-1089.
COCHARD H, TYREE MT, 1990. Xylem dysfunction in Quercus: vessel sizes, tyloses, cavitation and seasonal changes in embolism [J]. Tree Physiol, 6(4): 393-407.
CUNEO IF, BARRIOS-MASIAS F, KNIPFER T, et al., 2020. Differences in grapevine rootstock sensitivity and recovery from drought are linked to fine root cortical lacunae and root tip function [J]. New Phytol, 229(1): 272-283.
DAVIS TA,1961. High root pressure in palms [J]. Nature, 192(4799): 227-228.
DE SWAEF T, HANSSENS J, CORNELIS A, et al., 2013. Non-destructive estimation of root pressure using sap flow, stem diameter measurements and mechanistic modeling [J]. Ann Bot, 111(2): 271-282.
DE SWAEF T, STEPPE K, 2012. Sap flow, stem diameter variations and mechanistic modelling have potential to assess root pressure [J]. Acta Hortic, 951(951): 111-115.
DE SWAEF T, VERBIST K, CORNELIS W, 2012. Tomato sap flow, stem and fruit growth in relation to water availability in rockwool growing medium [J]. Plant Soil, 350(1): 237-252.
DIEFFENBACH H, KRAMER D, LTTGE U, 1980. Release of guttation fluid from passive hydathodes of intact barley plants. I. structural and cytological aspects [J]. Ann Bot, 45(4): 397-401.
DIXON HH, 1914. Transpiration and the ascent of sap in plants [J]. Nature, 94(2360): 558-559.
DONG ZM, 2003. The nature of root pressure [J]. Acta Bot Boreal-Occident Sin, 23(7): 1098-1104. [董忠民, 2003. 根壓的本質(zhì) [J]. 西北植物學(xué)報, 23(7): 1098-1104.]
DORAIS M, PAPADOPOULOS AP, GOSSELIN A, 2001. Greenhouse tomato fruit quality [M]//JANICK J. Horticultural Reviews. New York: John Wiley & Sons, lnc, 26: 239-319.
DUSTMAMATOV AG, ZHOLKEVICH VN, 2008. Effects of HgCl2 on principal parameters of exudation from maize detached root systems [J]. Russ J Plant Physl, 55(6): 814-820.
DUSTMAMATOV AG, ZHOLKEVICH VN, KUZNETSOV VV, 2004. Water pumping activity of the root system in the process of cross-adaptation of sunflower plants to hyperthermia and water deficiency [J]. Russ J Plant Physl, 51(6): 822-826.
ENSTONE DE, PETERSON CA, MA F, 2003. Root endodermis and exodermis: structure, function, and responses to the environment [J]. J Plant Growth Regul, 21(4): 335-351.
EWERS FW, AMGLIO T, COCHARD H, et al., 2001. Seasonal variation in xylem pressure of walnut trees: root and stem pressures [J]. Tree Physiol, 21(15): 11-23.
EWERS FW, COCHARD H, TYREE MT, 1997. A survey of root pressures in vines of a tropical lowland forest [J]. Oecologia, 110(2): 191-196.
EWERS FW, FISHER JB, 1991. Why vines have narrow stems: histological trends in Bauhinia (Fabaceae)? [J]. Oecologia, 88(2): 233-237.
FISHER JB, ANGELES GA, EWERS FW, et al., 1997. A survey of root pressure in tropical vines and woody species [J]. Int J Plant Sci, 158(1): 44-50.
FRANK WT, 2006. A unified hypothesis of mechanoperception in plants [J]. Am J Bot, 93(10): 1466-1476.
FUJII Y, TANAKA N,1957. Intensity of guttation in rice seedlings in relation to earliness or lateness of the variety [J]. Jpn J Crop Sci, 25(3): 131-132.
GAMBA G, 2005. Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters [J]. Physiol Rev, 85(2): 423-493.
