• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于云和高斯過(guò)程的網(wǎng)聯(lián)車輛協(xié)同式道路參數(shù)估計(jì)

    2022-05-13 05:17:40LIZhaojianHAJIDAVALLOOMohammadXIAXinZHENGMinghui
    關(guān)鍵詞:東蘭協(xié)同式州立大學(xué)

    LI Zhaojian,HAJIDAVALLOO Mohammad R,XIA Xin,ZHENG Minghui

    (1.密歇根州立大學(xué)機(jī)械工程學(xué)院,東蘭辛 48824;2.加利福尼亞大學(xué)洛杉磯分校交通與環(huán)境學(xué)院,洛杉磯 90095;3.布法羅大學(xué)機(jī)械與航空航天工程學(xué)院,布法羅 14260)

    Road profile is one of the most important road characteristics that has been frequently used(or proposed to be used)to improve suspension control[1-2],enable comfort-based route planning[3],and alert road agencies for maintenance. Road profilers have been conventionally used to measure road profile.However,they are costly to acquire and maintain and can provide limited coverage.Alternatively,with great advances in vehicular telematics,various sensors and communication modules are deployed in modern vehicles,which can potentially be exploited for road profile estimation.Vehicles can thus be used as mobile sensors to crowdsource road information with great road coverage[4-7].

    For instance, vehicle-based estimation approaches have been extensively pursued to exploit the onboard measurements along with the underlying dynamics to reconstruct the road profile[2,8-14].These approaches can be categorized into two classes:unknown input observer(UIO)-based and extended state observer(ESO)-based.The UIO methods generally aim to obtain a precise and stable model inverse to estimate the road profile(which is the input)from the outputs of the system[8-9].On the other hand,the ESO methods exploit an augmented state by treating the road disturbance signal as an additional state,which is estimated along with the original states using the commonly used state observers such as the Kalman filter(KF)for linear systems and high gain observers(HGO)or extended KF(EKF)for nonlinear dynamic systems[2,10-14].

    However,despite the above progresses,these approaches are based on a single-vehicle setting,which is thus susceptible to model uncertainty and measurement errors.To address these challenges,in this paper,a new collaborative estimation framework is developed that exploits multiple heterogeneous vehicles to iteratively improve the estimation.The proposed approach utilizes the cloud as a central platform to crowdsource local vehicle estimations using Gaussian processes (GP)[15]. The crowdsourced GP is then sent back to the vehicle as a pseudo-measurement to enhance onboard estimation using a KF.The enhanced local estimate is then uploaded to the cloud to update the GP.More specifically,each participating vehicle runs a local KF-based ESO for simultaneous vehicle state and road profile estimation.Instead of just using the available onboard measurements,a crowdsourced“pseudo- measurement”from prior participating vehicle estimates is used to enhance the local estimation.Two types of pseudo-measurements are considered where in the first case each vehicle uses the previous estimation of the vehicle as the pseudomeasurements whereas in the second case,a trained GP from all prior participating vehicles are used.Both cases are compared with a benchmark to demonstrate the superior performance.

    This proposed framework is novel as it systematically exploits the estimates from multiple heterogeneous vehicles to both iteratively enhance onboard estimation and collaboratively refine crowdsourced road profile,through the seamless integration of individual local estimators with the cloud-based Gaussian processes.First,the model dynamics and KF design is introduced.Then,the cloud-based GP regression is investigated whereas the recursive on-board estimation using pseudomeasurements for KF is discussed. Finally,extensive simulation results are expounded.

    1 Problem formulation

    The aim of this paper is to develop approaches to efficiently crowdsource road profile from multiple heterogeneous vehicles.Specifically,given a road segment(e.g.,defined by two consecutive road mile markers[16])as illustrated in Fig.1,the objective of vehicle-based road profile estimation is to use existing onboard sensors(e.g.,accelerometers,GPS,yaw rate,and roll rate)to discoverw(s),the road elevation as a function of distance in the longitudinal direction(thesdirection in Fig.1).Here it is assumed that the road profile is uniformly distributed in the lateral direction(ndirection in Fig.1).By scaling the distanceswith the vehicle speed,the road profile to be estimated can also be represented byw(t),a function of time.Consider the following dynamics that characterizes the underlying vehicle-road interaction:

    Fig.1 A road segment with profile denoted by w(s)

    wherex1,x2,x3,andx4represent the sprung mass displacement,sprung mass velocity,unsprung mass displacement,and sprung mass velocity,respectively(see Fig.2).Herew∈R is the road disturbance signal,which can be modeled as the output of a lowpass filter whose input is a white Gaussian noise with unit intensity,i.e.w?=aw(t)+be(t)whereaandbare some constants as defined in[17].

