馬月 陳蕾蕾 謝俊霞
[摘要]目的 從鐵代謝的角度探究轉(zhuǎn)錄因子EB(TFEB)對(duì)Erastin誘導(dǎo)的鐵死亡的影響。
方法 在PC12細(xì)胞上高表達(dá)TFEB,應(yīng)用10 μmol/L鐵死亡誘導(dǎo)劑Erastin處理高表達(dá)TFEB的PC12細(xì)胞24 h,通過光學(xué)顯微鏡觀察細(xì)胞形態(tài)學(xué)特征,采用免疫印跡法檢測鐵死亡標(biāo)志蛋白谷胱甘肽過氧化酶4(GPX4)及鐵蛋白輕鏈(FTL)的表達(dá)。結(jié)果 高表達(dá)TFEB可顯著降低Erastin對(duì)PC12細(xì)胞的損傷,并上調(diào)FTL和GPX4蛋白的表達(dá)水平(t=4.127、3.194,P<0.05)。結(jié)論 TFEB可能通過增加細(xì)胞內(nèi)鐵儲(chǔ)存能力保護(hù)細(xì)胞免受鐵死亡的影響。
[關(guān)鍵詞]轉(zhuǎn)錄因子;鐵死亡;PC12細(xì)胞;磷脂氫過氧化物谷胱甘肽過氧化物酶;脫輔鐵蛋白質(zhì)類
[中圖分類號(hào)]R338.2[文獻(xiàn)標(biāo)志碼]A[文章編號(hào)]2096-5532(2022)03-0325-04
doi:10.11712/jms.2096-5532.2022.58.119
EFFECT OF TRANSCRIPTION FACTOR EB ON FERROPTOSIS INDUCED BY ERASTIN
MA Yue, CHEN Leilei, XIE Junxia
(Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China)
[ABSTRACT]ObjectiveTo investigate the effect of transcription factor EB (TFEB) on ferroptosis induced by erastin from the aspect of iron metabolism.Methods TFEB was overexpressed in PC12 cells, and then the cells were treated with 10 μmol/L erastin, a ferroptosis inducer, for 24 hours. A light microscope was used to observe cell morphological features, and Western blotting was used to measure the protein expression of the ferroptosis markers glutathione peroxidase 4 (GPX4) and ferritin-light chain (FTL).Results Overexpression of TFEB significantly reduced the damage of PC12 cells induced by erastin and upregula-ted the protein expression levels of FTL and GPX4 (t=4.127,3.194;P<0.05).Conclusion TFEB may protect cells from ferroptosis by increasing the intracellular iron storage capacity.
[KEY WORDS] transcription factors; ferroptosis; PC12 cells; phospholipid hydroperoxide glutathione peroxidase; apoferritins