GENTRY AH, 1991. The distribution and evolution of climbing plants [M]//PUTZ FE, MOONEY HA. The Biology of Vines. Cambridge: Cambridge University Press: 3-50.
GHEORGHE B, 2010. Water channel proteins (later called aquaporins) and relatives: past, present, and future [J]. Iubmb Life, 61(2): 112-133.
GLEASON SM, WIGGANS DR, BLISS CA, et al., 2017. Embolized stems recover overnight in Zea mays: the role of soil water, root pressure, and nighttime transpiration [J]. Front Plant Sci, 8: 662.
GULLO ML, 2010. Different vulnerabilities of Quercus ilex L. to freeze-thaw and summer drought-induced xylem embolism: an ecological interpretation [J]. Plant Cell Environ, 16(5): 511-519.
GUO JR, 2016. Researching of root pressure and its diurnal rhythm of 84K pupolar and the influencing factors [D]. Beijing: Chinese Academy of Forestry Sciences.? [郭建榮, 2016. 木本植物銀腺楊根壓及其晝夜周期與影響因素的研究 [D]. 北京: 中國林業(yè)科學(xué)研究院.]
GUO JR, WAN XC, 2017a. Circadian rhythm of popular root pressure and the influencing factors [J]. Chin J Plant Ecol, 41(3): 369-377.? [郭建榮, 萬賢崇, 2017a. 楊樹根壓晝夜周期性及其影響因子 [J]. 植物生態(tài)學(xué)報, 41(3): 369-377.]
GUO JR, WAN XC, 2017b. Circadian rhythm of root pressure in intact poplar seedlings and the influencing factors [J]. Sci Silv Sin, 53(10): 22-28.? [郭建榮, 萬賢崇, 2017b. 楊樹苗木完整植株根壓的晝夜節(jié)律及其影響因素 [J]. 林業(yè)科學(xué), 53(10): 22-28.]
HAO GY, WHEELER JK, HOLBROOK NM, et al., 2013. Investigating xylem embolism formation, refilling and water storage in tree trunks using frequency domain reflectometry [J]. J Exp Bot, 64(8): 2321-2332.
HEINEN RB, YE Q, CHAUMONT F, 2009. Role of aquaporins in leaf physiology [J]. J Exp Bot, 60(11): 2971-2985.
HENZLER T, WATERHOUSE RN, SMYTH AJ, et al., 1999. Diurnal variations in hydraulic conductivity and root pressure can be correlated with the expression of putative aquaporins in the roots of Lotus japonicus [J]. Planta, 210(1): 50-60.
HEUVELINK E, BAKKER MJ, MARCELIS LFM, et al., 2008. Climate and yield in a closed greenhouse [J]. Acta Hortic, 801(801): 1083-1092.
HOLMLUND HI, DAVIS SD,EWERS FW, et al., 2020. Positive root pressure is critical for whole-plant desiccation recovery in two species of terrestrial resurrection ferns [J]. J Exp Bot, 71(3): 1139-1150.
JACKSON RB, SPERRY JS, DAWSON TE, 2000. Root water uptake and transport: using physiological processes in global predictions [J]. Trends Plant Sci, 5(11): 482-488.
JAVOT H, MAUREL C, 2002. The role of aquaporins in root water uptake [J]. Ann Bot, 90(3): 301-313.
JOHNSON J, 1936. Relation of root pressure to plant disease [J]. Science, 84(2171): 135-136.
JIMNEZ-CASTILLO M, LUSK CH, 2013. Vascular performance of woody plants in a temperate rain forest: lianas suffer higher levels of freeze-thaw embolism than associated trees [J]. Funct Ecol, 27(2): 403-412.
KALDENHOFF R, FISCHER M,2006. Functional aquaporin diversity in plants [J]. Biochim Biophys Acta, 1758(8): 1134-1141.
KATSUHARA M, HANBA YT, SHIRATAKE K,et al., 2008. Expanding roles of plant aquaporins in plasma membranes and cell organelles [J]. Funct Plant Biol, 35(1): 1-14.