    Fig.2 Illustration of a quarter-car suspension model

    Thus,by augmenting the road signalwas an additional state,i.e.,Eq.(1)can be rewritten into the following augmented state-space model

    whereA,G,andCare appropriate matrices derived from Eq.(1);ηis the white Gaussian noise;andyis the noisy output measurements.Discretizing the system with an appropriate sampling time yields the following discrete state space equations:

    which can now be used in a KF to estimate the augmented state which includes the road disturbance signal by the following two steps:

    Prediction:

    The above description is a standard ESO design and will serve as a benchmark to compare with the developed collaborative estimation method which will be discussed next.

    2 Cloud-based Gaussian process regression

    In Section 2,road profile estimation with a single vehicle using ESO is presented.In this section,a cloud-based collaborative estimation framework is developed to iteratively refine the estimates from single vehicles.The considered GPbased collaborative road profile estimation framework is illustrated in Fig.3.Specifically,each participating vehicleireceives a Gaussian process(GP)GPi-1(mi-1(s),Ki-1(s,s′)|Θ?i-1)with a mean functionmi-1(s) and a kernel functionKi-1(s,s′)parameterized byΘ?i-1,from the cloud.The GP model describes the road profile distribution(with both mean and covariance),aggregated from the data of prior participating vehicles until vehiclei-1.The receivedGPi-1(·,·|Θi-1)is then utilized as a priori“pseudo-measurement”of the road profile,forming an augmented output along with the onboard measurements asyˉ=[y;w?i-1], wherew?i-1~GPi-1(·,·|Θi-1).This augmented output is then incorporated into a local estimator(e.g.,KF or JDP-based estimator)to estimate the augmented state(both vehicle state and road profile).This GP“pseudo-measurement”can be viewed as an additional sensor measurement,providing both the means and the covariances of the road profile to be fused with onboard sensors for enhancing the local estimation.The pair of road profile and position estimate sequence,(w?i,s?i):={w?i,s?i}Ni i=1is then uploaded to the cloud to update the GP hyperparameters using e.g.,maximum likelihood learning:

    Fig.3 Schematics of collaborative estimation using GP

    The updated GP with hyper-parametersΘ?i,GPi(·,·|Θi)is then sent to the next participating vehiclei+1 to enhance its estimate.The process is then repeated.

    In the presented framework,Nnumber of vehicles are considered which can collaboratively improve the estimation of the road disturbance signal from vehicle to vehicle.When Vehicleipasses the considered road segment,it will pass its KF estimation information of the road disturbance signal to the cloud which has the capability of storing large data structures and dealing with heavy computations.On the cloud side,the road profile estimations of Vehicleiand all prior participating vehicles are used to fit a GP to characterize the road disturbance.The goal is that as more vehicles collaborate in the proposed estimation framework,the estimation error for the cloud-based GP and for the vehicle on-board estimation is reduced. Next,more details are provided regarding the GP and the collaborative estimation framework.

    The road profile can be described by a function of the spatial distance,w(s),or characterized by its power spectrum density[18]. An alternative description is from a machine learning perspective using the GP model [19] , i. e.,w(s)~GP(m(s),k(s,s′)),wherem(s)=E[w(s)]is the mean function that can take the form ofm(s)=whereψ(·)is the vector ofKbasis functions(e.g.,polynomial functions or Gaussian basis functions),andβis the vector of corresponding linear weights to be trained from the data. The kernel function,k(s,s′)=Cov(s,s′),characterizes the covariance between any two spatial pointssands′, an example of which is the

    In this paper,GP is used to predict and update the spatial function values of the road disturbance signal for a considered road segment. More specifically,Vehicleipasses the considered road segment and sends its KF estimation pointsto the cloud,where(s?i,w?i)is the sequence of the estimated road signal points.Gathering all the estimated values for the road signal up to Vehiclei,the training data points for the cloud-based GP will beD={(s?1,w?1),(s?2,w?2),...,(s?i,w?i)}. In this regard,the input and output training data matrices can be written by stacking the data points obtained by each KF for Vehicle 1 to VehicleiasS?=[s?1,s?2,...,s?i]andW?=[w?1,w?2,...,w?i]respectively.The objective is to approximate the nonlinear mapping of a system

    With the tuned hyperparameters of the kernel and mean function,predictions can be made by posterior inference conditional on observed dataD.Using these information,the predictive equations for theith GP regression at pointss*follow as

    The proposed cloud-facilitated collaborative estimation with GP has several advantages.First,it works for heterogeneous vehicles as the framework has no requirement in vehicle homogeneity.Each vehicle exploits its own model and an estimator for local estimation. Second, the “pseudomeasurement”scheme is guaranteed to reduce the estimation variance from iteration to iteration thanks to the posterior covariance reduction update in KF[20].Finally,as the only information regarding road estimate is communicated,privacy-sensitive information such as vehicle states are inherently protected.The GP crowdsources the estimates from multiple vehicles to iteratively improve the road profile estimation,which is then shared with participating vehicles to enhance its onboard state and road estimation.

