周貴勝
圖形的旋轉是各地中考數(shù)學試卷中永恒的話題,本文選取一道中考題為例進行分析.
例 (2021·浙江·嘉興)小王在學習浙教版九上課本第[72]頁例[2]后,進一步開展探究活動:將一個矩形[ABCD]繞點[A]順時針旋轉[α](0° < [α] ≤ 90°),得到矩形[AB'C'D'],連接[BD].
(1)探究1:如圖[1],當[α=90°]時,點[C']恰好在[DB]延長線上[.]若[AB=1],求[BC]的長.
(2)探究2:如圖[2],連接[AC'],過點[D']作[D'M]∥[AC']交[BD]于點[M.] 線段[D'M]與[DM]相等嗎?請說明理由.
(3)探究3:在探究[2]的條件下,射線[DB]分別交[AD'],[AC']于點[P],[N(]如圖[3)],發(fā)現(xiàn)線段[DN],[MN],[PN]存在一定的數(shù)量關系,請寫出這個關系式,并加以證明.
分析:(1)設BC = [x],由旋轉的性質得出矩形ABCD ≌ 矩形AB′C′D′,所以C′D′ = CD = AB,AD′ = AD = BC = [x],由△BAD ∽ △BD′C′,可列比例式求解;
(2)如圖4,連接DD′,由旋轉可知△AC′D′ ≌ △DBA,可得[∠D'AC'=∠ADB],由MD′∥AC′,得到∠MD′A = ∠D′AC′,再證出∠MDD′ = ∠MD′D,則得到DM = D′M;
(3) 由(2)可證明△NPA ∽ △NAD,[ANNP=NDAN],連接AM,如圖5,可推導出∠NMA = ∠NAM = 2∠MDA,得出MN = AN,進而可得出結論:MN2 = NP·ND.
解:(1)設[BC=x],
∵矩形[ABCD]繞點[A]順時針旋轉90°得到矩形[AB'C'D'],
∴點[A],[B],[D']在同一直線上,矩形ABCD ≌ 矩形AB′C′D′,
∴∠BAD = ∠D′ = 90°,[AD'=AD=BC=x],D′C′ = DC = AB = 1,
∴[D'B=AD'-AB=x-1],
又∵點[C']在[DB]的延長線上,∴∠D′BC′ = ∠ABD,
∴[△D'C'B] ∽ [△ADB],
∴[D'C'AD=D'BAB],∴[1x=x-11],
解得[x1=1+52],[x2=1-52](不合題意,舍去),
∴[BC=1+52].
(2)[D'M=DM].
證明:如圖4,連接[DD'],
[∵D'M∥AC'],[∴∠AD'M=∠D'AC'],
[∵AD'=DA],[∠AD'C'=∠DAB=90°],[D'C'=AB],
[∴△AC'D'] ≌ [△DBA](SAS),
[∴∠D'AC'=∠ADB],[∴∠ADB=∠AD'M],
[∵AD'=AD],[∴∠ADD'=∠AD'D],
[∴∠MDD'=∠MD'D],[∴D'M=DM].
(3)關系式為[MN2=PN?DN].
證明:如圖5,連接AM,
∵MD = MD′,AM = AM,AD = AD′,
∴△AMD ≌ △AMD′,∴∠MAD = ∠MAD′,
∵∠NMA = ∠ADM + ∠MAD,∠NAM = ∠NAP + ∠D′AM,
∴∠NMA = ∠NAM,∴MN = AN.
在[△NAP]和[△NDA]中,[∠ANP=∠DNA],[∠NAP=∠NDA],
∴△NPA ∽ △NAD,∴[PNAN=ANDN],
[∴AN2=PN?DN],[∴MN2=PN?DN].
點評:本題是矩形結合圖形旋轉的綜合題,解這類問題的關鍵是利用圖形旋轉的性質得到角相等、線段相等等條件.
(作者單位:東北育才學校初中部)