KLEIN T, ZEPPEL MJB, ANDEREGG WRL, et al., 2018. Xylem embolism refilling and resilience against drought-induced mortality in woody plants: processes and trade-offs [J]. Ecol Res, 33(5): 839-855.
KLEPPER B, KAUFMANN MR, 1966. Removal of salt from xylem sap by leaves and stems of guttating plants [J]. Plant Physiol, 41(10): 1743-1747.
KNIPFER TF, EUSTIS A, BRODERSEN C, et al., 2015. Grapevine species from varied native habitats exhibit differences in embolism formation/repair associated with leaf gas exchange and root pressure [J]. Plant Cell Environ, 38(8): 1503-1513.
KNIPFER TF, FRICKE W, 2010. Root pressure and a solute reflection coefficient close to unity exclude a purely apoplastic pathway of radial water transport in barley (Hordeum vulgare)? [J]. New Phytol, 187(1): 159-170.
KOMARNYTSKY S, BORISJUK N, BORISJUK L, et al., 2000. Production of recombinant proteins in tobacco guttation fluid [J]. Plant Physiol, 124(3): 927-933.
KRAMER PJ, BOYER JS, 1995. Water relations of plants and soils [M]. Academic Press: Kaedinya: Australia.
KRAMER PJ, KOZLOWSKI TT, 1979. The physiology of woody plants [M]. Orlando: Academia.
KUNDT W, GRUBER E, 2006. The water circuit of the plants. Do plants have hearts? [J]. Quant Biol: 1-19.
LAFITTE HR, COURTOIS B, 2002. Interpreting cultivar × environment interactions for yield in upland rice: assigning value to drought-adaptive traits [J]. Crop Sci, 42(5): 1409-1420.
LENG HN, LU MZ, WAN XC, 2013. Variation in embolism occurrence and repair along the stem in drought-stressed and re-watered seedlings of a poplar clone [J]. Physiol Plant, 147(3): 329-339.
LENS F, TIXIER A, COCHARD H, et al., 2013. Embolism resistance as a key mechanism to understand adaptive plant strategies [J]. Curr Opin Plant Biol, 16(3): 287-292.
LI HM, WANG XR, HE SG, 2010. Recent advances in plant aquaporins [J]. Progr Biochem Biophys, 37(1): 31-37.? [李紅梅, 萬小榮, 何生根, 2010. 植物水孔蛋白最新研究進(jìn)展 [J]. 生物化學(xué)與生物物理進(jìn)展, 37(1): 31-37.]
LIAN HL, YU X, YE Q, et al., 2004. The role of aquaporin RWC3 in drought avoidance in rice [J]. Plant Cell Physiol, 45(6): 481-489.
LIU BB, STEUDLE E, DENG XP,2009. Root pressure probe can be used to measure the hydraulic properties of whole root systems of corn (Zea mays L.) [J]. Bot Stud, 50(3): 303-310.
LIU XF, ZHANG SQ, YANG XQ, 2008. The pressure probe technique: principles and application in research of plant water relations [J]. Agric Res Arid Areas, 26(4): 172-179.? [劉小芳, 張歲岐, 楊曉青, 2008. 壓力探針技術(shù)原理及其在植物水分關(guān)系研究中的應(yīng)用 [J]. 干旱地區(qū)農(nóng)業(yè)研究, 26(4): 172-179.]
LOGVENKOV SA, STEIN AA, 2013. The effect of the casparian band permeability to water and solutes on the root pressure: mathematical modeling [J]. J Biomech, 17(4): 43-52.
LU P, WOO KC, LIU ZT, 2002. Estimation of whole-plant transpiration of bananas using sap flow measurements [J]. J Exp Bot, 53(375): 1771-1779.
MAASWINKEL RHM, WELLES GWH, 1986. Factors influencing glassiness in lettuce [J]. Neth J Agric Sci, 34(1): 57-65.
