• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      高表達OTUD3對C6星形膠質瘤細胞增殖的影響

      2022-05-30 10:48:04黨曉婷郇雪潔焦倩姜宏
      青島大學學報(醫(yī)學版) 2022年3期
      關鍵詞:細胞增殖

      黨曉婷 郇雪潔 焦倩 姜宏

      [摘要]目的 探究高表達OTUD3對C6星形膠質瘤細胞增殖的影響。方法 C6膠質瘤細胞轉染Myc-OTUD3質粒載體48 h后,采用Western Blot方法檢測OTUD3蛋白表達變化;采用Cell Counting Kit-8(CCK-8)細胞增殖試劑盒和細胞克隆形成實驗檢測高表達OTUD3的C6膠質瘤細胞增殖改變情況。結果 轉染Myc-OTUD3質粒載體48 h后,C6膠質瘤細胞OTUD3蛋白表達升高(t=3.472,P<0.01)。CCK-8和細胞克隆形成實驗結果顯示,高表達OTUD3的C6膠質瘤細胞增殖水平降低(F=17.326、70.345,t=3.646,P<0.05)。結論 高表達OTUD3可抑制C6星形膠質瘤細胞的增殖。

      [關鍵詞]星形細胞瘤;去泛素酶類;OTUD3;細胞增殖

      [中圖分類號]R338.2[文獻標志碼]A[文章編號]2096-5532(2022)03-0321-04

      doi:10.11712/jms.2096-5532.2022.58.090

      EFFECT OF OVEREXPRESSION OF OTUD3 ON THE PROLIFERATION OF C6 ASTROGLIOMA CELLS

      DANG Xiaoting, HUAN Xuejie, JIAO Qian, JIANG Hong

      (State Key Disciplines: Physiology (inIncubation), Department of Physiology, Qingdao University, Qingdao 266071, China)

      [ABSTRACT] Objective To investigate the effect of overexpression of OTUD3 on the proliferation of C6 astroglioma cells.

      Methods Myc-OTUD3 was transfected into C6 astroglioma cells for 48 h. Western Blot was used to determine OTUD3 protein expression changes. The Cell Counting Kit-8 (CCK-8) and colony-forming assays were used to measure the impact of OTUD3 overexpression on the proliferation of C6 astroglioma cells.Results After transfection with the Myc-OTUD3 vector for 48 h, OTUD3 protein expression was significantly increased in C6 astroglioma cells (t=3.472,P<0.01). The CCK-8 and colony-forming assays showed that high expression of OTUD3 significantly reduced the proliferation of C6 astroglioma cells (F=17.326,70.345;t=3.646;P<0.05).Conclusion Overexpression of OTUD3 inhibits the proliferation of C6 astroglioma cells.

      [KEY WORDS] astroglioma; deubiquitinating enzymes; OTUD3; cell proliferation

      膠質瘤是一種極為常見的原發(fā)性惡性顱內腫瘤,占中樞神經(jīng)系統(tǒng)惡性腫瘤的81%[1]。目前膠質瘤的治療方法包括手術、化療和放療等,但病人的中位生存期較短,預后差[2]。因此,研究膠質瘤發(fā)生發(fā)展機制對開發(fā)新的療法有重要意義。泛素-蛋白酶體系統(tǒng)(UPS)是調節(jié)蛋白質最重要的體系,它通過在底物的泛素化和去泛素化之間建立動態(tài)平衡參與廣泛的細胞過程的調節(jié),如細胞周期、DNA損傷修復、凋亡、表觀遺傳和信號轉導等[3-6]。近年來研究發(fā)現(xiàn),泛素化酶和去泛素化酶參與腫瘤的發(fā)生發(fā)展,并可能成為潛在的抗癌靶點。泛素特異性蛋白酶USP39通過誘導mRNA成熟,增加含有WW結構域的轉錄調節(jié)子1(TAZ)的蛋白水平促進膠質瘤的發(fā)展進程[7-8];而敲除去泛素化酶USP8可間接靶向 RNA結合蛋白SF2/ASF1,促進膠質瘤細胞的凋亡,從而應對膠質瘤復發(fā)[9]。OTUD3屬于卵巢腫瘤蛋白酶(OTU)家族,也是一種去泛素化酶[10]。已有研究表明,OTUD3可能在細胞環(huán)境中參與促進或抑制腫瘤的發(fā)生[11-12]。本實驗室的前期研究結果表明,與原代星形膠質細胞相比,大鼠C6星形膠質瘤細胞中的OTUD3蛋白表達顯著降低[13]。為了研究OTUD3對星形膠質瘤發(fā)生的作用,本實驗通過質粒轉染高表達OTUD3,探究過表達OUTD3對C6星形膠質瘤細胞增殖的影響?,F(xiàn)將結果報告如下。

