• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      堿改性生物炭-凹凸棒制備及其對(duì)水中磷的去除

      2022-07-04 09:15:52黃仁亮龍禹璇蘇榮欣2
      關(guān)鍵詞:凹凸棒玉米芯復(fù)合物

      黃仁亮,龍禹璇,肖 瑤,崔 美,蘇榮欣2,

      堿改性生物炭-凹凸棒制備及其對(duì)水中磷的去除

      黃仁亮1, 2,龍禹璇1,肖 瑤1,崔 美3,蘇榮欣2, 3

      (1. 天津大學(xué)環(huán)境科學(xué)與工程學(xué)院,天津 300072;2. 天津大學(xué)海洋科學(xué)與技術(shù)學(xué)院,天津 300072;3. 天津大學(xué)化工學(xué)院,天津 300072)

      磷是動(dòng)植物必不可少的營(yíng)養(yǎng)物質(zhì).然而,地表水中過(guò)量的磷會(huì)導(dǎo)致水生植物和藻類的快速生長(zhǎng).本研究通過(guò)氯化鎂對(duì)玉米芯殘?jiān)M(jìn)行改性,在無(wú)氧條件下高溫?zé)撇⑴c堿改性凹凸棒混合,制備了一種堿改性生物炭-凹凸棒土復(fù)合物(MgO-CB-AMAP).該堿改性生物炭具有高比表面積,達(dá)396.2m2/g,明顯高于直接煅燒制備的生物碳(132.7m2/g).進(jìn)一步,評(píng)價(jià)了MgO-CB-AMAP復(fù)合物對(duì)水中磷的吸附性能.結(jié)果表明:當(dāng)水中磷濃度5mg/L、玉米芯及凹凸棒的比例為1∶3、用量為2g/L時(shí),6h后磷去除率達(dá)91%,吸附量為9.7mg/g,均高于生物炭(3.6mg/g)和堿改性凹凸棒(6.1mg/g).最后,對(duì)MgO-CB-AMAP在模擬含磷污染水體中磷的吸附過(guò)程進(jìn)行了動(dòng)力學(xué)研究,該吸附過(guò)程符合準(zhǔn)二級(jí)動(dòng)力學(xué)模型.研究結(jié)果表明這種堿改性生物炭-凹凸棒土復(fù)合物在磷污染控制中有很好的應(yīng)用前景.

      磷;生物炭;玉米芯;凹凸棒;吸附

      水體富營(yíng)養(yǎng)化會(huì)引起一系列不良影響,例如促進(jìn)藻華形成并破壞水質(zhì)、減少漁業(yè)和水生作物產(chǎn)量、刺激溫室氣體排放等[1].大量研究表明:磷是湖泊水體富營(yíng)養(yǎng)化的限制性因子[2].因此,開發(fā)有效的技術(shù)去除水體中的磷對(duì)于水體富營(yíng)養(yǎng)化污染控制具有重要意義[3],也是落實(shí)可持續(xù)發(fā)展理念的重要手段[4].

      迄今為止,研究者已經(jīng)開發(fā)出許多方法去除磷,包括生物處理法[5]、化學(xué)沉淀法[6]和吸附法[7]等.其中,吸附法由于成本較低、工藝簡(jiǎn)單,被認(rèn)為是一種有效且經(jīng)濟(jì)可行的方法,尤其是在低磷濃度的水體環(huán)境中[8].常見的污染物吸附劑有活性炭[9]、黏土[10]、石墨烯[11-12]、沸石[13]、纖維素[14]和二氧化硅等[15],但對(duì)磷的吸附效率仍有待提高[16].生物炭具有發(fā)達(dá)的多孔結(jié)構(gòu)和豐富的官能團(tuán),這些特性使其成為環(huán)境友好型吸附劑[17],并且憑借其可再生、來(lái)源廣及高效的吸附能力被廣泛關(guān)注.

      用于制備生物炭的材料來(lái)源比較廣泛,農(nóng)業(yè)活動(dòng)產(chǎn)生的有機(jī)廢棄物如秸稈、稻草、糞便、木屑、果殼以及污泥等棄物均可以作為制備生物炭的原料[18].世界每年可產(chǎn)生1.3×109t農(nóng)業(yè)廢物[19],玉米芯是廉價(jià)且高產(chǎn)量的農(nóng)業(yè)廢料[20].使用玉米芯作為生物炭的原料應(yīng)用于富營(yíng)養(yǎng)化水體磷污染的治理,是一種非常有前景的方式.