MAUREL C, VERDOUCQ L, LUU DT,et al., 2008. Plant aquaporins: membrane channels with multiple integrated functions [J]. Ann Rev Plant Biol, 59(1): 595-624.
MITCHELL JP, SHENNAN C, GRATTAN SR, et al., 1991. Tomato fruit yields and quality under water deficit and salinity [J]. J Am Soc Hortic Sci, 116(2): 215-221.
NARDINI A, SAVI T, TRIFIL P, et al., 2018. Drought stress and the recovery from xylem embolism in woody plants [J]. Progr in Bot, 79: 197-231.
NEUFELD HS, GRANTZ DA, MEINZER FC, et al., 1992. Genotypic variability in vulnerability of leaf xylem to cavitation in water-stressed and well-irrigated sugarcane [J]. Plant Physiol, 100(2): 1020-1028.
OERTLI JJ, 1966. Active water transport in plants [J]. Physiol Plant, 19(3): 809-817.
OGATA S, SANEOKA H, MATSUMOTO K,1985. Nutritional-physiological evaluation of drought resistance of warm season forage species: comparative studies on root development water and nutrient absorption of forage species at various soil moisture levels [J]. J Jpn Soc Grassl Sci, 31(1): 263-271.
PAN RC, 2012.Plant physiology [M]. 7th ed. Beijing: Higher Education Press.? [潘瑞熾, 2012. 植物生理學(xué) [M]. 7版. 北京: 高等教育出版社.]
PATLAK CS, GOLDSTEIN DA, HOFFMAN JF, 1963. The ow of solute and solvent across a two-membrane system [J]. J Theor Biol, 5(3): 426-442.
PEDERSEN O, 1993. Long-distance water transport in aquatic plants [J]. Plant Physiol, 103(4): 1369-1375.
PICKARD WF, 2003a. The riddle of root pressure. I. Putting Maxwell’ s demon to rest [J]. Funct Plant Biol, 30(2): 121-134.
PICKARD WF, 2003b. The riddle of root pressure. Ⅱ. Root exudation at extreme osmolalities [J]. Funct Plant Biol, 30(2): 135-141.
PUTZ FE, 1983. Liana biomass and leaf area of a “tierra firme” forest in the Rio Negro Basin,Venezuela [J]. Biotropica, 15:185-189.
QUIROGA G, ERICE G, DING L, et al., 2019. The arbuscular mycorrhizal symbiosis regulates aquaporins activity and improves root cell water permeability in maize plants subjected to water stress [J]. Plant Cell Environ, 42(7): 2274-2290.
SAHA S, HOLBROOK NM, MONTTI L, et al., 2009. Water relations of Chusquea ramosissima and Merostachys claussenii in Iguazu National Park, Argentina [J]. Plant Physiol, 149(4): 1992-1999.
SCHARWIES JD, DINNENY JOS R, 2019. Water transport, perception, and response in plants [J]. J Plant Res, 132(3): 311-324.
SCHOLANDER PS, RUUD B, LEIVESTAD H, 1957. The rise of sap in a tropical liana [J]. Plant Physiol, 32(1): 1-6.
SHANG NK, 2012. New opinions about plants, water absorbing power [J]. Shangdong For Sci Technol, 201(4): 108-110.? [尚念科, 2012. 關(guān)于植物吸水動力的新見解 [J]. 山東林業(yè)科技, 201(4): 108-110.]
SI JH, FENG Q, ZHANG XY, et al., 2007. Sap flow of Populus euphratica in desert riparian forest in extreme arid region during the growing season [J]. J Desert Res, 27(3): 442-447.? [司建華, 馮起, 張小由, 等, 2007. 極端干旱區(qū)荒漠河岸林胡楊生長季樹干液流變化 [J]. 中國沙漠, 27(3): 442-447. ]
SINGH G, SINGH TN, 1989. Root-mediated water transport to the shoot of rice [J]. Curr Sci, 58(20): 1134-1138.
