• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      求解廣義BBM-KdV方程的守恒型有限差分方法

      2022-05-30 20:32:49王希張爽胡勁松
      關(guān)鍵詞:收斂性穩(wěn)定性

      王?!埶『鷦潘?/p>

      摘要:BBM-KdV方程因能描述大量的物理現(xiàn)象如淺水波和離子波等而占有重要的地位,是弱非線性色散介質(zhì)中長波單向傳播的重要模型,其數(shù)值研究少有涉及。針對一類帶有齊次邊界條件的廣義BBM-KdV方程的初邊值問題,提出了一個具有二階理論精度的兩層非線性有限差分格式,合理模擬了問題本身的兩個守恒量,并給出差分格式的先驗估計,討論其差分解的存在唯一性,并用離散泛函分析方法證明該格式的收斂性和無條件穩(wěn)定性,最后通過數(shù)值模擬驗證了該數(shù)值方法的可靠性。

      關(guān)鍵詞:廣義BBM-KdV方程;差分格式;守恒;收斂性;穩(wěn)定性

      DOI:10.15938/j.jhust.2022.04.019

      中圖分類號: O241.82

      文獻(xiàn)標(biāo)志碼: A

      文章編號: 1007-2683(2022)04-0147-07

      Conservative Finite Difference Method for Solving

      Generalized BBM-KdV Equation

      WANG Xi,ZHANG Shuang,HU Jin-song

      (School of Science, Xihua University, Chengdu 610039,China)

      Abstract:The BBM-KdV equation plays an important role because it can describe a large number of physical phenomena, such as shallow water waves and ion waves. It is an important model for long-wave unidirectional propagation in weakly nonlinear dispersive media, but its numerical investigations are rarely made. For the initial-boundary value problem of the generalized BBM-KdV equations with homogeneous boundary conditions, a two-level nonlinear finite difference scheme with the second-order theoretical accuracy is proposed, which reasonably simulates the two conserved quantities of the problem. With a priori estimation, the existence and uniqueness of the difference solutions are dicussed. By the discrete functional analysis method the convergence and unconditional stability of the scheme are also proved. Finally, some numerical experiments verify the robustness of the proposed scheme.

      Keywords:generalized BBM-KdV equation; difference scheme; conservation; convergence; stability

      0引言

      1差分格式及守恒性

      2差分解的存在性

      3收斂性、穩(wěn)定性及數(shù)值解的唯一性

      4數(shù)值實驗

      5結(jié)語

      本文對一類帶有齊次邊界條件的廣義BBM-KdV方程的初邊值問題(1)~(3)進行了數(shù)值方法研究,提出了一個兩層非線性數(shù)值差分格式(6)~(8),該格式是無條件穩(wěn)定的。從表1可以看出,該數(shù)值格式明顯具有二階精度;從表2和圖1、2可以看出,數(shù)值式格式對原問題的物理守恒量(4)和(5)也進行了合理有效地模擬。另外,數(shù)值模擬還發(fā)現(xiàn),參數(shù)β和γ的變化對數(shù)值解的誤差影響也較小,所以本文數(shù)值求解方法是可靠的。

      參 考 文 獻(xiàn):

      [1]PEREGRINE D.H.. Calculations of the Development of an Undular Bore[J]. J. Fluid Mech, 1966, 25(2):321.

      [2]PEREGRINE D.H.. Long Waves On Beach[J]. J. Fluid Mech, 1967,27(4):815.

      [3]BENJAMIN T.B., BONA J.L., MAHONY J.J.. Model Equations for Long Waves in Nonlinear Dispersive Systems[J]. Philos.Trans.Roy. Soc.London., Ser. A, 1972, 272: 47.

      [4]KORTEWAG D.J., DEVRIES G.. On the Change of Form of Long Waves Advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves[J]. Phil.mag.,1985,39(5): 422.

      [5]ACHOURI T., KHIARI N ., OMRANI K.. On the Convergence of Difference Schemes for the Benjamin-bona-mahony (BBM) Equation[J]. Appl Math Comput, 2006,182(2):999.

      [6]OMRANI K., AYADI M.. Finite Difference Discretization of the Benjamin-Bona-Mahony-Burgers Equation[J]. Numer Methods Partial Diff Equ, 2008,24(1):239.

      [7]ACHOURI T., AYADI M., OMRANI K.. A Fully Galerkin Method for the Damped Generalized Regularized Long-wave (DGRLW) Equation[J]. Numer Methods Partial Diff Equ,2009,25:668.