      目前,已開發(fā)的磷吸附劑的生產(chǎn)過(guò)程普遍比較復(fù)雜,制備過(guò)程中還會(huì)產(chǎn)生廢水[21],這增加了磷吸附劑的成本.本研究采用氯化鎂(MgCl2)對(duì)玉米芯殘?jiān)M(jìn)行改性,在無(wú)氧條件下高溫煅燒制備得到MgO堿改性玉米芯生物炭(MgO-CB),并用NaOH對(duì)凹凸棒(attapulgite,AP)土進(jìn)行改性,高溫?zé)频玫綁A改性凹凸棒(AMAP).將MgO-CB和AMAP混合制得堿改性生物炭-凹凸棒復(fù)合物(MgO-CB-AMAP).進(jìn)一步,對(duì)該材料的形貌、晶體結(jié)構(gòu)和比表面積等進(jìn)行了表征,并評(píng)價(jià)水體中磷的吸附性能,優(yōu)化了復(fù)合物配比、用量等參數(shù),建立了磷吸附動(dòng)力學(xué).

      1 實(shí)驗(yàn)材料及方法

      1.1 材料與儀器

      玉米芯殘?jiān)?經(jīng)硫酸水解后去除木糖),購(gòu)自山東龍力生物科技股份有限公司;氯化鎂(MgCl2,分析純)、氫氧化鈉(分析純),購(gòu)自天津科密歐化學(xué)試劑有限公司;凹凸棒土,購(gòu)自天津元立化工有限公司,研磨后過(guò)100目篩;PBS磷酸鹽緩沖液,購(gòu)自天津艾克澤生物科技有限公司公司;總磷試劑,購(gòu)自哈希 公司.

      SK-G06123K-2-420真空管式爐,天津中環(huán)電爐股份有限公司;SW22振動(dòng)水浴槽,北京優(yōu)萊博技術(shù)有限公司;WGLL-65BE電熱鼓風(fēng)干燥箱,天津市泰斯特儀器有限公司;AS700型pH計(jì),亞速旺上海商貿(mào)有限公司.

      1.2 堿改性生物炭的制備

      將玉米芯殘?jiān)匀伙L(fēng)干,粉碎后用20目篩網(wǎng)(<0.85mm)篩分.將過(guò)篩后的玉米芯殘?jiān)?0℃的烘箱中烘干以達(dá)到恒定質(zhì)量.將玉米芯殘?jiān)c0.5mol/L的MgCl2以1g∶20mL的固液比進(jìn)行混合,并劇烈攪拌4h,抽濾后在60℃的烘箱中干燥12h以上達(dá)到恒重,再將其置于管式爐中以10℃/min的升溫速率加熱至600℃并保持1h,即得到堿玉米芯生物炭(MgO-CB).在高溫煅燒過(guò)程中,持續(xù)通入氮?dú)獗3譄o(wú)氧條件.此外,作為對(duì)照組,制備了未改性生物炭(CB).

      1.3 堿改性生物炭-凹凸棒土復(fù)合物制備

      取固體氫氧化鈉與凹凸棒土摩爾比為1∶1研磨,于馬弗爐中加熱至550℃并保持2h,冷卻至常溫,制備得到堿改性凹凸棒(AMAP).

      將MgO-CB和AMAP按不同質(zhì)量比(堿改性凹凸棒∶堿改性玉米芯=5∶1、3∶1、1∶1、1∶3或1∶5)混合得到堿改性生物炭-凹凸棒土復(fù)合物(MgO-CB-AMAP).

      1.4 結(jié)構(gòu)表征

      將一定量的不同生物炭添加到10mL去離子水中振蕩2h,離心后測(cè)量上清液的pH.用AUTOSORB IQ全自動(dòng)比表面積及孔隙度分析儀(美國(guó)安東帕康塔儀器公司)測(cè)定生物炭的Brunauer-Emmett-Teller(BET)比表面積.用 IRAffinity-1S傅里葉變換紅外光譜(FT-IR)光譜儀(日本株式會(huì)社島津制作所)分析生物炭的表面基團(tuán),掃描范圍400~4000cm-1.生物炭的晶體結(jié)構(gòu)通過(guò)D8-Focus X射線衍射儀(XRD,布魯克公司)測(cè)定.將干燥的樣品安裝在平坦的支架上,并用工作在40kV和40mA的Cu Kα源進(jìn)行檢測(cè).掃描速率為2°/min,掃描范圍(2值)為5°~90°.用Regulus 8100掃描電子顯微鏡(SEM,日本日立)測(cè)試生物炭的表面形貌.

