• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      一類半線性隨機微分方程的均方漸近概自守溫和解

      2022-05-30 20:32:49姚慧麗霍貴珍孫海彤王晶囡
      哈爾濱理工大學學報 2022年4期
      關(guān)鍵詞:型函數(shù)均方線性

      姚慧麗 霍貴珍 孫海彤 王晶囡

      摘要:均方概自守型函數(shù)理論在隨機微分方程中的應(yīng)用越來越引起數(shù)學研究者的關(guān)注,這類方程的均方漸近概自守解比均方概自守解的應(yīng)用范圍更加廣泛。對一類半線性隨機微分方程的均方漸近概自守溫和解進行探討。利用Banach壓縮映射原理,結(jié)合均方漸近概自守隨機過程的定義和性質(zhì)、Cauchy-Schwarz不等式、Lipschitz條件、It等距積分,討論了該類隨機微分方程的均方漸近概自守溫和解的存在唯一性。

      關(guān)鍵詞:均方漸近概自守溫和解;半線性隨機微分方程;Banach壓縮映射原理

      DOI:10.15938/j.jhust.2022.04.020

      中圖分類號: O175

      文獻標志碼: A

      文章編號: 1007-2683(2022)04-0154-07

      Square-Mean Asymptotically Almost Automorphic Mild Solutions

      to a Class of Semi-linear Stochastic Differential Equations

      YAO Hui-li,HUO Gui-zhen,SUN Hai-tong,WANG Jing-nan

      (School of Science,Harbin University of Science and Technology,Harbin 150080,China)

      Abstract:The applications of the theories of square-mean almost automorphic type functions have attracted more and more attention by mathematics researchers, square-mean asymptotically almost automorphic solutions of this class of differential equations have a wider range of applications than square-mean almost automorphic solutions.Square-mean asymptotically almost automorphic mild solutions to a class of semi-linear stochastic differential equations are investigated. The existence and uniqueness of square-mean asymptotically almost automorphic mild solutions for this kind of equation are discussed by using the principle of Banach compressed image, combining with the definition and properties of square-mean asymptotically almost automorphic stochastic processes, Cauchy-Schwarz inequality, Lipschtiz conditions and Ito integrals isometry.

      Keywords:square-mean asymptotically almost automorphic mild solutions; semi-linearstochastic differential equations; principle of Banach compressed image

      0引言

      概自守函數(shù)、漸近概自守函數(shù)以及偽概自守函數(shù)(統(tǒng)稱為概自守型函數(shù))的定義分別由BOCHNER S、N′GUEREKATA G M、XIAO T J, LIANG J, ZHANG J給出[1-3]。概自守型函數(shù)理論的產(chǎn)生推廣了概周期型函數(shù)的應(yīng)用范圍,并在各類方程中得到了應(yīng)用[4-10],為了更好的描述自然界中的隨機現(xiàn)象,2010年,F(xiàn)U M M, LIU Z X提出了均方概自守隨機過程的概念[11],這一概念是對概自守函數(shù)的推廣。之后,均方偽概守隨機過程和均方漸近概自守隨機過程的概念也相繼被給出[ 12-13 ] 。自均方概自守型隨機過程有關(guān)理論被提出以來,國內(nèi)外數(shù)學工作者將其應(yīng)用到一類將隨機性納入了數(shù)學描述中的模型中即隨機微分方程中,研究了此種方程的均方概自守解[14-16]和均方偽概自守解的存在及唯一性[17-18]。在文[14]中,CHANG Y K, ZHAO Z H, N′GUEREKATA G M.對下列一類半線性隨機微分方程

      1預(yù)備知識

      2主要結(jié)論

      參 考 文 獻:

      [1]BOCHNER S. A New Approach to Almost Periodicity[J]. Proceedings of the National Academy of Sciences of the United States of America, 1962, 48(12):2039.

      [2]N′GUEREKATA G M. Some Remarks on Asymptotically Almost Automorphic Function[J]. Rivista Di Matematica Della Università Di Parma, 1988, 13(4): 301.

      [3]XIAO T J, LIANG J, ZHANG J. Pseudo Almost Automorphic Solutions to Semi-linear Differential Equations in Banach Spaces[J]. Semigroup Forum, 2008, 76(3): 518.

      [4]GOLDSTEIN J A, N′GUEREKATA G M. Almost Automorphic Solution of Semi-linear Evolution Equations[J]. Proc.Amer.Math.Soc.133, 2005,2401.

      [5]EZZINBI K, N′GUEREKATA G M. Massera Type Theorem for Almost Automorphic Solutions of Functional Differential Equations of Neutral Type[J]. Journal of Mathematical Analysis and Applications,2006, 316:707.

      [6]DIAGANA T, N′GUEREKATA G M. Amost Automorphic Solutions to Some Classes of Partial Evolution Equations[J]. Applied.Mathematics Letters,2007,20(4):462.