    3 Cloud-assisted onboard estimation with pseudo-measurements

    In this section,the idea of pseudo-measurement from the cloud as an additional measurement is presented to enhance the local estimation performance.In particular,two types of pseudomeasurements are considered.The first is to use the KF from the last vehicle as the pseudo-measurement while the second is to use the crowdsourced GP as the pseudo-measurement.

    3.1 KF pseudo-measurements

    When Vehicleipasses a road segment,the KF for Vehicleiuses the KF estimation of Vehiclei-1 as extra measurements i.e.,the outputyfor Vehicleiwill be modified as

    The modification of the output of the KF for Vehicleiresults in the modification of the KF algorithm as well.That is,a new measurement noise covariance for Vehicleiis defined by taking account of the variance of the road signal estimation error of the prior Vehiclei-1 at each time step.This can be formulated as a KF with augmented pseudomeasurements as

    Prediction:

    whereCˉandRˉare the modified output matrix and modified measurement noise matrix respectively,i.e.

    andσ2w?i-1(k)stands for the variance of the road disturbance signal estimation error of the KF for Vehiclei-1 at the time stepk.This recursive scheme will lead to a better estimation of the road profile as each vehicle travels the road segment as shown in the simulations.

    3.2 GP pseudo-measurements

    In this case,the KF for each vehicle will incorporate the information of the latest GP regression as the pseudo-measurements for the road profile estimation purpose.Specifically,the output measurement for Vehicleiis modified as

    Similarly,the KF for Vehicleiwill be augmented with GP pseudo-measurements as the previous case,whereRˉin this case is equal to

    whereVAR(wGP,i-1(k))stands for the variance of the road disturbance signal estimation error obtained by the latest GP regression done at the cloud at iteration numberi-1.In Section 5,how these two types of extra measurements will lead to better performance of the on-board KFs in each vehicle will be demonstrated. It is noted that the proposed framework will still work if a nonlinear plant model is used.In this case,instead of using KFs,nonlinear observers such as EKFs and high-gain observers can be used for local estimations.

    4 Simulation

    In this section,simulation results for the proposed collaborative estimation framework are presented. Specifically,N=5 heterogeneous vehicles with different model parameters are considered.The parameter values for constructing theAandGmatrices in Eq.(2)for each vehiclei=1,…,Nare

    which corresponds to the measurements of sprung mass displacement and suspension deflection that are available in(semi-)active suspension systems.

    In the simulations,all participating vehicles travel through a road segment of 5m in length at the same speed.This results in the correspondence of the estimated points of each vehicle obtained by the KF algorithm.The actual road profile was generated based on a Class-C road[17].The measurement noisevifor each vehicle is generated in a way that the signal-to-noise ratio is between 10 and 20.For the cloud-based GP,the initial GP prior is defined with a zero mean function and squared exponential(SE)

    In this equation,the hyperparameterσ2fstands for the signal variance or the vertical scaling factor whereas the hyperparameter is known as the horizontal scaling factor.In other words,the distance that is needed to move along the specified axis in the input space so that the function values become uncorrelated[21].The parameterris the distance measure of the inputs and equals tor=|si-sj|[22].

    For the GP regressions,there are 3 approaches to calculate Eqs.(8)and(9).The first approach is that,for theith GP,all the estimation data of the KF up to vehicle numberiis used as the training points and then the posterior is inferred given all the collected data.The second approach is to similarly collect all the data up to Vehicleibut instead use a sparsity approximation GP approach.The last one is to use an updating recursive approach[6]where for the new arriving data,the GP will infer the posterior distribution given all the previous data without taking account of all the collected data to construct the matrices in Eqs.(8)and(9)which will cause a heavy computational burden if there are a lot of training data points.In this preliminary study,the first approach is used as the number of considered vehicles are small and the implemented approach does not impose heavy computational burden. Other approaches will be considered in the future.

    The performance of the proposed recursive KF for Vehicles 1 to 5 when exploiting the KF pseudomeasurements from the prior vehicle is compared with the benchmark case,i.e.,without using the pseudomeasurements.The results are shown in Figure 4a and it is clear that using this extra measurement can reduce the root mean squared error(RMSE)of the estimated road profile.This extra measurement is helpful for the KF algorithm to have a better estimation in general and the variances of the estimation error decreases from vehicle to vehicle.Fig.4b shows the mean and variance of the road profile estimation error when comparing Vehicles 1 and 5,which shows that a lower mean and variance is achieved in the last vehicle(Vehicle 5)as compared to the Vehicle 1.

