李凌杰 陳菲菲
摘 要:????? 為改善紅外熱成像圖像的增強效果,針對現(xiàn)有紅外成像的特點,本文提出了一種基于改進直方圖的紅外圖像增強方法。對于紅外圖像可能存在四周高亮的現(xiàn)象,綜合考慮圖像亮度強度和對比度,確定原始圖像的裁剪區(qū)域,在此基礎(chǔ)上,提出采用灰度級別均勻分布的方法來避免像素個數(shù)少的灰度級被合并導(dǎo)致圖像細節(jié)丟失的問題。實驗表明,本文提出的改進算法相比傳統(tǒng)直方圖均衡方法,在熵值、標(biāo)準差、模糊線性指數(shù)上分別有21.87%, 2.60%, 14.52%的改進量,在提高圖像對比度的同時增強了圖像的關(guān)鍵細節(jié),印證了理論分析的正確性。
關(guān)鍵詞:???? 紅外圖像; 圖像增強; 直方圖均衡化; 灰度級別; 熵值; 標(biāo)準差; 模糊線性指數(shù)
中圖分類號:???? TJ760; TN21
文獻標(biāo)識碼:??? A
文章編號:???? 1673-5048(2022)02-0101-05
DOI: 10.12132/ISSN.1673-5048.2021.0244
0 引? 言
紅外熱成像技術(shù)利用物體之間的溫度差造成紅外輻射強度的差別來反映當(dāng)前場景的溫度場信息,從而對目標(biāo)和背景做出識別。在被動方式的探測下,紅外熱成像具有隱蔽性好、夜視效果好等特點,已被廣泛應(yīng)用于軍事、監(jiān)控、醫(yī)療等領(lǐng)域。但由于其自身探測器器件響應(yīng)的限制,在大氣衰減、紅外傳輸距離等不確定性外界因素干擾下,紅外圖像容易受到背景噪聲的干擾,使得圖像對比度低、目標(biāo)信噪比低、細節(jié)模糊等,從而影響到紅外系統(tǒng)對目標(biāo)的檢測、識別和跟蹤。因此,對紅外圖像進行增強處理以強化目標(biāo)信息和抑制背景噪聲具有重要的研究意義。
直方圖均衡化(Histogram Equalization,HE)作為傳統(tǒng)圖像增強算法中廣泛使用的方法,其根據(jù)整幅圖像的直方圖描述的各個灰度級出現(xiàn)的頻率來改變原始圖像的直方圖分布情況,使灰度值重新分配以實現(xiàn)最大程度上的均勻分布,傳統(tǒng)的HE方法針對各種類別圖像基本都能夠取得相對比較滿意的圖像增強效果[1]。然而由于其均衡機制,對數(shù)據(jù)不加選擇,建立在灰度級信息全局統(tǒng)計分析的基礎(chǔ)上,使得低頻率的灰度級易發(fā)生灰度級的合并,而高頻率灰度級容易發(fā)生過度增強[1],從而導(dǎo)致目標(biāo)信號的對比度降低、圖像細節(jié)消失、背景與目標(biāo)模糊等退化現(xiàn)象。
目前已有很多學(xué)者針對傳統(tǒng)HE方法進行了改進,文獻[2]針對傳統(tǒng)直方圖均衡化算法的過增強問題,通過確定原始圖像與傳統(tǒng)直方圖均衡化后圖像的直方圖中像素點的數(shù)量差來重新分配直方圖,實現(xiàn)了直方圖均勻分布,但其沒有考慮到改進算法的時間問題,不適用于實際工程; 文獻[3]針對傳統(tǒng)直方圖均衡化算法吞噬灰度的問題,提出一種提高變壓器紅外圖像對比度的同時,還能準確分離出變壓器區(qū)域模糊細節(jié)的直方圖雙邊濾波圖像增強算法,但其雙邊濾波參數(shù)的選取,只給出了適應(yīng)其變壓器紅外圖像的經(jīng)驗值,不具備普適性; 文獻[4]同樣針對傳統(tǒng)直方圖均衡化算法的過度增強問題,提出改進的直方均衡化與雙邊濾波的X射線圖像增強算法,而對X射線圖像進行高照度區(qū)域、低照度區(qū)域的劃分沒有普適性,不適用于一般的紅外圖像,同時沒有給出準確的參數(shù)選擇原則; 文獻[5]將紅外整體圖像的像素根據(jù)給定閾值分為三部分,對某一部分像素單獨增強處理,但閾值的簡單劃分沒有考慮噪聲的影響,容易導(dǎo)致圖像噪聲的增強。
