王雪春 朱影 黃常新
[摘要] 近年來,免疫檢查點(diǎn)抑制劑和嵌合抗原受體免疫療法(CAR-T)因其顯著的治療有效率,已成為某些腫瘤的“特效藥”。新抗原作為腫瘤的特異性抗原,可激活細(xì)胞毒性T淋巴細(xì)胞(CTL),發(fā)揮特異性抗腫瘤免疫應(yīng)答。目前,下一代基因測序技術(shù)和質(zhì)譜分析為新抗原的發(fā)現(xiàn)和鑒定提供了有利的技術(shù)支撐。基于新抗原的個性化腫瘤免疫治療的突出療效,在國內(nèi)外實體瘤治療大放異彩;其還可作為如T細(xì)胞受體修飾的T細(xì)胞治療(TCR-T)治療的特異性靶標(biāo);聯(lián)合其他抗腫瘤療法也顯示出良好的發(fā)展前景。現(xiàn)就目前基于腫瘤新生抗原免疫治療的研究進(jìn)展做一綜述。
[關(guān)鍵詞] 腫瘤;免疫治療;腫瘤新抗原;腫瘤疫苗
[中圖分類號] R730.5? ? ? ? ? [文獻(xiàn)標(biāo)識碼] A? ? ? ? ? [文章編號] 1673-9701(2022)12-0188-04
[Abstract] In recent years, immune checkpoint inhibitors and chimeric antigen receptor T-cell (CAR-T) immunotherapy have become "specific drugs" for certain tumors because of their remarkable effective rate in treatment. As tumor-specific antigens, neoantigens can activate cytotoxic T lymphocytes (CTL) and exert specific anti-tumor immune responses. Currently, next-generation gene sequencing technology and mass spectrometry provide favorable technical support for the discovery and identification of neoantigens. Neoantigens-based personalized tumor immunotherapy has made a great splash in the treatment of solid tumors at home and abroad due to its outstanding efficacy. It can also serve as a specific target for T-cell receptor modified T-cell (TCR-T) therapy, for example. And the combination of it with other anti-tumor therapies has also shown a good development prospect. This paper reviews the current advances in the study of tumor neoantigens-based immunotherapy.
[Key words] Tumor; Immunotherapy; Tumor neoantigens; Tumor vaccine
據(jù)世界衛(wèi)生組織國際癌癥研究機(jī)構(gòu)發(fā)布的2020年全球癌癥數(shù)據(jù)顯示,中國癌癥的新發(fā)例數(shù)和死亡例數(shù)占全球第一位[1]。近年來,以靶向藥物和免疫治療為代表的生物治療迅猛發(fā)展,超越了傳統(tǒng)的手術(shù)、放療、化療等治療,成為腫瘤治療發(fā)展的主流趨勢。目前已有大量研究證實,利用新抗原制備的腫瘤疫苗,可激發(fā)機(jī)體自身抗腫瘤免疫效應(yīng),在腫瘤治療中具備極大的應(yīng)用前景。
1 新抗原的來源與意義