SINGH S, 2016a. Guttation: mechanism, momentum and modulation [J]. Bot Rev, 82(2): 149-182.
SINGH S, 2016b. Root pressure: getting to the root of pressure [M]. Springer International Publishing: Progress in Botany, 77: 106-142.
SINGH S, SINGH TN,2013. Guttation: chemistry, crop husbandry and molecular farming [J]. Phytochem Rev, 12(1): 147-172.
SINGH S, SINGH TN, CHAUHAN JS, 2009. Water transport in crop plants with special reference to rice: key to crop production under global water crisis [J]. J Crop Improv, 23(2): 194-212.
SPERRY JS, 1993. Winter xylem embolism and spring recovery in Betula cordifolia, Fagus grandifolia, Abies balsamea and Picea rubens [M] //BORGHETTI M, GRACE J, RASCHI A. Water transport in plants under climatic stress. Cambridge University Press: Cambridge: 87-98.
SPERRY JS, DONNELLY JR, TYREE MT, 1988. Seasonal occurrence of xylem embolism in sugar maple(Acer saccharum) [J]. Am J Bot, 75(8): 1212-1218.
SPERRY JS, HOLBROOK NM, ZIMMERMANN MH, et al., 1987. Spring filling of xylem vessels in wild grapevine [J]. Plant Physiol, 83(2): 414-417.
SPERRY JS, NICHOLS KL, SULLIVAN JEM, et al., 1994. Comparative studies of xylem embolism in ring-porous, diffuse-porous and coniferous trees of northern Utah and interior Alaska [J]. Ecology, 75(6): 1736-1752.
SPERRY JS, SULLIVAN JEM, 1992. Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse porous, and conifer species [J]. Plant Physiol, 100(2): 603-613.
STEUDLE E, MESHCHERYAKOV AB, 1996. Hydraulic and osmotic properties of oak roots [J]. J Exp Bot, 47(296): 387-401.
STEUDLE E, MURRMANN M, PETERSON CA, 1993. Transport of water and solutes across cornroots modified by puncturing the endodermis [J]. Plant Physiol, 103(2): 335-349.
STEUDLE E, JESCHKE WD, 1983. Water transport in barley roots [J]. Planta, 158(3): 237-248.
STILLER V, LAFITTE HR, SPERRY JS,2003. Hydraulic properties of rice and the response of gas exchange to water stress [J]. Plant Physiol, 132(3): 1698-1706.
SUN HY, WANG S, LOU YF, et al., 2018. Whole-genome and expression analyses of bamboo aquaporin genes reveal their functions involved in maintaining diurnal water balance in bamboo shoots [J]. Cells, 7(195): 1-19.
TAIZ L, ZEIGER E, MLLER IM,et al., 2015. Plant physiology and development [M]. Massachusetts: Sinauer Associates.
TANNER W, BEEVERS H,1999. Does transpiration have an essential function in long-distance ion transport in plants?? [J]. Plant Cell Environ, 13(8): 745-750.
TIAN XL,2008. Physio-ecology relationship between root pressure and bamboo species under low temperature stressed [D]. Nanjing: Nanjing Forestry University.? [田新立, 2008. 竹類植物的根壓與低溫脅迫下竹子生理生態(tài)關(guān)系的研究 [D]. 南京: 南京林業(yè)大學(xué).]
TIBBITTS PTW, 1977. Evidence that root pressure flow is required for calcium transport to head leaves of cabbage [J]. Plant Physiol, 60(6): 854-856.
TIBBETTS TJ, EWERS FW,2000. Root pressure and specic conductivity in temperate lianas: exotic Celastrus orbiculatus (Celastraceae) vs. native Vitis riparia (Vitaceae)? [J]. Am J Bot, 87(9): 1272-1278.