綜上可以看出,現(xiàn)有改進算法雖然都在極力避免傳統(tǒng)直方圖均衡算法的過增強問題,但大部分還是針對特定場景進行處理,沒有普適性,同時算法的改進都比較復(fù)雜,沒有考慮算法的時間問題,缺乏實用性。針對現(xiàn)有改進算法的問題,本文考慮紅外熱成像系統(tǒng)的成像特點,對傳統(tǒng)的直方圖均衡算法進行改進, 采取灰度級別均勻
分布,在不增加算法復(fù)雜度的基礎(chǔ)上,提出一種具有普適性的紅外圖像增強方法。
1 直方圖均衡化原理
直方圖均衡化是通過某種處理關(guān)系映射使輸入圖像的像素能夠均勻地分布在整個灰度區(qū)間, 使得輸出圖像的直方圖均勻分布整個區(qū)間。在經(jīng)過均衡化處理后的灰度圖像中, 圖像的像素點均勻分布在每個灰度級上,其本質(zhì)就是對圖像中像素個數(shù)多的灰度值進行展寬,而對像素個數(shù)少的灰度值進行歸并,從而增大對比度,達到圖像增強的目的。
4 結(jié)? 論
本文針對紅外熱成像的成像特點和使用需求,提出一種基于改進直方圖的紅外熱成像圖像增強方法。針對紅外圖像出現(xiàn)四角發(fā)白的現(xiàn)象對直方圖均衡的影響,綜合考慮均值和方差對原始圖像進行了裁剪,同時針對像素個數(shù)少的灰度級被合并導(dǎo)致圖像細節(jié)丟失的問題,采用本文灰度級別均勻分布的方法,避免了像素個數(shù)對灰度映射的影響。最后通過實驗驗證了本文方法在熵值、標(biāo)準差、模糊線性指數(shù)上都具有較好的表現(xiàn),在提高圖像對比度的同時增強了圖像的細節(jié)信息,更有利于人眼的視覺觀察。目前,本文方法針對某些紅外圖像可能需要進行手動參數(shù)調(diào)節(jié)擴展灰度級別,在之后的研究中,需要解決對各種類型紅外圖像自適應(yīng)增強的問題。
參考文獻:
[1] 丁暢,董麗麗,許文海. “直方圖”均衡化圖像增強技術(shù)研究綜述[J]. 計算機工程與應(yīng)用,2017,53(23): 12-17.
Ding Chang,Dong Lili,Xu Wenhai. Review of “Histogram” Equalization Technique for Image Enhancement[J]. Computer Engineering and Applications,2017,53(23): 12-17.(in Chinese)
[2] 李牧,周瑞杰,田哲嘉. 基于直方圖的熱紅外圖像增強方法[J]. 紅外技術(shù),2020,42(9): 880-885.
Li Mu,Zhou Ruijie,Tian Zhejia. A Thermal Infrared Image Enhancement Method Based on Histogram[J]. Infrared Technology,2020,42(9): 880-885.(in Chinese)
[3] 鄧超迪,李川,李英娜. 基于直方圖均衡化和雙邊濾波的變壓器紅外圖像增強[J]. 電力科學(xué)與工程,2020,36(11): 38-44.