突變的發(fā)生和逐步累積被公認(rèn)為是腫瘤啟動和進(jìn)展的主要機(jī)制,某些“非同義突變”會導(dǎo)致新抗原的產(chǎn)生[2]。新抗原是腫瘤特異性突變導(dǎo)致氨基酸序列改變形成的新表位,只存在于腫瘤組織,而不存在于正常組織,屬于腫瘤特異性抗原。近年來研究發(fā)現(xiàn),絕大部分新抗原是來自于非編碼區(qū)突變,即蛋白翻譯后的錯誤剪接組合和降解轉(zhuǎn)運(yùn)過程[3],基于全外顯子或信使RNA測序預(yù)測的新抗原肽,極少為質(zhì)譜所證實。Prehn等[4]的體內(nèi)實驗表明,引起強(qiáng)烈腫瘤排斥的抗原更具有個體特異性。因此,與腫瘤相關(guān)抗原相比,新抗原具有更強(qiáng)的免疫原性及高度特異度,能激發(fā)機(jī)體特異性抗腫瘤免疫效應(yīng),成為精準(zhǔn)腫瘤免疫治療的特異性靶點(diǎn)。
較高的腫瘤突變負(fù)荷與改善腫瘤免疫治療的生存率有關(guān)[5],本團(tuán)隊的前期研究還證實某些腫瘤新抗原與生存期改善有關(guān)[6-7];并且,患者預(yù)后不僅與擁有的新抗原數(shù)量相關(guān),新抗原質(zhì)量與類型也影響著其臨床抗腫瘤免疫效應(yīng)[8-9]。
2 新抗原的發(fā)現(xiàn)與鑒定
過去常以cDNA文庫鑒定新抗原,此方法費(fèi)時費(fèi)力[10]。下一代測序技術(shù)(next generation sequencing,NGS)因其檢測高效和技術(shù)成熟,已成為新抗原發(fā)現(xiàn)的重要手段,其簡要過程如下:①利用全基因測序和(或)全外顯子基因測序等技術(shù)對患者腫瘤組織及正常組織進(jìn)行測序獲取抗原譜;②腫瘤組織進(jìn)行轉(zhuǎn)錄子測序;③選擇腫瘤樣品中非同義突變體;④預(yù)測與人類白細(xì)胞抗原(human leukocyte antigen,HLA)分子親和力;⑤體外合成抗原肽,驗證免疫原性[11-12]。然而,目前常用的全外顯子(即編碼區(qū))測序?qū)ふ夷[瘤新抗原肽的準(zhǔn)確性較低;并且由于每例患者的腫瘤新抗原肽不相同不通用,腫瘤細(xì)胞實際存在的免疫有效新抗原肽不多,而占絕大多數(shù)的弱免疫原性肽可導(dǎo)致免疫耐受、無能甚至免疫抑制,故需每例患者進(jìn)行體外免疫學(xué)實驗確定每條肽的免疫活性,這一過程非常費(fèi)時繁瑣。以上這些直接限制了個體化疫苗的臨床推廣應(yīng)用。因此,快速、準(zhǔn)確地發(fā)現(xiàn)腫瘤細(xì)胞內(nèi)有效新抗原肽和提高弱免疫原性新抗原肽的免疫效應(yīng)顯得極為重要[13],本團(tuán)隊研究發(fā)現(xiàn),新抗原結(jié)構(gòu)特性及新抗原肽與特異性T細(xì)胞之間的關(guān)系可幫助快速發(fā)現(xiàn)和鑒定新抗原[14-15]。1F3890C3-8A7A-49C8-B0DE-876920586D0F
質(zhì)譜分析手段的成熟為新抗原鑒定提供新思路,高分辨率質(zhì)譜可直接鑒定腫瘤組織表面抗原肽。發(fā)表于Nature的研究表明,利用主要組織相容性復(fù)合體(major histocompatibility complex,MHC)肽組譜發(fā)現(xiàn)了95,500條與黑色素瘤相關(guān)抗原肽,并成功從中鑒定到11條體細(xì)胞來源新抗原肽[16]。質(zhì)譜鑒定抗原肽的重要條件之一是獲取MHC洗脫肽;免疫沉淀是獲取MHC洗脫肽最常用的方法之一。技術(shù)流程:①M(fèi)HC復(fù)合物通過免疫沉淀從腫瘤組織或細(xì)胞中分離;②充分洗滌除去未結(jié)合混合物;③應(yīng)用酸性洗脫液分離來自MHC分子和抗體的抗原肽;④純化肽段;⑤對純化肽段進(jìn)行質(zhì)譜分析;⑥原始圖譜對比蛋白質(zhì)數(shù)據(jù)庫獲取真實存在蛋白質(zhì)數(shù)據(jù)庫[17-18]。此方法獲取抗原肽的特異性較高,但操作復(fù)雜。弱酸洗脫法為另一種獲取MHC洗脫肽的常用方法。利用低pH值可使MHC Ⅰ的輕鏈與 MHC Ⅰ重鏈分離,在短時間內(nèi)直接從細(xì)胞膜上洗脫MHC肽[19]。相比免疫沉淀法而言,弱酸洗脫法所獲取MHC洗脫肽假陽性率更高。兩種方法都需要大量腫瘤組織,標(biāo)本預(yù)處理較為困難復(fù)雜,鑒定所獲取抗原肽數(shù)目龐大,影響臨床應(yīng)用。本研究團(tuán)隊目前致力于研究快速篩選基于質(zhì)譜獲取的新抗原肽方法,且頗具成效,極大縮短新抗原篩選時間。