    Fig.4 Onboard estimation performance estimation

    Fig.5-Fig.7 summarizes the performance of the pro-posed recursive KF when exploiting the latest GP pseudo-measurements as pseudo-measurements.Fig.5 is a comparison of the GP pseudo-measurement case and the benchmark setting where each vehicle performs the KF without using the pseudo-measurements.It is clearly observed that using pseudo-measurements brings about a superior performance.For the KF using pseudomeasurements,after Vehicle 4 the error does not decrease much.This is due to the fact that after certain number of vehicles,the GP will fit a curve to the road profile which has a low variance and the next KF(that is,the KF for Vehicle 5 which uses the GP pseudomeasurement)will be more likely to trust the latest GP pseudo-measurement rather than the process dynamics.Going one step before,on the GP side,this is the result of using the training data points originated from the previous KFs augmented with GP pseudomeasurements.This iterative use of the information of GP for the KF estimation of road profile and the use of GP of the estimation of KF,is the reason that eventually both KF and GP predictions converge to a single road profile and the improvement will be halted.Ongoing research is on the development of new ideas to enhance the current result.

    Fig.5 RMSE of the on-board KF of the vehicle with respect to the actual road with and without using pseudo-measurements

    Fig.6 is a comparison of the first cloud-based GP regression and the last one.In addition to reduction of the variance from the first to the last vehicle,the improvement of the mean function,which is the prediction of the GP of the road profile,is significant.In Fig.7,the cloud based RMSE of the GP regression with the actual road profile for GP fit numberiis compared with the average of KFs up to Vehiclei,used as a benchmark.The results show a clear superiority of the GP regression,resulting in a lower RMSE of road profile for all vehicles.

    Fig.6 First and last GP regression

    Fig.7 Comparison of the cloud-based GP and the benchmark setting

    5 Conclusion

    In this paper,a novel cloud-based collaborative road profile estimation framework using multiple heterogeneous vehicles was developed.GP was used to crowdsource individual estimates,which was then used as pseudo-measurements for future vehicles to enhance its local measurements. This pseudomeasurement was able to greatly enhance the local estimation performance. The enhanced local estimation was then uploaded to the cloud to update the GP estimation.Future work will focus on dealing with GPS imprecision and data-efficient GP to make this framework more practically viable.

    作者貢獻(xiàn)聲明:

    LI Zhaojian:Conceptualization,Supervision,Writing-review&editing.

    HAJIDAVALLOO MOHAMMAD R:Formal analysis,Software,Writing original draft.XIA Xin:Discussion,Writing-review&editing.ZHENG Minghui:Discussion,Writing-review&editing.