      1材料與方法

      1.1實驗材料

      本實驗所用的細胞為大鼠C6星形膠質瘤細胞系,為貼壁生長的細胞。高糖DMEM細胞培養(yǎng)液(以色列BI公司),胎牛血清(FBS,北京全式金生物公司),青鏈霉素合劑、Cell Counting Kit-8(CCK-8)試劑盒(北京索萊寶公司)。

      1.2實驗方法

      1.2.1細胞培養(yǎng)C6膠質瘤細胞接種于含體積分數(shù)0.10 FBS和體積分數(shù)0.01青鏈霉素合劑的高糖DMEM培養(yǎng)液,置于37 ℃、含體積分數(shù)0.05 CO2的培養(yǎng)箱中培養(yǎng),待細胞密度達80%~90%時,用胰酶消化3 min,加入少量完全培養(yǎng)液終止消化,收集至50 mL離心管中,以1 000 r/min離心5 min,棄上清液后加入新鮮培養(yǎng)液,用吸管輕吹充分懸浮細胞,移至新的培養(yǎng)瓶中傳代。

      1.2.2細胞轉染將C6膠質瘤細胞懸液按照每孔1×105個細胞的密度接種于6孔板中,24 h后,待細胞密度達70%~80%時進行轉染。實驗分為Myc-Vector組和Myc-OTUD3組,分別轉染Myc-Vector質粒載體和Myc-OTUD3質粒載體。向Myc-Vector組的基礎培養(yǎng)液中加入Myc-Vector質粒,Myc-OTUD3組基礎培養(yǎng)液中加入Myc-OTUD3質粒,靜置5 min后與配制好的LipofectaminTM 2000混合液混合,室溫靜置10~20 min。向6孔板中每孔加入1 200 μL基礎培養(yǎng)液及300 μL質?;旌弦?,置于含體積分數(shù)0.05 CO2的培養(yǎng)箱中培養(yǎng),培養(yǎng)4~8 h后換新培養(yǎng)液繼續(xù)培養(yǎng)至48 h。

      1.2.3Western Blot檢測OTUD3蛋白表達將轉染后的C6膠質瘤細胞6孔板取出,棄上清液,每孔加入100 μL細胞裂解液冰上裂解,提取細胞蛋白。每孔上樣蛋白量為20 μg,以90 V恒定電壓電泳,300 mA恒定電流轉膜1 h,100 g/L脫脂奶粉室溫封閉1.5 h。加一抗4 ℃過夜孵育,以TBST溶液清洗3次,每次10 min;加二抗室溫孵育1 h,以TBST溶液漂洗。配制ECL化學發(fā)光液進行顯影。

      1.2.4CCK-8檢測細胞增殖將轉染48 h的C6膠質瘤細胞懸液按每孔100 μL接種于5個96孔板,每孔細胞數(shù)目為(3~4)×103個。每日同一時間點向96孔板中加入CCK-8溶液10 μL,置培養(yǎng)箱中避光培養(yǎng)1 h,用酶標儀(美國BioTek公司)檢測波長450 nm處的吸光度,連續(xù)記錄5 d,繪制細胞生長曲線。

      1.2.5細胞克隆形成實驗用胰酶消化細胞后,將C6膠質瘤細胞懸液接種于6孔板中,置于37 ℃細胞培養(yǎng)箱中培養(yǎng),2周后棄培養(yǎng)液,用預冷的PBS溶液緩慢沖洗,甲醇固定10 min,結晶紫染色10 min,觀察結晶紫染色情況,統(tǒng)計著色的細胞集落數(shù)目。

      1.3統(tǒng)計學方法

      應用SPSS 22軟件進行統(tǒng)計學分析,計量資料以x±s表示,兩組間比較采用t檢驗,兩因素設計資料比較采用析因設計的方差分析。P<0.05認為差異具有統(tǒng)計學意義。

      2結果

      2.1Myc-OTUD3質粒轉染后細胞內OTUD3蛋白表達水平的變化

      Western Blot檢測結果顯示,與Myc-Vector組(0.403±0.065)相比較,Myc-OTUD3組(0.832±0.105)C6膠質瘤細胞中OTUD3蛋白表達水平明顯升高(n=6,t=3.472,P<0.01)。見圖1。