此外,利用腫瘤共享數(shù)據(jù)庫也可快速發(fā)現(xiàn)具有免疫原性的腫瘤新抗原肽。國內(nèi)有研究者利用癌癥基因組圖譜 (the cancer genome atlas,TCGA)和癌癥體細(xì)胞突變目錄(catalogue of somatic mutations in cancer,COSMIC)數(shù)據(jù)庫對9種常見的實體瘤進(jìn)行分析,在20 d內(nèi)成功鑒定出被自體外周血淋巴細(xì)胞識別的腫瘤特異性新抗原[20]。
3 基于腫瘤新抗原的抗腫瘤免疫治療
經(jīng)過驗證的免疫原性MHC結(jié)合肽可進(jìn)一步制備個性化腫瘤疫苗。國內(nèi)有研究[21]利用iNeo-Vac-P01新抗原疫苗啟動了一項單臂、開發(fā)臨床試驗,結(jié)果顯示在納入的22例晚期惡性腫瘤患者中,疾病控制率為71.4%,中位無進(jìn)展生存(median progression-free survival,mPFS)為4.6個月,12個月總生存期(overall survival,OS)百分比約為55.1%,且納入的2例胰腺癌患者無進(jìn)展生存期(progression-free survival,PFS)分別為4.2個月和6.3個月,OS分別為14.0+個月和13.3+個月,高于轉(zhuǎn)移性胰腺癌一線化療方案(奧沙利鉑+伊立替康+氟尿嘧啶+亞葉酸鈣,F(xiàn)OLFIRINOX)的PFS 為3.1個月,中位OS為 6.1個月[22]。
黑色素瘤具有較高的突變負(fù)荷,臨床研究結(jié)果表明個性化新抗原疫苗可以在黑色素瘤患者中刺激持久的免疫反應(yīng),幫助控制轉(zhuǎn)移性腫瘤[23]。Ott等[24]對6例手術(shù)切除后的ⅢB/C期和ⅣM1a/b期黑色素瘤患者進(jìn)行新抗原疫苗接種,在20~32個月隨訪中,4例進(jìn)入研究的ⅢB/C期患者仍沒有復(fù)發(fā),且2例ⅣM1b期疾病患者在接受pembrolizumab治療后得到完全緩解。
與黑色素瘤不同,膠質(zhì)母細(xì)胞瘤具有低突變負(fù)荷和低免疫性腫瘤微環(huán)境。 然而,Keskin等[25]對手術(shù)切除和放療后的新診斷膠質(zhì)母細(xì)胞瘤患者也進(jìn)行多表位個體化新抗原疫苗接種,結(jié)果顯示循環(huán)中腫瘤浸潤性T細(xì)胞增加,且外周血的新抗原特異性T細(xì)胞可以遷移到顱內(nèi)膠質(zhì)母細(xì)胞瘤腫瘤中,為新抗原疫苗可能改變膠質(zhì)母細(xì)胞瘤的免疫環(huán)境提供依據(jù)。
研究證實,肺癌存在多種免疫逃逸機(jī)制,高克隆新抗原與肺腺癌和鱗狀細(xì)胞癌的無病生存率相關(guān)[26]。一項轉(zhuǎn)移性肺癌患者進(jìn)行單臂、多中心的新抗原疫苗臨床研究(NCT02956551)表明,對入組12例患者總共進(jìn)行85次多表位新抗原樹突狀細(xì)胞疫苗接種,盡管患者沒有達(dá)到完全緩解,但疾病客觀緩解率(objective response rate,ORR)為25%,疾病控制率達(dá)到75%,mPFS為5.5個月,中位生存期為7.9個月,且患者接受新抗原疫苗產(chǎn)生不良反應(yīng)為1~2級[27],證實新抗原疫苗在肺癌中的有效性及安全性。國內(nèi)還有研究者利用全外顯子測序和計算機(jī)算法成功從3例非小細(xì)胞肺癌患者中篩選到強(qiáng)免疫原性新抗原,且研究者利用已從體外證實具有免疫原性的新抗原ACAD8-T105I、BCAR1-G23V 和 PLCG1-M425L對荷瘤小鼠進(jìn)行過繼性T細(xì)胞治療,結(jié)果提示新抗原特異性T細(xì)胞可延緩腫瘤生長[28]。
4 新抗原免疫治療的聯(lián)合療法