    猜你喜歡
    東蘭協(xié)同式州立大學(xué)
    東蘭銅鼓美術(shù)元素在高校美術(shù)教學(xué)中的創(chuàng)新應(yīng)用
    ——以廣西現(xiàn)代職業(yè)技術(shù)學(xué)院為例
    教育觀察(2022年20期)2022-08-16 12:13:22
    “四大板塊、六大支撐” 協(xié)同式“雙創(chuàng)”教學(xué)模式研究
    淺析東蘭銅鼓的音樂(lè)特色及錄音技巧
    過(guò)東蘭(外二首)
    基于虛擬現(xiàn)實(shí)的人機(jī)交互下協(xié)同式產(chǎn)品外觀設(shè)計(jì)
    探究協(xié)同式空中交通流量管理核心技術(shù)
    美國(guó)費(fèi)里斯州立大學(xué)(FSU)大學(xué)生學(xué)習(xí)動(dòng)力來(lái)源的思考與啟示
    研究生培養(yǎng)教育的協(xié)同式創(chuàng)新探析
    廣西東蘭:開(kāi)通“遠(yuǎn)教微信”搭建黨員教育新平臺(tái)
    美國(guó)學(xué)前教育教師職前專業(yè)能力培養(yǎng)的特征及啟示——以美國(guó)塞勒姆州立大學(xué)早期兒童教育專業(yè)為例
    在线天堂最新版资源| 啦啦啦在线观看免费高清www| 国产女主播在线喷水免费视频网站| 亚洲性久久影院| 国产成人精品一,二区| 亚洲精品456在线播放app| 国产精品熟女久久久久浪| 嫩草影院新地址| 在线观看三级黄色| 亚洲国产av新网站| 亚洲精品久久久久久婷婷小说| 网址你懂的国产日韩在线| 尾随美女入室| 黄色欧美视频在线观看| 一级av片app| 韩国av在线不卡| 国产人妻一区二区三区在| 国模一区二区三区四区视频| 一级二级三级毛片免费看| 一边亲一边摸免费视频| 91aial.com中文字幕在线观看| 国产有黄有色有爽视频| 麻豆成人av视频| av在线app专区| 日韩一区二区三区影片| av国产久精品久网站免费入址| 欧美zozozo另类| 久久综合国产亚洲精品| 97在线视频观看| 亚洲精品色激情综合| 26uuu在线亚洲综合色| 亚洲精品,欧美精品| 寂寞人妻少妇视频99o| 国产成人freesex在线| 日韩电影二区| 国产成人精品一,二区| 新久久久久国产一级毛片| 国产爽快片一区二区三区| 亚洲成人一二三区av| 亚洲成人久久爱视频| 亚洲综合精品二区| 国精品久久久久久国模美| 青青草视频在线视频观看| 激情 狠狠 欧美| 一级二级三级毛片免费看| 精品一区在线观看国产| 国产精品三级大全| 亚洲精品日韩av片在线观看| 美女被艹到高潮喷水动态| 大又大粗又爽又黄少妇毛片口| 极品教师在线视频| 欧美日韩视频高清一区二区三区二| 肉色欧美久久久久久久蜜桃 | 亚洲色图av天堂| 欧美人与善性xxx| 国产精品不卡视频一区二区| 少妇的逼水好多| 人人妻人人看人人澡| 精品久久久久久久人妻蜜臀av| 青春草视频在线免费观看| 国产亚洲av片在线观看秒播厂| 国产精品久久久久久精品古装| 国产精品一二三区在线看| 99热全是精品| 久久久久网色| 水蜜桃什么品种好| 国产精品99久久99久久久不卡 | 在线观看av片永久免费下载| 天堂中文最新版在线下载 | 日韩三级伦理在线观看| 亚洲怡红院男人天堂| 久久久久精品久久久久真实原创| 久久6这里有精品| 久久久精品欧美日韩精品| 久久精品综合一区二区三区| 国产精品爽爽va在线观看网站| 国产精品女同一区二区软件| 亚洲自偷自拍三级| 中文精品一卡2卡3卡4更新| 免费电影在线观看免费观看| 国产黄a三级三级三级人| 成人黄色视频免费在线看| 中文字幕av成人在线电影| 成人毛片a级毛片在线播放| 精品熟女少妇av免费看| 黄色配什么色好看| 伦精品一区二区三区| 白带黄色成豆腐渣| 一个人看的www免费观看视频| 看十八女毛片水多多多| 成人免费观看视频高清| 黄色日韩在线| 欧美三级亚洲精品| 夫妻性生交免费视频一级片| 国产毛片a区久久久久| 日韩国内少妇激情av| 夫妻性生交免费视频一级片| 夫妻性生交免费视频一级片| 美女脱内裤让男人舔精品视频| av.