帕金森?。≒D)是發(fā)病率較高的神經(jīng)退行性疾病之一,其確切病因尚未完全闡明。研究證實(shí),腦鐵代謝異常與α-突觸核蛋白的異常聚集在PD發(fā)病及進(jìn)程中起著重要作用,而溶酶體是細(xì)胞內(nèi)重要的儲(chǔ)鐵細(xì)胞器以及降解α-突觸核蛋白的主要場所,因此,溶酶體及自噬功能與PD發(fā)病密切相關(guān)[1-4]。轉(zhuǎn)錄因子EB(TFEB)是維持細(xì)胞自噬穩(wěn)定的轉(zhuǎn)錄因子[5]。大量PD細(xì)胞與動(dòng)物模型實(shí)驗(yàn)均證實(shí)TFEB在神經(jīng)退行性疾病中具有保護(hù)作用,提示TFEB可成為治療或改善PD并提供神經(jīng)保護(hù)作用的有效靶點(diǎn)[6-8]。雖然TFEB在神經(jīng)退行性疾病中的保護(hù)作用研究由來已久,但是以往研究主要側(cè)重于TFEB增強(qiáng)或改善自噬功能、清除α-突觸核蛋白等方面,對(duì)于TFEB在PD鐵死亡中的作用研究目前少見。本實(shí)驗(yàn)在PC12細(xì)胞上高表達(dá)TFEB,并給予鐵死亡誘導(dǎo)劑Erastin進(jìn)行處理,觀察光鏡下細(xì)胞的生長狀態(tài)并檢測鐵死亡重要調(diào)節(jié)因子谷胱甘肽過氧化酶4(GPX4)及鐵蛋白輕鏈(FTL)的表達(dá)水平,從鐵代謝的角度探究TFEB在對(duì)抗鐵死亡、保護(hù)神經(jīng)細(xì)胞中的可能作用,從而為PD治療提供新思路。
1材料和方法
1.1實(shí)驗(yàn)材料
所用PC12細(xì)胞購自中國科學(xué)院上海細(xì)胞庫;DMEM培養(yǎng)液、胰蛋白酶購自Hyclone公司;opti-MEM培養(yǎng)液、胎牛血清、馬血清、瞬時(shí)過表達(dá)轉(zhuǎn)染試劑LipofectamineTM3000購自Thermo Fisher公司;PBS緩沖液、青霉素-鏈霉素混合液購自北京索萊寶科技有限公司;Erastin購自Sigma公司;ECL發(fā)光液購自Millipore公司;GPX4抗體和FTL抗體購自abcam公司;TFEB抗體購自Proteintech公司;β-actin抗體購自北京博奧森生物技術(shù)有限公司;羊抗兔二抗購自愛必信(上海)生物科技有限公司;空載體質(zhì)粒與過表達(dá)TFEB質(zhì)粒購自廣州銳博生物技術(shù)有限公司;BCA蛋白定量試劑盒購自康為世紀(jì)公司。
1.2實(shí)驗(yàn)方法
1.2.1實(shí)驗(yàn)分組及處理①預(yù)實(shí)驗(yàn):PC12細(xì)胞鋪板24 h后分別采用空載體質(zhì)粒和1、3、5、7 nmol/L濃度的過表達(dá)TFEB質(zhì)粒轉(zhuǎn)染細(xì)胞,轉(zhuǎn)染24 h后更換新鮮培養(yǎng)液繼續(xù)培養(yǎng),并在光鏡下觀察細(xì)胞生長狀態(tài)。繼續(xù)培養(yǎng)24 h(即轉(zhuǎn)染48 h)后收集細(xì)胞并提取蛋白,采用免疫印跡法檢測TFEB蛋白表達(dá)水平,以確定最適轉(zhuǎn)染條件。當(dāng)采用濃度為5 nmol/L的過表達(dá)TFEB質(zhì)粒轉(zhuǎn)染細(xì)胞時(shí),TFEB蛋白表達(dá)水平上調(diào)最為明顯,且光鏡下觀察細(xì)胞生長狀態(tài)較好,因此選取該濃度作為后續(xù)實(shí)驗(yàn)中過表達(dá)TFEB質(zhì)粒轉(zhuǎn)染PC12細(xì)胞的轉(zhuǎn)染濃度。②細(xì)胞轉(zhuǎn)染及藥物處理:實(shí)驗(yàn)分為空載體組、高表達(dá)TFEB組、空載體+Erastin組、高表達(dá)TFEB+Erastin組。PC12細(xì)胞鋪板培養(yǎng)24 h后采用空載體質(zhì)?;蛘? nmol/L的過表達(dá)TFEB質(zhì)粒轉(zhuǎn)染細(xì)胞,轉(zhuǎn)染細(xì)胞24 h后,給予或者不給予鐵死亡誘導(dǎo)劑Erastin(10 μmol/L)繼續(xù)處理24 h。
1.2.2光學(xué)顯微鏡觀察細(xì)胞形態(tài)學(xué)特征細(xì)胞經(jīng)藥物處理后,在倒置顯微鏡(OLYMPUS IX73)明場模式下,采用10×10倍的放大倍數(shù)觀察并獲取10個(gè)不同視野的圖像,隨機(jī)選取3個(gè)視野的圖像進(jìn)行分析,記錄細(xì)胞形態(tài)學(xué)特征和該視野中具備細(xì)胞形態(tài)的細(xì)胞數(shù)目。
1.2.3免疫印跡法檢測FTL和GPX4蛋白表達(dá)