免疫檢查點(diǎn)抑制劑通過激活宿主免疫系統(tǒng)誘導(dǎo)腫瘤排斥反應(yīng),在過去的10多年在多種癌癥中取得了極大的成功。但是,免疫檢查點(diǎn)阻斷療法單一應(yīng)用在多數(shù)患者中獲益有限[29]。一項基于NEO-PV-01新抗原疫苗與程序性死亡受體1(programmed death-1,PD-1)抑制劑nivolumab聯(lián)合治療晚期黑色素瘤、非小細(xì)胞肺癌、膀胱癌晚期癌癥ⅠB期研究(NCT02897765)的結(jié)果表明,三種癌癥的ORR分別為59%、39%、27%,mPFS為23.5個月、8.5個月、5.8個月,明顯優(yōu)于抗PD-1抑制劑單藥應(yīng)用臨床數(shù)據(jù),且具備良好安全性[30-31]。
化療和靶向抗腫瘤藥物仍是臨床抗腫瘤治療的主力軍,可以導(dǎo)致免疫原性細(xì)胞死亡,啟動級聯(lián)反應(yīng),產(chǎn)生腫瘤特異性新抗原,增強(qiáng)樹突狀細(xì)胞細(xì)胞吞噬及抗原呈遞,提高新抗原疫苗效率[32-35]。如靶向抗血管生成藥物可以重塑腫瘤血管,使其正?;孓D(zhuǎn)血管內(nèi)皮生長因子誘導(dǎo)的單核細(xì)胞向樹突狀細(xì)胞分化的抑制作用,恢復(fù)癌癥患者外周血樹突狀細(xì)胞數(shù)量并促進(jìn)其活化,轉(zhuǎn)化免疫抑制微環(huán)境,增強(qiáng)新抗原遞呈,從而增強(qiáng)抗腫瘤免疫治療[36]。
免疫治療和放療被臨床證實為很好的“搭檔”。放療可誘導(dǎo)腫瘤細(xì)胞釋放更多的抗原,且放療可增強(qiáng)T細(xì)胞向腫瘤組織運(yùn)輸。有研究者利用三陰乳腺癌小鼠模型發(fā)現(xiàn),放療可增強(qiáng)免疫原性新抗原基因表達(dá),并引發(fā)CD8+和CD4+ T細(xì)胞反應(yīng),導(dǎo)致MHC -Ⅱ和死亡受體上調(diào),此外,新抗原特異性CD8+ T細(xì)胞優(yōu)先殺死輻射的腫瘤細(xì)胞,提供新抗原與放療聯(lián)合應(yīng)用可控制腫瘤證據(jù)[37]。1F3890C3-8A7A-49C8-B0DE-876920586D0F
5 展望
目前,基于腫瘤新抗原的免疫療法雖然仍在臨床試驗過程中,但捷報頻傳,以往“非同義突變”被認(rèn)為是新抗原主要來源。最新的實驗結(jié)果表明,融合基因新抗原具有更高的免疫原性,是癌癥免疫療法新興的靶標(biāo),可作為免疫檢查點(diǎn)療效的預(yù)后生物學(xué)標(biāo)志物[38],受到研究者的廣泛關(guān)注。然而結(jié)合本課題組的自身實踐,抗腫瘤新抗原療法仍有許多難題尚未得到有效解決:①常見實體瘤驅(qū)動基因突變產(chǎn)生的新抗原,其免疫原性較弱;②HLA等位基因型繁多,HLA限制性新抗原明確缺乏有效的預(yù)測手段,主流預(yù)測抗原與HLA親和力的數(shù)據(jù)庫,其預(yù)測效率不高,存在假陽性;③新抗原鑒定流程復(fù)雜,亟待優(yōu)化;④新抗原治療個體性強(qiáng),其治療成本較高,且無法普及等。而這些問題的解決一方面需要新興檢測技術(shù)的發(fā)展,另一方面可能需要如生物信息學(xué)技術(shù)、結(jié)構(gòu)生物學(xué)、藥物設(shè)計學(xué)等學(xué)科的交叉與融入,如通過機(jī)器學(xué)習(xí)大量HLA限制性新抗原數(shù)據(jù),確立有效的免疫應(yīng)答位點(diǎn);結(jié)合冷凍電鏡觀察不同新抗原HLA-TCR三者復(fù)合體的晶體結(jié)構(gòu),明確相互作用的關(guān)系;修飾新抗原使其更容易被CTL識別并針對靶細(xì)胞產(chǎn)生特異性免疫應(yīng)答等。上述問題的深入探討與研究將為新抗原療法臨床實踐的順利開展提供堅實的前期基礎(chǔ),期待新抗原將在今后的腫瘤治療中發(fā)揮不可或缺的重要地位。
[參考文獻(xiàn)]
[1]? ?World Health Organization (WHO). World cancer report 2020. 2020. URL: https://www.iarc.fr/cards_page/world-cancer-report/.