在线天堂| 午夜福利在线观看免费完整高清在| 国产成人精品久久久久久| 精品国产露脸久久av麻豆| 国产精品久久久久久久电影| 九九在线视频观看精品| 久久女婷五月综合色啪小说 | 欧美三级亚洲精品| 国产熟女欧美一区二区| 欧美三级亚洲精品| 三级国产精品欧美在线观看| 亚洲第一区二区三区不卡| 免费观看在线日韩| av在线蜜桃| 国内精品美女久久久久久| 午夜福利网站1000一区二区三区| 亚洲成人av在线免费| 熟女电影av网| 天堂中文最新版在线下载 | 美女国产视频在线观看| 少妇人妻一区二区三区视频| 免费播放大片免费观看视频在线观看| 又大又黄又爽视频免费| 成人毛片a级毛片在线播放| 国内精品美女久久久久久| 亚洲一区二区三区欧美精品 | 99久久精品国产国产毛片| 日本欧美国产在线视频| 乱系列少妇在线播放| 日韩 亚洲 欧美在线| 天堂俺去俺来也www色官网| 国产精品国产三级国产专区5o| 国产69精品久久久久777片| 美女视频免费永久观看网站| 丝瓜视频免费看黄片| 免费少妇av软件| 欧美老熟妇乱子伦牲交| 欧美激情久久久久久爽电影| 精品国产一区二区三区久久久樱花 | 九九在线视频观看精品| 91久久精品电影网| 亚洲成人中文字幕在线播放| 日日撸夜夜添| 搡老乐熟女国产| 国产精品久久久久久av不卡| 亚洲va在线va天堂va国产| 简卡轻食公司| 免费看av在线观看网站| 欧美成人午夜免费资源| 国产一区有黄有色的免费视频| 97超碰精品成人国产| 成人亚洲精品一区在线观看 | 久久久久久久大尺度免费视频| 亚洲国产精品国产精品| 国产淫语在线视频| 免费大片黄手机在线观看| 国产精品久久久久久久电影| 免费高清在线观看视频在线观看| 日韩不卡一区二区三区视频在线| 又粗又硬又长又爽又黄的视频| 欧美日韩视频高清一区二区三区二| 少妇猛男粗大的猛烈进出视频 | 国产熟女欧美一区二区| 两个人的视频大全免费| 成人黄色视频免费在线看| 久久久国产一区二区| 在线观看国产h片| 啦啦啦中文免费视频观看日本| 一本久久精品| 久久人人爽人人片av| 2021天堂中文幕一二区在线观| 97人妻精品一区二区三区麻豆| av又黄又爽大尺度在线免费看| 18禁在线播放成人免费| 久久久久九九精品影院| 一级黄片播放器| 成年av动漫网址| 国产午夜精品一二区理论片| 黄色配什么色好看| 久久99精品国语久久久| 亚洲国产av新网站| 久久久精品94久久精品| 黄色怎么调成土黄色| 毛片一级片免费看久久久久| 水蜜桃什么品种好| 中文字幕亚洲精品专区| tube8黄色片| 麻豆成人av视频| 制服丝袜香蕉在线| 少妇人妻一区二区三区视频| 久久人人爽人人爽人人片va| 91在线精品国自产拍蜜月| 国产亚洲av嫩草精品影院| 啦啦啦啦在线视频资源| av在线app专区| 一个人看视频在线观看www免费| 人妻夜夜爽99麻豆av| 成人国产麻豆网| 成人漫画全彩无遮挡| 成人无遮挡网站| 麻豆成人午夜福利视频| 久热久热在线精品观看| 天堂网av新在线| 一个人看视频在线观看www免费| 午夜福利高清视频| 久久久久精品久久久久真实原创| 美女xxoo啪啪120秒动态图| 春色校园在线视频观看| 少妇熟女欧美另类| 久久精品国产a三级三级三级| 免费av观看视频| av.在线天堂| 精华霜和精华液先用哪个| 国产精品三级大全| 97热精品久久久久久| 欧美丝袜亚洲另类| 亚洲人成网站高清观看| 不卡视频在线观看欧美| 欧美精品一区二区大全| 亚洲怡红院男人天堂| av在线天堂中文字幕| 亚洲四区av| 丝瓜视频免费看黄片| 欧美人与善性xxx| 男人舔奶头视频| 亚洲av.av天堂| 国产黄片视频在线免费观看| 狂野欧美激情性bbbbbb| 亚洲精品乱码久久久v下载方式| 80岁老熟妇乱子伦牲交| 黄色日韩在线| 亚洲精品,欧美精品| 亚洲精品乱久久久久久| 精品少妇久久久久久888优播| 丝袜脚勾引网站| 久久久a久久爽久久v久久| 日本熟妇午夜| 日韩一本色道免费dvd| 菩萨蛮人人尽说江南好唐韦庄| 激情 狠狠 欧美| 亚洲av免费高清在线观看| 99热这里只有精品一区| 欧美老熟妇乱子伦牲交| 国内精品美女久久久久久| 成人国产麻豆网| 激情 狠狠 欧美| 午夜福利视频1000在线观看| 午夜精品国产一区二区电影 | 日本黄大片高清| 哪个播放器可以免费观看大片| 777米奇影视久久| 97热精品久久久久久| 久久久久久久国产电影| 久久久欧美国产精品| 寂寞人妻少妇视频99o| 黄片无遮挡物在线观看| 精品午夜福利在线看| 国精品久久久久久国模美| 性色av一级| 青春草视频在线免费观看| 五月开心婷婷网| 街头女战士在线观看网站| 大片电影免费在线观看免费| 成人无遮挡网站| 亚洲av不卡在线观看| 国产伦在线观看视频一区| 三级国产精品欧美在线观看| 少妇丰满av| 久久久久久久午夜电影| 国产人妻一区二区三区在| 欧美老熟妇乱子伦牲交| 免费看a级黄色片| 青青草视频在线视频观看| 日本欧美国产在线视频| av线在线观看网站| 日韩,欧美,国产一区二区三区| 久久久亚洲精品成人影院| 日本猛色少妇xxxxx猛交久久| 日日摸夜夜添夜夜爱| 性色av一级| 看黄色毛片网站| 午夜福利网站1000一区二区三区| 国产精品久久久久久精品电影| av国产精品久久久久影院| 