將藥物處理后的細(xì)胞用預(yù)冷的PBS漂洗1次,去除PBS后按5×105個(gè)細(xì)胞加50 μL裂解液(RIPA)的比例加入細(xì)胞裂解液,使用細(xì)胞刮收集各組細(xì)胞,置于冰上裂解30 min,在4 ℃下以12 000 r/min離心30 min,收集上清液。用BCA蛋白定量試劑盒測定蛋白濃度,加入上樣緩沖液后100 ℃金屬浴5 min使蛋白變性。配制SDS-PAGE凝膠,進(jìn)行電泳(恒壓80 V)、轉(zhuǎn)膜(恒流300 mA,90 min)。轉(zhuǎn)膜結(jié)束后將印有蛋白的PVDF膜置于50 g/L脫脂奶粉封閉液中,室溫孵育2 h。封閉完成以后洗去封閉液,加入FTL(1∶1 000)、GPX4(1∶10 000)、β-actin(1∶10 000)、TFEB(1∶1 000)一抗,放至4 ℃恒溫?fù)u床孵育過夜。去除一抗后用TBST洗膜3次,每次10 min。加山羊抗兔(1∶10 000)的HRP-IgG二抗室溫孵育1 h,用TBST洗膜3次,每次10 min。將膜用發(fā)光液避光孵育1 min,采用美國UVP凝膠成像系統(tǒng)采集圖像。用Image J軟件分析條帶灰度值,結(jié)果以目的蛋白(GPX4、FTL)與內(nèi)參照蛋白(β-actin)灰度值的比值表示。
1.3統(tǒng)計(jì)學(xué)處理
采用Graph Pad Prism 7軟件進(jìn)行統(tǒng)計(jì)學(xué)分析。計(jì)量資料實(shí)驗(yàn)結(jié)果以x±s表示,兩組比較采用成組t檢驗(yàn),多組比較采用單因素方差分析,繼而采用Tukey檢驗(yàn)進(jìn)行兩兩比較。P<0.05表示差異有統(tǒng)計(jì)學(xué)意義。
2結(jié)果
2.1高表達(dá)TFEB對(duì)Erastin誘導(dǎo)鐵死亡細(xì)胞形態(tài)學(xué)特征的影響
空載體組、高表達(dá)TFEB組細(xì)胞生長狀態(tài)良好,呈多角形和梭形,細(xì)胞伸展,可見粗大的突起,折光性好??蛰d體+Erastin組出現(xiàn)輕微細(xì)胞毒性與生長抑制現(xiàn)象,細(xì)胞數(shù)目較少,小部分細(xì)胞折光性變差,細(xì)胞變圓,突起回縮,表面可見泡狀小體,細(xì)胞輪廓界限模糊。與空載體+Erastin組細(xì)胞相比較,高表達(dá)TFEB+Erastin組細(xì)胞較為伸展,突起輕微回縮,細(xì)胞出現(xiàn)輕微生長抑制現(xiàn)象。
空載體組、高表達(dá)TFEB組、空載體+Erastin組、高表達(dá)TFEB+Erastin組的細(xì)胞數(shù)目分別為288.00±29.48、229.30±19.64、89.00±5.00、175.30±2.91(n=3)。與空載體組相比較,空載體+Erastin組細(xì)胞損傷明顯,存活的細(xì)胞數(shù)目少;與空載體+Erastin組相比,高表達(dá)TFEB+Erastin組細(xì)胞生長狀態(tài)較好,存活的細(xì)胞數(shù)目多,差異有統(tǒng)計(jì)學(xué)意義(F=22.2,P<0.05)。
2.2高表達(dá)TFEB對(duì)細(xì)胞內(nèi)GPX4及FTL蛋白表達(dá)的影響
空載體組與高表達(dá)TFEB組細(xì)胞內(nèi)的GPX4蛋白表達(dá)水平分別為1.200±0.217、1.667±0.165(n=7),與空載體組相比,高表達(dá)TFEB組細(xì)胞內(nèi)GPX4蛋白表達(dá)水平顯著上調(diào),差異有統(tǒng)計(jì)學(xué)意義(t=3.194,P<0.05)??蛰d體組與高表達(dá)TFEB組細(xì)胞內(nèi)FTL蛋白表達(dá)水平分別為0.872±0.106、1.631±0.150(n=3),與空載體組相比較,高表達(dá)TFEB組細(xì)胞內(nèi)FTL蛋白表達(dá)水平顯著上調(diào),差異有統(tǒng)計(jì)學(xué)意義(t=4.127,P<0.05)。
3討論