TYREE MT, 2003a. Plant hydraulics: the ascent of water [J]. Nature, 423(26): 923.
TYREE MT, 2003b. Hydraulic properties of roots [M]//KROON DH, VISSER EJW. Root ecology. Berlin: Springer: 125-150.
TYREE MT, SPERRY JS, 1989. Vulnerability of xylem to cavitation and embolism [J]. Ann Rev Plant Physiol Mol Biol, 40(1): 19-38.
TYREE MT, YANG S, 1992. Hydraulic conductivity recovery versus water pressure in xylem of Acer saccharum [J]. Plant Physiol, 100(2): 669-76.
TYREE MT, ZIMMERMANN MH, 2002. Xylem structure and the ascent of sap [J]. Science, 222(4623): 500-501.
VERA-ESTRELLA R, BARKLA BJ, BOHNERT HJ, et al., 2004. Novel regulation of aquaporins during osmotic stress [J]. Plant Physiol, 135(4): 2318-2329.
WAN XC, ZHANG SQ, ZHANG WH, 2007. Application of pressure probe technique in the study of plant water relationship [J]. J Plant Physiol Mol Biol, 33(6): 471-479.? [萬賢崇, 張歲岐, 張文浩, 2007. 壓力探針技術(shù)在植物水分關(guān)系研究中的運用 [J]. 植物生理與分子生物學(xué)學(xué)報, 33(6): 471-479.]
WAN XC, ZWIAZEK JJ, 1999. Mercuric chloride effects on root water transport in aspen seedling [J]. Plant Physiol, 121(3): 939-946.
WANG FS, TIAN XL, DING YL, et al., 2011. A survey of root pressure in 53 Asian species of bamboo [J]. Ann For Sci, 68(4): 783-791.
WANG FS, TIAN XL, DING YL, et al., 2011. Drought and cold resistance of bamboo evaluated by the root pressure [J]. Sci Silv Sin, 47(8): 176-181.? [王福升, 田新立, 丁雨龍, 等, 2011. 用根壓法研究竹子的耐旱、耐寒性 [J]. 林業(yè)科學(xué), 47(8): 176-181.]
WANG HF, 2015. Root pressure and its influencing factors of lianas in Xishuangbanna tropical rainforest [D]. Xishuangbanna: University of Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden.? [王華芳, 2015. 西雙版納熱帶雨林木質(zhì)藤本的根壓及影響因素 [D]. 西雙版納: 中國科學(xué)院大學(xué),西雙版納熱帶植物園.]
WANG HF, YANG SJ, ZHANG JL, 2015. Root pressure of tropical lianas and their relationships with phylogeny and environments [J]. Plant Divers Resour, 37(6): 751-759.? [王華芳, 楊石建, 張教林, 2015. 熱帶木質(zhì)藤本的根壓及其與系統(tǒng)發(fā)育和環(huán)境的關(guān)系 [J]. 植物分類與資源學(xué)報, 37(6): 751-759.]
WEGNER LH, 2014. Root pressure and beyond: energetically uphill water transport into xylem vessels?? [J]. J Exp Bot, 65(2): 381-393.
WEI C, TYREE MT, STEUDLE E, 1999. Direct measurement of xylem pressure in leaves of intact maize plants. A test of the cohesion-tension theory taking hydraulic architecture into consideration [J]. Plant Physiol, 121(4): 1191-1205.
WHITE PR, 1938. “Root pressure” — an unappreciated force in sap movement [J]. Am J Bot, 25(3): 223-227.
WHITE PR, SCHUKER E, KERN JR,et al., 1958. “Root pressure” in gymnosperms [J]. Science, 128(3319): 308-309.
WILSON C, KRAMER P,1949. Relation between root respiration and absorption [J]. Plant Physiol, 24(1): 55-59.
WU SX, SUN XC, TAN QL, 2019. Molybdenum improves water uptake via extensive root morphology, aquaporin expressions and increased ionic concentrations in wheat under drought stress [J]. Environ Exp Bot, 157: 241-249.