麻豆精品久久久久久蜜桃| 亚洲av中文字字幕乱码综合| 一级毛片黄色毛片免费观看视频| 一级a做视频免费观看| 大香蕉97超碰在线| 亚洲图色成人| 免费av观看视频| 欧美精品人与动牲交sv欧美| 我的女老师完整版在线观看| 久久韩国三级中文字幕| 婷婷色av中文字幕| 内射极品少妇av片p| 婷婷色麻豆天堂久久| 搡老乐熟女国产| 免费在线观看成人毛片| 男女那种视频在线观看| 大香蕉久久网| 少妇人妻一区二区三区视频| 久久综合国产亚洲精品| 亚洲成人久久爱视频| 精品久久久噜噜| 白带黄色成豆腐渣| 精品国产三级普通话版| 国产男女内射视频| 亚洲va在线va天堂va国产| 成人亚洲精品av一区二区| 在线播放无遮挡| 亚洲精品久久久久久婷婷小说| 日本猛色少妇xxxxx猛交久久| 久久久色成人| 中文字幕人妻熟人妻熟丝袜美| 亚洲欧美日韩东京热| 五月伊人婷婷丁香| 日本av手机在线免费观看| 免费看日本二区| 97超碰精品成人国产| 交换朋友夫妻互换小说| 丰满人妻一区二区三区视频av| 美女内射精品一级片tv| 免费黄网站久久成人精品| 午夜免费男女啪啪视频观看| 亚洲一区二区三区欧美精品 | 女的被弄到高潮叫床怎么办| 日韩成人伦理影院| 婷婷色麻豆天堂久久| 亚洲精品国产色婷婷电影| 亚洲四区av| 国产成人a区在线观看| 国产精品久久久久久久电影| 99久久精品热视频| 在线免费十八禁| 亚洲人成网站高清观看| av在线蜜桃| 免费不卡的大黄色大毛片视频在线观看| 日韩免费高清中文字幕av| 成人欧美大片| 日韩人妻高清精品专区| 国产国拍精品亚洲av在线观看| 久久精品夜色国产| 又黄又爽又刺激的免费视频.| 韩国高清视频一区二区三区| 男女边吃奶边做爰视频| 22中文网久久字幕| 人妻一区二区av| 日韩欧美一区视频在线观看 | 亚洲一区二区三区欧美精品 | 狠狠精品人妻久久久久久综合| 亚洲成色77777| 亚洲精品乱久久久久久| 97精品久久久久久久久久精品| 人妻 亚洲 视频| 黄片无遮挡物在线观看| 一二三四中文在线观看免费高清| 久久精品国产a三级三级三级| 亚洲欧美精品自产自拍| 国产亚洲午夜精品一区二区久久 | 欧美xxⅹ黑人| 爱豆传媒免费全集在线观看| 久久精品夜色国产| 亚洲欧美日韩东京热| 免费av毛片视频| 婷婷色综合www| 人妻 亚洲 视频| eeuss影院久久| 久久韩国三级中文字幕| 观看免费一级毛片| 22中文网久久字幕| 少妇裸体淫交视频免费看高清| 在线亚洲精品国产二区图片欧美 | 亚洲国产日韩一区二区| 又大又黄又爽视频免费| 午夜福利视频1000在线观看| 精品久久久久久久人妻蜜臀av| 亚洲精品自拍成人| 91久久精品国产一区二区三区| 一级av片app| 岛国毛片在线播放| 自拍欧美九色日韩亚洲蝌蚪91 | 日日啪夜夜撸| 在线观看美女被高潮喷水网站| 熟妇人妻不卡中文字幕| 五月开心婷婷网| 2018国产大陆天天弄谢| 蜜桃亚洲精品一区二区三区| 成年版毛片免费区| 国产黄a三级三级三级人| 蜜桃亚洲精品一区二区三区| 国产有黄有色有爽视频| 亚洲欧洲日产国产| 亚洲精品中文字幕在线视频 | 国产欧美另类精品又又久久亚洲欧美| 青春草国产在线视频| av网站免费在线观看视频| 在线观看免费高清a一片| 午夜免费男女啪啪视频观看| 亚洲精品色激情综合| 中文字幕制服av| 国产午夜福利久久久久久| 亚洲国产欧美人成| 中文字幕亚洲精品专区| 亚洲第一区二区三区不卡| 欧美一区二区亚洲| 日日啪夜夜爽| 亚洲精品乱码久久久久久按摩| 国产av国产精品国产| 久久99热这里只频精品6学生| 亚洲久久久久久中文字幕| 久久久久久九九精品二区国产| 青青草视频在线视频观看| 免费黄网站久久成人精品| 边亲边吃奶的免费视频| 久久99热这里只频精品6学生| 免费黄频网站在线观看国产| 久久99精品国语久久久| 久久久久九九精品影院| kizo精华| 日日撸夜夜添| 美女高潮的动态| 黄色一级大片看看| 亚洲av.av天堂| 青春草国产在线视频| 三级男女做爰猛烈吃奶摸视频| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲一区二区三区欧美精品 | 国产伦理片在线播放av一区| 亚洲自拍偷在线| 亚洲精品影视一区二区三区av| 精品视频人人做人人爽| 久久国产乱子免费精品| 日韩亚洲欧美综合| 特级一级黄色大片| 国产精品国产三级国产av玫瑰| 99热全是精品| 亚洲欧美日韩东京热| 777米奇影视久久| 国产91av在线免费观看| 亚洲电影在线观看av| 最近中文字幕高清免费大全6| 国产欧美日韩精品一区二区| 久久久久久九九精品二区国产| av卡一久久| 免费av观看视频| 国产一区亚洲一区在线观看| 女人被狂操c到高潮| 一个人看的www免费观看视频| a级毛片免费高清观看在线播放| 欧美日韩亚洲高清精品| 男女边摸边吃奶| 一个人观看的视频www高清免费观看| 中文字幕久久专区| 亚洲精品成人久久久久久| 亚洲婷婷狠狠爱综合网| 日本一本二区三区精品| 国产精品女同一区二区软件| 国产高清有码在线观看视频| 欧美变态另类bdsm刘玥| 少妇人妻 视频| 亚洲精品第二区| 一级毛片黄色毛片免费观看视频| 日本爱情动作片www.