      [8]OMRANI.K.. The Convergence of Fully Discrete Galerkin Approximations for the Benjamin-Bona-Mahony (BBM) Equation[J]. Appl Math Comput, 2006,180(2):614.

      [9]KHALIFA A.K., RASLAN K.R., ALZUBAIDI H.M.. A Finite Difference Scheme for the MRLW and Solitary Waves Interactions[J]. J Comput Appl Math 2007,(189):346 .

      [10]KADRI T., KHIARI N., ABIDI F., et al. Methods for the numerical solution of the Benjamin-Bona-Mahony-Burgers equation[J]. Numer Methods Partial Differ Equ,2008(24):1501.

      [11]ACHOURI T., OMRANI K.. Application of the Homotopy Perturbation Method to the Modified Regularized Long-wave Equation[J]. Numer Methods Partial Differ Equ, 2010,26(2):399.

      [12]ABBASBANDY S., SHIRZADI A.. The First Integral Method for Modified Benjamin-Bona-Mahony Equation[J]. Commun Nonlinear Sci Numer Simulat,2010,15:1759.

      [13]DEHGHAN M., ABBASZADEH M., MOHEBBI A.. The Numerical Solution of Nonlinear High Dimensional Generalized Benjamin-Bona-Mahony-Burgers Equation Via the Meshless Method of Radial Basis Functions. Comput Math Appl, 2014,68(3):212.

      [15]MEI L., CHEN Y.. Numerical Solutions of RLW Equation Using Galerkin Method with Extrapolation Techniques[J]. Comput Phys Commun, 2012,183(8):1609.

      [16]MOHAMMADI M., MOKHTARI R.. Solving the Generalized Regularized Long Wwave Equation on the Basis of a Reproducing Kernel Space[J]. J. Comput, 2011, 235(14): 4003.

      [17]DUTYKH D., PELINOVSKY E.. Numerical Simulation of a Solitonic Gas in KdV and KdV-BBM Equations[J].Phys. Lett. A, 2014, 378:3102.

      [18]ASOKAN R., VINODH D.. Soliton and Exact Solutions for the KdV-BBM Type Equations by Tanh-coth and Transformed Rational Function Methods[J]. Int. J. Appl. Comput. Math,2018,(4):100.

      [19]ROUATBI A., OMRANI K.. Two Conservative Difference Schemes for a Model of Nonlinear Dispersive Equations[J]. Chaos Solitons Fractals: 2017(104):516.

      [20]何麗,王希,胡勁松.廣義BBM-KdV方程的一個守恒C-N差分格式[J].理論數(shù)學(xué),2021,11(4):428.HE Li, WANG Xi, HU J. A Conserved C-N Difference Scheme for Generalized BBM-KdV Equations[J]. Theor Math., 2021, 11(4): 428.

      [21]ZHOU Y.L. ?Application of Discrete Functional Analysis to the Finite Difference Methods[M].Int. J algebra comput, Pergamon Press, 1991: 260.

      [22]BROWDER F.E.. Existence and Uniqueness Theorems for Solutions of Nonlinear Boundary Value Problems[J]. Proc. Symp. Appl Math.,1965(17):24.

      (編輯:溫澤宇)

      猜你喜歡
      收斂性穩(wěn)定性
      一類k-Hessian方程解的存在性和漸近穩(wěn)定性
      SBR改性瀝青的穩(wěn)定性評價
      石油瀝青(2021年4期)2021-10-14 08:50:44
      行間AANA隨機變量陣列加權(quán)和的完全矩收斂性
      WOD隨機變量序列的完全收斂性和矩完全收斂性
      END隨機變量序列Sung型加權(quán)和的矩完全收斂性
      非線性中立型變延遲微分方程的長時間穩(wěn)定性
      END隨機變量序列Sung型加權(quán)和的矩完全收斂性
      半動力系統(tǒng)中閉集的穩(wěn)定性和極限集映射的連續(xù)性
      行為ND隨機變量陣列加權(quán)和的完全收斂性
      松弛型二級多分裂法的上松弛收斂性
      和林格尔县| 宁夏| 广宗县| 萝北县| 吉安县| 延吉市| 海晏县| 梁河县| 江西省| 大英县| 闽清县| 乌鲁木齐县| 景东| 昭觉县| 灵武市| 顺昌县| 辽宁省| 灵山县| 元阳县| 平罗县| 江孜县| 曲阜市| 临江市| 汉中市| 太康县| 青阳县| 苍山县| 中阳县| 乌拉特后旗| 新竹市| 玛沁县| 周至县| 水城县| 七台河市| 高安市| 新巴尔虎左旗| 闻喜县| 和田市| 克拉玛依市| 肃南| 永安市|