      2.2過表達OTUD3對C6膠質瘤細胞增殖的影響

      細胞轉染Myc-OTUD3質粒后,連續(xù)5 d檢測450 nm波長處的吸光度,析因設計的方差分析結果顯示,轉染和時間存在交互效應(F=12.300,P<0.001)。進行單獨效應分析結果顯示,與Myc-Vector組相比,Myc-OTUD3組在轉染4、5 d時的細胞增殖水平降低,差異具有統(tǒng)計學意義(n=6,F(xiàn)=17.326、70.345,P<0.001),表明細胞生長明顯受到抑制。見圖2。

      2.3過表達OTUD3對C6膠質瘤細胞克隆形成能力的影響

      細胞克隆形成實驗結晶紫染色的結果顯示,與Myc-Vector組(103.300±5.239)相比較,Myc-OTUD3組(77.670±4.702)的細胞克隆數(shù)顯著降低(n=3,t=3.646,P<0.05)。見圖3。

      3討論

      神經(jīng)膠質瘤是最具侵襲性的惡性腦腫瘤,具有較高的發(fā)病率和致死率。膠質母細胞瘤是最常見的膠質瘤組織學類型,約占膠質瘤的45%[14-15]。雖然基礎研究和臨床試驗已進行多年,但膠質母細胞瘤仍是成年人最致命的原發(fā)性惡性腦腫瘤之一[16-17]。目前膠質母細胞瘤的標準化治療是在可行的范圍內進行手術切除,然后進行單獨放療或化療與替莫唑胺藥物聯(lián)合治療,但預后較差[18-19]。由于腫瘤組織學相同的病人預后不同,因此研究膠質瘤中不同的分子表達變化可能是開發(fā)新的有效治療方法和提高病人生存率的有效途徑。

      人類基因組中總共編碼90種去泛素化酶[20],OTU作為去泛素化酶的一個亞型,通過調節(jié)基因轉錄、細胞周期、免疫反應、炎癥和腫瘤生長等,在多種生物調節(jié)過程中發(fā)揮重要作用[21-24]。含有OTU結構域的蛋白質(OTUD)是OTU的一個亞家族,OTUD3是OTU家族中的一種重要酶,由398個氨基酸組成[25]。近期的研究顯示,OTUD3在癌癥中發(fā)揮重要的作用,其表達下調與乳癌病人的不良預后相關,OTUD3作為一種腫瘤抑制因子通過直接去泛素化并穩(wěn)定P53,促進腫瘤細胞對化療藥物的敏感性[26-27]。有研究表明,OTUD3作為腫瘤突變抑制因子人第10號染色體缺失并與張力蛋白同源的磷酸酶(PTEN,即MMAC1)的去泛素化酶,在乳癌OTUD3-PTEN軸中發(fā)揮去泛素化功能并穩(wěn)定PTEN,在腫瘤抑制過程中起到重要作用[11,28]。泛素特異性肽酶USP13能夠促進卵巢癌的發(fā)展和轉移[29]。此外,在肝細胞癌中OTUD3能夠通過去泛素化增強α-輔肌動蛋白4(ACTN4)的穩(wěn)定性,促進肝細胞癌的生長和轉移[30]。盡管多項研究結果已經(jīng)證明OTUD3參與癌癥的進程[31-35],但目前關于OTUD3在膠質瘤特別是膠質母細胞瘤中發(fā)揮的細胞功能卻少有研究。

      本研究團隊的前期研究結果已經(jīng)證明,與正常腦組織相比,神經(jīng)膠質瘤細胞中OTUD3的轉錄顯著下調,而C6膠質瘤細胞中OTUD3的mRNA以及蛋白表達水平明顯低于正常原代星形膠質細胞,且OTUD3高表達的膠質瘤病人比低表達的膠質瘤病人存活時間更長[13]。本次研究通過CCK-8和細胞克隆形成實驗檢測細胞增殖能力,結果表明,質粒轉染高表達OTUD3可以降低C6星形膠質瘤細胞增殖水平,進一步說明了OTUD3對膠質瘤發(fā)生的作用,為靶向治療膠質瘤提供了實驗證據(jù)。

      [參考文獻]

      [1]OSTROM Q T, PATIL N, CIOFFI G, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013—2017[J].? Neuro-oncology, 2020,22(12 Suppl 2):iv1-iv96.