近年來,在對(duì)PD病因及機(jī)制的探索中逐漸證實(shí),除蛋白質(zhì)異常聚集、線粒體功能障礙、氧化應(yīng)激、炎癥反應(yīng)等因素與PD發(fā)病密切相關(guān)外,黑質(zhì)區(qū)鐵異常沉積這一病理改變也參與PD的發(fā)生發(fā)展[9-13]。鐵是維持生物體基本生理功能的重要元素,隨著年齡增加,鐵會(huì)在腦中聚集,而這種聚集會(huì)在神經(jīng)退行性疾病尤其是PD中加劇[14-15]。在PD中,過量的鐵會(huì)形成羥自由基,進(jìn)而誘導(dǎo)氧化應(yīng)激,增強(qiáng)多巴胺衍生的代謝毒性,并通過促進(jìn)α-突觸核蛋白表達(dá)和聚集而加劇多巴胺能神經(jīng)元退變[16-18]。鐵死亡是一種依賴于鐵的非凋亡性的細(xì)胞死亡方式,在1-甲基-4-苯基-1,2,3,6-四氫吡啶(MPTP)誘導(dǎo)的PD小鼠模型和過表達(dá)α-突觸核蛋白的轉(zhuǎn)基因小鼠模型中均發(fā)現(xiàn)了鐵死亡現(xiàn)象,而且鐵死亡抑制劑ferrostatin-1可以顯著抑制魚藤酮對(duì)多巴胺能神經(jīng)元的毒性[19-20]。這些研究均提示,鐵死亡參與了PD多巴胺能神經(jīng)元退變過程,抑制鐵死亡很有可能成為保護(hù)多巴胺能神經(jīng)元、干預(yù)PD的有效策略之一。
雖然TFEB在PD中的保護(hù)作用已被大量研究證實(shí),但是以往的研究主要側(cè)重于TFEB激活或改善自噬功能、清除α-突觸核蛋白方面,對(duì)于TFEB在PD鐵死亡中的作用研究較少。最近有文獻(xiàn)報(bào)道,羧基修飾的聚苯乙烯納米顆??梢酝ㄟ^促進(jìn)TFEB核轉(zhuǎn)位、增強(qiáng)細(xì)胞內(nèi)超氧化物歧化酶表達(dá)、降低活性氧水平、抑制脂質(zhì)過氧化來抑制鐵死亡[21]。然而,TFEB是否還可以通過其他途徑抑制鐵死亡,以及其與PD中鐵死亡發(fā)生的關(guān)系目前尚不清楚。
鐵死亡的標(biāo)志蛋白GPX4是一種內(nèi)源性的膜脂修復(fù)酶,在其催化下,谷胱甘肽可將具有潛在毒性的過氧化脂類還原為無毒的脂醇,從而阻止鐵死亡的發(fā)生,而當(dāng)鐵死亡發(fā)生時(shí)GPX4的表達(dá)降低[22]。PC12細(xì)胞來源于大鼠腎上腺髓質(zhì)的嗜鉻細(xì)胞瘤,當(dāng)神經(jīng)生長因子(NGF)存在時(shí),可以分化為交感神經(jīng)元[23-24]。PC12細(xì)胞可以合成和儲(chǔ)存多巴胺,因此也被廣泛用作神經(jīng)退行性疾病的細(xì)胞模型[25]。本實(shí)驗(yàn)中,當(dāng)在PC12細(xì)胞上高表達(dá)TFEB時(shí),GPX4蛋白表達(dá)水平明顯上調(diào),從功能的角度直接驗(yàn)證了TFEB對(duì)抗鐵死亡、保護(hù)細(xì)胞的作用。Erastin是一種常用的鐵死亡誘導(dǎo)劑[26],本實(shí)驗(yàn)中給予Erastin(10 μmol/L)處理細(xì)胞24 h,并通過光學(xué)顯微鏡觀察各組細(xì)胞的生長狀態(tài)。本文研究結(jié)果表明,高表達(dá)TFEB可降低Erastin誘導(dǎo)的細(xì)胞毒性,保護(hù)細(xì)胞免受鐵死亡的影響。另一方面,鐵死亡發(fā)生時(shí)會(huì)誘導(dǎo)鐵自噬,即鐵蛋白的降解,從而釋放鐵、增加細(xì)胞內(nèi)不穩(wěn)定鐵池,進(jìn)而增加細(xì)胞氧化水平[27]。鐵蛋白是機(jī)體用來儲(chǔ)存鐵的主要蛋白質(zhì)。鐵蛋白由FTL和鐵蛋白重鏈(FTH)組成,其中,F(xiàn)TH具有亞鐵氧化酶的活性,負(fù)責(zé)鐵的吸收,而FTL負(fù)責(zé)鐵的儲(chǔ)存。鐵蛋白的降解會(huì)導(dǎo)致鐵的釋放從而導(dǎo)致氧化損傷[28],抑制鐵蛋白降解可以抑制Erastin誘導(dǎo)的鐵沉積、脂質(zhì)過氧化以及鐵死亡發(fā)生[29]。本文實(shí)驗(yàn)結(jié)果表明,PC12細(xì)胞高表達(dá)TFEB后,F(xiàn)TL水平明顯升高,提示高表達(dá)TFEB可以增強(qiáng)細(xì)胞儲(chǔ)鐵能力,從而降低胞漿內(nèi)游離的氧化還原活性鐵,減少氧化應(yīng)激,從這一角度也可證實(shí)TFEB對(duì)鐵死亡的抑制作用。
綜上所述,在PC12細(xì)胞上高表達(dá)TFEB,可降低鐵死亡誘導(dǎo)劑Erastin的毒性作用。同時(shí),高表達(dá)TFEB可上調(diào)FTL與GPX4蛋白表達(dá)水平,提示TFEB可能通過增加細(xì)胞鐵儲(chǔ)存、降低細(xì)胞內(nèi)游離鐵水平,抑制鐵死亡,保護(hù)神經(jīng)細(xì)胞。本實(shí)驗(yàn)初步從鐵代謝的角度探討了TFEB的神經(jīng)保護(hù)作用,為防治PD提供了新思路。然而,TFEB是通過何種途徑調(diào)節(jié)鐵代謝,以及通過何種途徑抑制鐵死亡、保護(hù)神經(jīng)元目前尚未可知,仍需進(jìn)一步研究探討其具體作用機(jī)制。