      [7]M′HAMDI M S. Pseudo Almost Automorphic Solutions for Multidirectional Associative Memory Neural Network with Mixed Delays[J]. Neural processing letters, 2019, 49(3): 1567.

      [8]AOUITI C, DRIDI F. Weighted Pseudo Almost Automorphic Solutions for Neutral Type Fuzzy Cellular Neural Networks with Mixed Delays and D Operator in Clifford Algebra[J]. International Journal of Systems Science, 2020(3): 1.

      [9]ZABSONRE I, MBAINADJI D. Pseudo Almost Automorphic Solutions of Class r in α-norm under the Light of Measure Theory[J]. Nonautonomous Dynamical Systems, 2020, 7(1): 81.

      [10]AOUITI C, M′HAMDI M S, TOUATI A. Pseudo Almost Automorphic Solutions of Recurrent Neural Networks with Time-Varying Coefficients and Mixed Delays[J]. Neural Processing Letters, 2016, 45(1):1.

      [11]FU M M, LIU Z X. Square-mean Almost Automorphic Solutions for Some Stochastic Differential Equations[J]. Proc.Amer.Math.Soc, 2010,138(10):3689.

      [12]CHEN Z, LIN W. Square-mean Pseudo Almost Automorphic Process and Its Application to Stochastic evolution Equations[J]. Journal of Functional Analysis,2011,261(1):69.

      [13]YAN Z, ZHANG H W.Square-mean Asymptotically Almost Automorphic Solutions for Non-local Neutral Stochastic Functional Integro-differential Equations in Hilbert Spaces[J]. Electronic Journal of Mathematical Analysis and Applications,2013,1(1):15.

      [14]CHANG Y K, ZHAO Z H, N′GUEREKATA G M. Square-mean Almost Automorphic Mild Solutions to Non-autonomous Stochastic Differential Equations in Hilbert Spaces[J]. Advances in Difference Equations, 2011, 61(2): 384.

      [15]XI L,HAN Y L, LIU B F. Square-mean Almost Automorphic Solutions to Some Stochastic Evolution Equations I: Autonomous Case[J]. Acta Mathematicae Applicatae Sinica, English Series, 2015, 31(3): 577.

      [16]LI L J. Existence of Square-Mean Almost Automorphic Solutions to Stochastic Functional Integro-differential Equations in Hilbert Spaces[J]. Abstract and Applied Analysis, 2014: 1.

      [17]GU Y, REN Y, SAKTHIVEL R. Square-mean Pseudo Almost Automorphic Mild Solutions for Stochastic Evolution Equations Driven by G-Brownian Motion[J]. Stochastic Analysis & Applications, 2016, 34(3):528.

      [18]YAN Z M, ZHANG H W. Existence of Stepanov-Like Square-Mean Pseudo Almost Periodic Solutions to Partial Stochastic Neutral Differential Equations[J]. Annals of Functional Analysis, 2015, 6(1): 116.

      [19]張著洪.關(guān)于閉算子及其共軛的分數(shù)次冪的評注[J].貴州大學學報(自然科學版),1997(4):202.ZHANG Zhuhong. Comments on the Fractional Power of Closed Operators and Their Conjugates[J].Journal of Guizhou University (Natural Sciences),1997(4):202.

      [20]姚慧麗, 劉婷, 張士晶. 一類隨機微分方程的均方漸近概自守溫和解[J]. 哈爾濱理工大學學報, 2016, 21(3): 114.YAO Huili, LIU Ting, ZHANG Shijing. Square-mean Asymptotically Almost Automorphic Mild Solutions for a Class of Stochastic Differential Equations[J]. Journal of Harbin University of Science and Technology, 2016, 21(3): 114.

      (編輯:溫澤宇)

      猜你喜歡
      型函數(shù)均方線性
      一類隨機積分微分方程的均方漸近概周期解
      漸近線性Klein-Gordon-Maxwell系統(tǒng)正解的存在性
      線性回歸方程的求解與應(yīng)用
      幾類“對勾”型函數(shù)最值問題的解法
      Beidou, le système de navigation par satellite compatible et interopérable
      二階線性微分方程的解法
      Orlicz Sylvester Busemann型函數(shù)的極值研究
      基于抗差最小均方估計的輸電線路參數(shù)辨識
      基于隨機牽制控制的復(fù)雜網(wǎng)絡(luò)均方簇同步
      V-型函數(shù)的周期點
      江油市| 共和县| 天长市| 连城县| 湟源县| 双辽市| 大丰市| 张家界市| 重庆市| 深州市| 岑巩县| 洛浦县| 宝坻区| 稷山县| 甘南县| 武山县| 芮城县| 朝阳县| 柳河县| 涿州市| 教育| 泸水县| 大英县| 五大连池市| 龙海市| 阿巴嘎旗| 藁城市| 陆丰市| 儋州市| 仙桃市| 漯河市| 营山县| 闵行区| 宜章县| 监利县| 临朐县| 乳源| 光山县| 浙江省| 托克逊县| 平阴县|