[2]? ?蘇萌,黃常新. 結(jié)直腸癌免疫治療的臨床研究及進(jìn)展[J].浙江臨床醫(yī)學(xué),2020,22(11):1689-1692.
[3]? ?Laumont CM,Vincent K,Hesnard L,et al. Noncoding regions are the main source of targetable tumor-specific antigens[J].Sci Transl Med,2018,10(470):eaau5516.
[4]? ?Prehn RT,Main JM. Immunity to methylcholanthrene-induced sarcomas[J].J Natl Cancer Inst,1957,18(6):769-778.
[5]? ?Wang P,Chen Y,Wang C. Beyond tumor mutation burden: Tumor neoantigen burden as a biomarker for immunotherapy and other types of therapy[J].Front Oncol,2021,11:672 677.
[6]? ?Zhu Y,Hu B,Zhang S,et al. Neoantigen detection in postoperative colorectal cancer patients by next-generation sequencing and liquid chromatography-mass spectrometry[J].J Med Imaging Health Inform,2020,10(12):2905-2912.
[7]? ?Zhu Y,Hu B,Xu L,et al. Tumor-specific nascent nine-peptide-epitopes prediction and bioinformatics characterization in human colorectal cancer[J].J Med Imaging Health Inform,2020,10(6):1338-1345.
[8]? ?Mcgranahan N,Swanton C. Neoantigen quality,not quantity[J].Sci Transl Med, 2019,11(506):eaax7918.
[9]? ?Richard G,Groot A,Steinberg GD,et al. Multi-step screening of neoantigens′ HLA-and TCR-interfaces improves prediction of survival[J].Sci Rep,2021,11(1):9983.
[10]? Lu YC,Robbins PF. Cancer immunotherapy targeting neoantigens[J].Semin Immunol,2016,28(1):22-27.
[11]? Hashimoto S,Noguchi E,Bando H,et al. Neoantigen prediction in human breast cancer using RNA sequencing data[J].Cancer Sci,2021,112(1):465-475.
[12]? Blass E,Ott PA. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines[J].Nat Rev Clin Oncol,2021,18(4):215-229.1F3890C3-8A7A-49C8-B0DE-876920586D0F
[13]? Wells DK,Van Buuren MM,Dang KK,et al. Key parameters of tumor epitope immunogenicity revealed through a consortium approach improve neoantigen prediction[J].Cell,2020,183(3):818-834.e13.
[14]? Huang C,Chen J,Ding F,et al. Related parameters of affinity and stability prediction of HLA-A*2402 restricted antigen peptides based on molecular docking[J].Ann Transl Med,2021,9(8):673.
[15]? Zhu Y,Huang C,Su M,et al. Characterization of amino acid residues of T-cell receptors interacting with HLA-A*02-restricted antigen peptides[J].Ann Transl Med,2021,9(6):495.
[16]? Bassani-Sternberg M,Brunlein E,Klar R,et al. Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry[J].Nat Commun,2016,7:13 404.
[17]? Verma A,Halder A,Marathe S,et al. A proteogenomic approach to target neoantigens in solid tumors[J].Expert Rev Proteomics,2020,17(11-12):797-812.