[參考文獻(xiàn)]
[1]CHI H T, TANG W, BAI Y. Molecular evidence of impaired iron metabolism and its association with Parkinsons disease progression[J].? 3 Biotech, 2020,10(4):173.
[2]DU X Y, XIE X X, LIU R T. The role of α-synuclein oligomers in Parkinsons disease[J].? International Journal of Molecular Sciences, 2020,21(22):8645.
[3]CHEN L L, HUANG Y J, CUI J T, et al. Iron dysregulation in Parkinsons disease: focused on the autophagy-lysosome pathway[J].? ACS Chemical Neuroscience, 2019,10(2):863-871.
[4]HOU X, WATZLAWIK J O, FIESEL F C, et al. Autophagy in Parkinsons disease[J].? Journal of Molecular Biology, 2020,432(8):2651-2672.
[5]ANTIKAINEN H. Astrocytic TFEB as a regulator of brain homeostasis[J].? Journal of Neurochemistry, 2019,150:225.
[6]DECRESSAC M, MATTSSON B, WEIKOP P, et al. TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity[J].? Proceedings of the National Academy of Sciences of the United States of America, 2013,110(19):E1817-E1826.
[7]ZHUANG X X, WANG S F, TAN Y, et al. Pharmacological enhancement of TFEB-mediated autophagy alleviated neuronaldeath in oxidative stress-induced Parkinsons disease models[J].? Cell Death & Disease, 2020,11:128.
[8]TORRA A, PARENT A, CUADROS T, et al. Overexpres-sion of TFEB drives a pleiotropic neurotrophic effect and prevents Parkinsons disease-related neurodegeneration[J].? Molecular Therapy: the Journal of the American Society of Gene Therapy, 2018,26(6):1552-1567.
[9]CAO S T, WANG C C, YAN J T, et al. Curcumin ameliorates oxidative stress-induced intestinal barrier injury and mitochondrial damage by promoting Parkin dependent mitophagy through AMPK-TFEB signal pathway[J].? Free Radical Biology and Medicine, 2020,147:8-22.
[10]CAROCCI A, CATALANO A, SINICROPI M S, et al. Oxidative stress and neurodegeneration: the involvement of iron[J].? BioMetals, 2018,31(5):715-735.