      [2]SOZIO P, FIORITO J, DI GIACOMO V, et al. Haloperidol metabolite Ⅱ prodrug: asymmetric synthesis and biological evaluation on rat C6 glioma cells[J].? European Journal of Medicinal Chemistry, 2015,90:1-9.

      [3]XIANG T X, LI L L, YIN X D, et al. The ubiquitin peptidase UCHL1 induces G0/G1cell cycle arrest and apoptosis through stabilizing p53 and is frequently silenced in breast cancer[J].? PLoS One, 2012,7(1):e29783.

      [4]NAGAMACHI A, NAKATA Y, UEDA T, et al. Acquired deficiency of A20 results in rapid apoptosis, systemic inflammation, and abnormal hematopoietic stem cell function[J].? PLoS One, 2014,9(1):e87425.

      [5]JIN W L, MAO X Y, QIU G Z. Targeting deubiquitinating enzymes in glioblastoma multiforme: expectations and challenges[J].? Medicinal Research Reviews, 2017,37(3):627-661.

      [6]LANCINI C, VAN DEN BERK P C, VISSERS J H, et al. Tight regulation of ubiquitin-mediated DNA damage response by USP3 preserves the functional integrity of hematopoietic stem cells[J].? The Journal of Experimental Medicine, 2014,211(9):1759-1777.

      [7]CORDENONSI M, ZANCONATO F, AZZOLIN L, et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells[J].? Cell, 2011,147(4):759-772.

      [8]DING K K, JI J X, ZHANG X, et al. RNA splicing factor USP39 promotes glioma progression by inducing TAZ mRNA maturation[J].? Oncogene, 2019,38(37):6414-6428.

      [9]VASHISTHA V, BHARDWAJ S, YADAV B K, et al. Depleting deubiquitinating enzymes promotes apoptosis in glioma cell line via RNA binding proteins SF2/ASF1[J].? Biochemistry and Biophysics Reports, 2020,24:100846.

      [10]MEVISSEN T E, HOSPENTHAL M K, GEURINK P P, et al. OTU deubiquitinases reveal mechanisms of linkage specifi-city and enable ubiquitin chain restriction analysis[J].? Cell,2013,154(1):169-184.

      [11]YUAN L, LV Y R, LI H C, et al. Deubiquitylase OTUD3 regulates PTEN stability and suppresses tumorigenesis[J].? Nature Cell Biology, 2015,17(9):1169-1181.

      [12]DU T D, LI H C, FAN Y S, et al. The deubiquitylase OTUD3 stabilizes GRP78 and promotes lung tumorigenesis[J].? Nature Communications, 2019,10(1):2914.

      [13]LIU Y Z, DU X X, ZHAO Q Q, et al. The expression change of OTUD3-PTEN signaling axis in glioma cells[J].? Annals of Translational Medicine, 2020,8(7):490.

      [14]LUDWIG K, KORNBLUM H I. Molecular markers in glioma[J].? Journal of Neuro-Oncology, 2017,134(3):505-512.

      [15]OSTROM Q T, BAUCHET L, DAVIS F G, et al. The epidemiology of glioma in adults: a “state of the science” review[J].? Neuro-oncology, 2014,16(7):896-913.

      [16]CHEN R, COHEN A L, COLMAN H. Targeted therapeutics in patients with high-grade gliomas: past, present, and future[J].? Current Treatment Options in Oncology, 2016,17(8):42.

      [17]BUCKNER J C. Factors influencing survival in high-grade gliomas[J].? Seminars in Oncology, 2003,30:10-14.

      [18]STUPP R, MASON W P, VAN DEN BENT M J, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma[J].? The New England Journal of Medicine, 2005,352(10):987-996.

      [19]YUNG W K, ALBRIGHT R E, OLSON J, et al. A phase Ⅱ study of temozolomide vs. procarbazine in patients with glioblastoma multiforme at first relapse[J].? British Journal of Cancer, 2000,83(5):588-593.

      [20]COYNE E S, WING S S. The business of deubiquitination-location, location, location[J].? F1000 Research, 2016,5:163.

      [21]DENG J J, HOU G X, FANG Z X, et al. Distinct expression and prognostic value of OTU domain-containing proteins in non-small-cell lung cancer[J].? Oncology Letters, 2019,18(5):5417-5427.

      [22]YANG J M. Emerging roles of deubiquitinating enzymes in human cancer[J].? Acta Pharmacologica Sinica, 2007,28(9):1325-1330.