Deng Chaodi,Li Chuan,Li Yingna. Transformer Infrared Image Enhancement Based on Histogram Equalization and Bilateral Filtering[J]. Electric Power Science and Engineering,2020,36(11): 38-44.(in Chinese)
[4] 趙愛玲,張鵬程,楊一鳴,等. 改進的直方圖均衡化與雙邊濾波的X射線圖像對比度增強算法[J]. 中北大學(xué)學(xué)報: 自然科學(xué)版,2020,41(6): 564-570.
Zhao Ailing,Zhang Pengcheng,Yang Yiming,et al. Improved Histogram Equalization and Bilateral Filtering X-Ray Image Contrast Enhancement Algorithm[J]. Journal of North University of China: Natural Science Edition,2020,41(6): 564-570.(in Chinese)
[5] 趙華夏,禹晶,肖創(chuàng)柏. 基于目的性優(yōu)化及改進直方圖均衡化的夜間彩色圖像增強[J]. 計算機研究與發(fā)展,2015,52(6): 1424-1430.
Zhao Huaxia,Yu Jing,Xiao Chuangbai. Night Color Image Enhancement via Optimization of Purpose and Improved Histogram Equalization[J]. Journal of Computer Research and Development,2015,52(6): 1424-1430.(in Chinese)
[6] 姜柏軍,鐘明霞. 改進的直方圖均衡化算法在圖像增強中的應(yīng)用[J]. 激光與紅外,2014,44(6): 702-706.
Jiang Bojun,Zhong Mingxia. Improved Histogram Equalization Algorithm in the Image Enhancement[J]. Laser & Infrared,2014,44(6): 702-706.(in Chinese)
[7] 聶超. 基于直方圖的高效圖像增強算法研究[D]. 杭州: 杭州電子科技大學(xué),2014.
Nie Chao. Efficient Image Enhancement Algorithm Research Based on Histogram[D]. Hangzhou: Hangzhou Dianzi University,2014. (in Chinese)
[8] 陳永亮. 灰度圖像的直方圖均衡化處理研究[D]. 合肥: 安徽大學(xué),2014.
Chen Yongliang. Gray Image Histogram Equalization Processing Research[D]. Hefei: Anhui University,2014. (in Chinese)
[9] 吳成茂. 直方圖均衡化的數(shù)學(xué)模型研究[J]. 電子學(xué)報,2013,41(3): 598-602.
Wu Chengmao. Studies on Mathematical Model of Histogram Equa-lization[J]. Acta Electronica Sinica,2013,41(3): 598-602.(in Chinese)
[10] 李賢陽,陽建中,楊竣輝,等. 基于改進的直方圖均衡化與邊緣保持平滑濾波的紅外圖像增強算法[J]. 計算機應(yīng)用與軟件,2019,36(3): 96-103.
Li Xianyang,Yang Jianzhong,Yang Junhui,et al. Infrared Image Enhancement Algorithm Based on Improved Histogram Equalization and Edge Preserving Smoothing Filtering[J]. Computer Applications and Software,2019,36(3): 96-103.(in Chinese)
Infrared Image Enhancement Method Based on Improved Histogram
Li Lingjie*,Chen Feifei
(CETC Electro-Optics Technology Corporation Limited,Beijing 100015,China)
Abstract:? In order to improve the enhancement effect of infrared image,according to the imaging characteristics of existing infrared imaging,an infrared image enhancement method based on improved histogram is proposed in this paper. For the phenomenon that the infrared image may be highlighted around,this paper comprehensively considers the image brightness intensity and contrast,then determines the clipping area of the original image. On this basis,this paper proposes a method of uniform distribution of gray levels to avoid the loss of image details caused by the combination of gray levels with a small number of pixels. Experiments show that compared with the traditional histogram equalization method,the improved algorithm proposed in this paper has 21.87%,2.60% and 14.52% improvements in entropy value,standard deviation and fuzzy linear index respectively. The key details of the image are enhanced while improving the image contrast,which confirms the correctness of the theoretical analysis.
Key words: infrared image; image enhancement; histogram equalization; gray level; entropy value; standard deviation; fuzzy linear index