XIAO HL, PENG SL, ZHENG YJ, et al., 2006. Interactive effects between plant allelochemicals, plant allelopathic potential and soil nutrients [J]. J Appl Ecol, 17(9): 1747-1750.
YANG SJ, ZHANG YJ, GOLDSTEIN G, et al., 2015. Determinants of water circulation in a woody bamboo species: afternoon use and night-time recharge of culm water storage [J]. Tree Physiol, 35(9): 964-974.
YANG SJ, ZHANG YJ, SUN M, et al., 2012. Recovery of diurnal depression of leaf hydraulic conductance in a subtropical woody bamboo species: embolism refilling by nocturnal root pressure [J]. Tree Physiol, 32(4): 414-422.
YE Q, WIERA B, 2004. A cohesion/tension mechanism explains the gating of water channels (aquaporins) in Chara internodes by high concentration [J]. J Exp Bot, 55(396): 449-461.
YIN XH, STERCK F, HAO GY, 2018. Divergent hydraulic strategies to cope with freezing in co-occurring temperate tree species with special reference to root and stem pressure generation [J]. New Phytol, 219(2): 530-541.
YU QJ, WU Q, LIN ZP, et al., 2002. Recent advances in plant aquaporins [J]. Acta Sci Nat Univ Peking, 38(6): 855-866.? [于秋菊, 吳锜, 林忠平, 等, 2002. 植物水孔蛋白研究進(jìn)展 [J]. 北京大學(xué)學(xué)報(自然科學(xué)版), 38(6): 855-866.]
ZACHARY M, 2009. Sap flow dynamics of a tropical, woody bamboo: deductions of physiology and hydraulics within Guadua angustifolia [D]. St. Louis: Washington University.
ZAITSEVA RI, MINASHINA NG, 1998. Sudnitsyn Ⅱ. Influence of capillary-sorptive and osmotic moisture pressure in chernozem on the growth and guttation of barley [J]. Eurasian Soil Sci, 31(10): 1075-1082.
ZAREBANADKOUKI M, AHMED M, HEDWIG C, et al., 2018. Rhizosphere hydrophobicity limits root water uptake after drying and subsequent rewetting [J]. Plant Soil, 428:265-277.
ZEUTHEN T, 2010. Water-transporting proteins [J]. J Membrane Biol, 234(2): 57-73.
ZHANG L, DU XG, 2014. Recent advances in plant aquaporins [J]. Plant Sci J, 32(3): 304-314.? [張璐, 杜相革, 2014. 植物水孔蛋白研究進(jìn)展 [J]. 植物科學(xué)學(xué)報, 32(3): 304-314.]
ZHAO XH, ZHAO P, ZHANG ZZ, et al., 2017. Culm age and rhizome affects night-time water recharge in the bamboo Phyllostachys pubescens [J]. Front Plant Sci, 8: 1928.
ZHOLKEVICH VN, 1991. Root Pressure [M]//WAISEL Y, ESHEL A, KAFKAFI U. Plant roots, the hidden half.? New York: Marcel Dekker: 589-603.
ZHOLKEVICH VN, POPOVA MS, ZHUKOVSKAYA NV, 2007. Stimulatory effects of adrenalin and noradrenalin on root water-pumping activity and the involvement of G-proteins [J]. Russ J Plant Physl, 54(6): 790-796.
ZHU JJ, ZIMMERMANN UF, HAASE A, 2010. Xylem pressure response in maize roots subjected to osmotic stress-determination of radial reflection coefficients by use of the xylem pressure probe [J]. Plant Cell Environ, 18(8): 906-912.
ZWIENIECKI MA, HOLBROOK NM, 2009. Confronting Maxwell’s demon: biophysics of xylem embolism repair [J]. Trends Plant Sci, 14(10): 530-534.
(責(zé)任編輯李莉)