[18]? Kalaora S,Samuels Y. Cancer exome-based identification of tumor neo-antigens using mass spectrometry[J].Methods Mol Biol,2019,1884:203-214.
[19]? Gloger A, Ritz D, Fugmann T, et al. Mass spectrometric analysis of the HLA class I peptidome of melanoma cell lines as a promising tool for the identification of putative tumor-associated HLA epitopes[J].Cancer Immunol Immunother,2016,65(11):1377-1393.
[20]? Chen F,Zou Z,Du J,et al. Neoantigen identification strategies enable personalized immunotherapy in refractory solid tumors[J].J Clin Invest,2019,129(5):2056-2070.
[21]? Fang Y,Mo F,Shou J,et al.A Pan-cancer clinical study of personalized neoantigen vaccine monotherapy in treating patients with various types of advanced solid tumors[J].Clin Cancer Res,2020,26(17):4511-4520.
[22]? Wang-Gillam A,Li CP,Bodoky G,et al. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy(NAPOLI-1):A global, randomised, open-label, phase 3 trial[J].Lancet,2016,387(10 018):545-557.
[23]? Hu Z,Leet DE,Allese RL,et al. A. Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma[J].Nat Med,2021,27(3):515-525.
[24]? Ott PA,Hu Z,Keskin DB,et al. An immunogenic personal neoantigen vaccine for patients with melanoma[J].Nature,2017,547(7662):217-221.
[25]? Keskin DB,Anandappa AJ,Sun J,et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial[J].Nature,2019,565(7738):234-239.1F3890C3-8A7A-49C8-B0DE-876920586D0F
[26]? Rosenthal R,Cadieux EL,Salgado R,et al. Neoantigen-directed immune escape in lung cancer evolution[J].Nature,2019,567(7749):479-485.
[27]? Ding Z,Li Q,Zhang R,et al. Personalized neoantigen pulsed dendritic cell vaccine for advanced lung cancer[J].Signal Transduct Target Ther,2021,6(1):26.
[28]? Zhang W,Yin Q,Huang H,et al. Personal neoantigens from patients with NSCLC induce efficient antitumor responses[J].Front Oncol,2021,11:628 456.
[29]? Robert C. A decade of immune-checkpoint inhibitors in cancer therapy[J].Nat Commun,2020,11(1):3801.
[30]? Ott PA,Hu-Lieskovan S,Chmielowski B,et al. A phase Ib trial of personalized neoantigen therapy plus anti-PD-1 in patients with advanced melanoma,non-small cell lung cancer,or bladder cancer[J].Cell,2020,183(2):347-362.e24.
[31]? Zaidi N. Can personalized neoantigens raise the T cell bar[J].Cell,2020,183(2):301-302.
[32]? Pich O,Muios F,Lolkema MP,et al. The mutational footprints of cancer therapies[J].Nat Genet,2019,51(12):1732-1740.
[33]? Frk M,Krawczyk P, Kalinka E, et al. Molecular and clinical premises for the combination therapy consisting of radiochemotherapy and immunotherapy in non-small cell lung cancer patients[J].Cancers,2021,13(6):1222.
[34]? Luo Q,Zhang L,Luo C,et al. Emerging strategies in cancer therapy combining chemotherapy with immunotherapy[J].Cancer Lett,2019,454:191-203.
[35]? Jin MZ,Wang XP. Immunogenic cell death-based cancer vaccines[J].Front Immunol,2021,12:697 964.
[36]? Ntellas P,Mavroeidis L,Gkoura S,et al. Old player-new tricks:Non angiogenic effects of the VEGF/VEGFR pathway in cancer[J].Cancers,2020,12(11):3145.
[37]? Lhuillier C,Rudqvist NP,Yamazaki T,et al. Radiotherapy-exposed CD8+ and CD4+ neoantigens enhance tumor control[J].J Clin Invest,2021,131(5):e138 740.
[38]? Wang Y,Shi T,Song X,et al. Gene fusion neoantigens:Emerging targets for cancer immunotherapy[J].Cancer Lett,2021,506:45-54.
(收稿日期:2021-10-18)1F3890C3-8A7A-49C8-B0DE-876920586D0F