在线观看| a级一级毛片免费在线观看| 一级毛片 在线播放| 蜜桃亚洲精品一区二区三区| 午夜福利高清视频| 一本久久精品| 国产精品一区二区三区四区免费观看| 男女国产视频网站| 乱码一卡2卡4卡精品| 国产一区二区三区av在线| 高清欧美精品videossex| 免费看光身美女| 在线观看国产h片| 欧美97在线视频| 亚洲av男天堂| 婷婷色av中文字幕| 日日啪夜夜撸| 男人爽女人下面视频在线观看| 黄色日韩在线| 亚洲色图综合在线观看| 亚洲精华国产精华液的使用体验| xxx大片免费视频| 极品少妇高潮喷水抽搐| 3wmmmm亚洲av在线观看| 国产乱来视频区| 精品人妻偷拍中文字幕| 国模一区二区三区四区视频| 看免费成人av毛片| 搡老乐熟女国产| 天堂网av新在线| 高清日韩中文字幕在线| 九九爱精品视频在线观看| 哪个播放器可以免费观看大片| 韩国av在线不卡| 国产免费一级a男人的天堂| 丰满少妇做爰视频| 黄色配什么色好看| 深爱激情五月婷婷| 亚洲精品一二三| 国产成人福利小说| 成人综合一区亚洲| 国产成年人精品一区二区| 亚洲精品乱码久久久v下载方式| 精品久久久久久久久亚洲| 午夜激情福利司机影院| 在线观看av片永久免费下载| 亚洲四区av| 国产熟女欧美一区二区| 一区二区三区乱码不卡18| 亚洲色图av天堂| 国精品久久久久久国模美| 内射极品少妇av片p| 久久影院123| 欧美高清成人免费视频www| 一本色道久久久久久精品综合| 美女视频免费永久观看网站| 亚洲自拍偷在线| 狂野欧美白嫩少妇大欣赏| 久久久久久九九精品二区国产| 丝袜脚勾引网站| 午夜福利高清视频| 麻豆成人午夜福利视频| 麻豆久久精品国产亚洲av| 禁无遮挡网站| 熟女电影av网| 插阴视频在线观看视频| 人人妻人人澡人人爽人人夜夜| 丝袜美腿在线中文| 伦精品一区二区三区| 美女xxoo啪啪120秒动态图| 国产成人一区二区在线| 久久人人爽av亚洲精品天堂 | 国产成人a区在线观看| 国产欧美另类精品又又久久亚洲欧美| 麻豆乱淫一区二区| 亚洲精品亚洲一区二区| 在线 av 中文字幕| 91久久精品电影网| 乱系列少妇在线播放| 纵有疾风起免费观看全集完整版| 国内精品宾馆在线| 日本黄大片高清| 亚洲精品国产av成人精品| av.在线天堂| 国产亚洲av嫩草精品影院| 免费观看av网站的网址| 亚洲va在线va天堂va国产| 精品熟女少妇av免费看| 午夜福利视频1000在线观看| 精品熟女少妇av免费看| 日本欧美国产在线视频| 亚洲欧美一区二区三区黑人 | 国产成人a区在线观看| www.色视频.com| 熟妇人妻不卡中文字幕| 亚洲精品成人久久久久久| 国产v大片淫在线免费观看| 91aial.com中文字幕在线观看| 韩国高清视频一区二区三区| 中文欧美无线码| 久热久热在线精品观看| 国产精品无大码| 如何舔出高潮| 亚洲熟女精品中文字幕| 国产欧美日韩一区二区三区在线 | 久久久久久久久大av| 欧美成人午夜免费资源| 97人妻精品一区二区三区麻豆| 香蕉精品网在线| 亚洲怡红院男人天堂| 免费黄频网站在线观看国产| av又黄又爽大尺度在线免费看| 联通29元200g的流量卡| 狂野欧美激情性xxxx在线观看| 欧美激情国产日韩精品一区| 午夜福利视频精品| 国产高清不卡午夜福利| 大片免费播放器 马上看| 九九在线视频观看精品| 国产精品久久久久久精品电影小说 | 国产精品伦人一区二区| 2022亚洲国产成人精品| 超碰97精品在线观看| 日本午夜av视频| 精品99又大又爽又粗少妇毛片| 国产伦精品一区二区三区视频9| 国产日韩欧美亚洲二区| 777米奇影视久久| av专区在线播放| 狂野欧美激情性xxxx在线观看| 亚洲国产精品999| 日本av手机在线免费观看| www.av在线官网国产| 最后的刺客免费高清国语| 日本-黄色视频高清免费观看| 人妻少妇偷人精品九色| 午夜福利高清视频| 国产精品一二三区在线看| av国产免费在线观看| 亚洲不卡免费看| www.色视频.com| 青春草视频在线免费观看| 国产精品爽爽va在线观看网站| 亚洲性久久影院| 男男h啪啪无遮挡| 日本免费在线观看一区| 午夜爱爱视频在线播放| 国产极品天堂在线| 女人被狂操c到高潮| 亚洲成人中文字幕在线播放| 亚洲精品一区蜜桃| 有码 亚洲区| 欧美人与善性xxx|