[11]CERRI S, BLANDINI F. Role of autophagy in Parkinsons disease[J].? Current Medicinal Chemistry, 2019,26(20):3702-3718.
[12]DUCE J A, WONG B X, DURHAM H, et al. Post translational changes to α-synuclein control iron and dopamine trafficking; a concept for neuron vulnerability in Parkinsons disease[J].? Molecular Neurodegeneration, 2017,12(1):45.
[13]BIASIOTTO G, FILOSTO M, ZANELLA I. Editorial: iron and neurodegeneration[J].? Frontiers in Neuroscience, 2019,13:1382.
[14]QIAN Z M, KE Y. Brain iron transport[J].? Biological Reviews of the Cambridge Philosophical Society, 2019,94(5):1672-1684.
[15]MOCHIZUKI H, CHOONG C J, BABA K. Parkinsons di-sease and iron[J].? Journal of Neural Transmission (Vienna, Austria:1996), 2020,127(2):181-187.
[16]WAN W B, JIN L R, WANG Z G, et al. Iron deposition leads to neuronal α-synuclein pathology by inducing autophagy dysfunction[J].? Frontiers in Neurology, 2017,8:1.
[17]XIAO Y S, CHEN X, HUANG S X, et al. Iron promotes α-synuclein aggregation and transmission by inhibiting TFEB-mediated autophagosome-lysosome fusion[J].? Journal of Neurochemistry, 2018,145(1):34-50.
[18]DAUER NE JOPPE K, TATENHORST L, CALDI GOMES L, et al. Brain iron enrichment attenuates α-synuclein spreading after injection of preformed fibrils[J].? Journal of Neurochemistry, 2021,159(3):554-573.
[19]ANGELOVA P R, CHOI M L, BEREZHNOV A V, et al. Alpha synuclein aggregation drives ferroptosis: an interplay of iron, calcium and lipid peroxidation[J].? Cell Death and Diffe-rentiation, 2020,27(10):2781-2796.
[20]KABIRAJ P, VALENZUELA C A, MARIN J E, et al. The neuroprotective role of ferrostatin-1 under rotenone-induced oxidative stress in dopaminergic neuroblastoma cells[J].? The Protein Journal, 2015,34(5):349-358.
[21]LI L, SUN S L, TAN L L, et al. Polystyrene nanoparticles reduced ROS and inhibited ferroptosis by triggering lysosome stress and TFEB nucleus translocation in a size-dependent manner[J].? Nano Letters, 2019,19(11):7781-7792.
[22]IMAI H, MATSUOKA M, KUMAGAI T, et al. Lipid pero-xidation-dependent cell death regulated by GPx4 and ferroptosis[J].? Current Topics in Microbiology and Immunology, 2017,403:143-170.
[23]DE LOS RIOS C, CANO-ABAD M F, VILLARROYA M, et al. Chromaffin cells as a model to evaluate mechanisms of cell death and neuroprotective compounds[J].? Pflugers Archiv: European Journal of Physiology, 2018,470(1):187-198.
[24]MATSUZAKI Y, MARUTA R, TAKAKI K, et al. Sustained neurotrophin release from protein nanoparticles mediated by matrix metalloproteinases induces the alignment and differen-tiation of nerve cells[J].? Biomolecules, 2019,9(10):E510.
[25]WIATRAK B, KUBIS-KUBIAK A, PIWOWAR A, et al. PC12 cell line: cell types, coating of culture vessels, differentiation and other culture conditions[J].? Cells, 2020,9(4):E958.
[26]ZHAO Y C, LI Y Q, ZHANG R F, et al. The role of erastin in ferroptosis and its prospects in cancer therapy[J].? Onco Targets and Therapy, 2020,13:5429-5441.
[27]SONG N, XIE J X. Iron, dopamine, and α-synuclein interactions in at-risk dopaminergic neurons in Parkinsons disease[J].? Neuroscience Bulletin, 2018,34(2):382-384.
[28]MUHOBERAC B B, VIDAL R. Iron, ferritin, hereditary ferritinopathy, and neurodegeneration[J].? Frontiers in Neuroscience, 2019,13:1195.
[29]ZHOU B R, LIU J, KANG R, et al. Ferroptosis is a type of autophagy-dependent cell death[J].? Seminars in Cancer Biology, 2020,66:89-100.
(本文編輯馬偉平)