      [23]PRIOLO C, TANG D, BRAHAMANDAN M, et al. The isopeptidase USP2a protects human prostate cancer from apoptosis[J].? Cancer Research, 2006,66(17):8625-8632.

      [24]ZHAO Q Q, LI Y X, DU X X, et al. Effects of deubiquitylases on the biological behaviors of neural stem cells[J].? Deve-

      lopmental Neurobiology, 2021,81(6):847-858.

      [25]GARSHOTT D M, SUNDARAMOORTHY E, LEONARD M, et al. Distinct regulatory ribosomal ubiquitylation events are reversible and hierarchically organized[J].? eLife, 2020,9:e54023.

      [26]PU Q, LV Y R, DONG K, et al. Tumor suppressor OTUD3 induces growth inhibition and apoptosis by directly deubiquitinating and stabilizing p53 in invasive breast carcinoma cells[J].? BMC Cancer, 2020,20(1):583.

      [27]XIAO Z N, ZHANG P J, MA L. The role of deubiquitinases in breast cancer[J].? Cancer Metastasis Reviews, 2016,35(4):589-600.

      [28]ZHANG J S, ZHANG P J, WEI Y K, et al. Deubiquitylation and stabilization of PTEN by USP13[J].? Nature Cell Biology, 2013,15(12):1486-1494.

      [29]KWON J, CHOI H, WARE A D, et al. USP13 promotes development and metastasis of high-grade serous ovarian carcinoma in a novel mouse model[J].? Oncogene, 2022. doi:10.1038/s41388-022-02224-x.

      [30]XIE P Y, CHEN Y L, ZHANG H F, et al. The deubiquitinase OTUD3 stabilizes ACTN4 to drive growth and metastasis of hepatocellular carcinoma[J].? Aging, 2021,13(15):19317-19338.

      [31]ZHANG P F, LI C N, LI H C, et al. Ubiquitin ligase CHIP regulates OTUD3 stability and suppresses tumour metastasis in lung cancer[J].? Cell Death and Differentiation, 2020,27(11):3177-3195.

      [32]WANG M, LI Y, XIAO Y Y, et al. Nicotine-mediated OTUD3 downregulation inhibits VEGF-C mRNA decay to promote lymphatic metastasis of human esophageal cancer[J].? Nature Communications, 2021,12(1):7006.

      [33]GENG W W, SONG H Y, ZHAO Q Q, et al. miR-520h sti-mulates drug resistance to paclitaxel by targeting the OTUD3-PTEN axis in breast cancer[J].? BioMed Research Internatio-nal, 2020,2020:9512793.

      [34]QI L Y, YAO Y, ZHANG T T, et al. A four-mRNA model to improve the prediction of breast cancer prognosis[J].? Gene, 2019,721:144100.

      [35]HONG W, LI A, LIU Y H, et al. Clonal hematopoiesis mutations in patients with lung cancer are associated with lung cancer risk factors[J].? Cancer Research, 2022,82(2):199-209.

      (本文編輯馬偉平)

      猜你喜歡
      細胞增殖
      白藜蘆醇對血管緊張素Ⅱ誘導的平滑肌細胞
      三氧化二砷對人大細胞肺癌NCI—H460細胞凋亡影響的研究
      miRAN—9對腫瘤調控機制的研究進展
      人類microRNA—1246慢病毒抑制載體的構建以及鑒定
      芹菜素誘導膀胱癌5637細胞凋亡研究
      胃癌細胞增殖中長鏈非編碼RNAMEG3產(chǎn)生的具體影響分析
      TNFAIP1對肝癌細胞HepG2細胞增殖及凋亡的影響
      淺談信息技術在《細胞增殖》課堂教學中的利用
      有關“細胞增殖”一輪復習的有效教學策略
      RNA干擾HDACl對人乳腺癌MCF—7細胞生物活性的影響
      淮滨县| 博客| 沈丘县| 昌图县| 砚山县| 呼玛县| 揭东县| 鲜城| 辽阳县| 屯昌县| 南涧| 石景山区| 四平市| 宣恩县| 靖远县| 喀喇沁旗| 芜湖市| 登封市| 永靖县| 上林县| 万山特区| 大关县| 瓮安县| 施甸县| 黄陵县| 泸水县| 麻江县| 云阳县| 巨野县| 双鸭山市| 敖汉旗| 西乌| 金川县| 新泰市| 尤溪县| 乾安县| 汉沽区| 汶上县| 昌吉市| 龙里县| 博乐市|