      1.5 水體中磷吸附實(shí)驗(yàn)

      量取16mL 0.01mol/L磷酸緩沖液,用去離子水定容至1L,得到濃度為100mg/L的含磷水溶液.將40mg吸附劑(CB、MgO-CB或MgO-CB-AMAP)分別添加至100mL上述磷溶液中,并置于搖床中以150r/min振蕩6h后過(guò)0.45μm濾膜,采用USEPA1PhosVer?3消解-抗壞血酸法檢測(cè)濾液中總磷的濃度.

      1.6 分析計(jì)算

      水體中磷的去除率(%)和吸附容量(mg/g)按式(1)、式(2)計(jì)算.

      吸附動(dòng)力學(xué)按式(3)計(jì)算對(duì)應(yīng)的吸附量Q(mg/g).

      等溫吸附實(shí)驗(yàn)按式(4)計(jì)算平衡時(shí)的吸附量e(mg/g).

      2 結(jié)果與討論

      2.1 改性生物炭的結(jié)構(gòu)特性

      表1總結(jié)了CB、MgO-CB和AMAP的比表面積和平均孔徑.由表1可知,MgO-CB的BET比表面積為396.2m2/g,明顯高于CB(132.7m2/g)的值.與未處理的CB相比,MgO-CB的比表面積提高了近3倍.這是由于MgCl2對(duì)玉米芯中的碳水化合物具有很強(qiáng)的脫水能力,可增強(qiáng)揮發(fā)性物質(zhì)的釋放,并有助于在高溫?zé)峤膺^(guò)程中形成開孔[22].此外,堿改性凹凸棒的平均孔徑為78.2nm,遠(yuǎn)大于CB和MgO-CB,因此,將AMAP與MgO-CB按一定比例混合,探究對(duì)水中磷的吸附效率.

      表1 不同吸附材料的比表面積和孔徑

      堿改性凹凸棒(AMAP)和生物炭(CB、MgO-CB)的FT-IR光譜如圖1所示.堿改性凹凸棒的光譜圖在3600~3400cm-1處存在—OH振動(dòng)峰,歸因于凹凸棒表面的羥基及NaOH的改性處理[23].此外,凹凸棒具有Si—O振動(dòng)峰(720~1189cm-1),由于NaOH的加入,形成游離的Si—O—Si的振動(dòng).與未改性凹凸棒FT-IR光譜[24]比較,大部分特征峰位置接近,但AMAP在1621cm-1處羧基對(duì)稱振動(dòng)帶振幅明顯增大,可能是堿改性后結(jié)構(gòu)發(fā)生了改變.

      圖1(b)所示為CB和MgO-CB的紅外光譜圖,在3441cm-1處的譜峰與—OH的拉伸振動(dòng)相關(guān),而MgO-CB能帶強(qiáng)度較CB有所增強(qiáng),可能是MgO的附著抑制了纖維素的脫水[25].2380~2410cm-1區(qū)間內(nèi)的小峰表明存在C—H[26],1520~1760cm-1區(qū)間的峰表明存在芳族C=C拉伸和C=O拉伸或彎曲振動(dòng)[27],780~1130cm-1區(qū)間的峰歸因于C—O和芳香族C—H,這些基團(tuán)可能與玉米芯中的木質(zhì)素組分以及煅燒過(guò)程中不完全氧化有關(guān).

      圖1 堿改性凹凸棒和生物炭的紅外光譜圖

      堿改性凹凸棒和生物炭的XRD譜圖如圖2所示.堿改性凹凸棒的主要特征峰位置與文獻(xiàn)[23]報(bào)道的標(biāo)準(zhǔn)模擬曲線一致,凹凸棒土主要物相有坡縷石、白云石和石英.由圖2還可以看出,MgO-CB的譜圖與CB相比無(wú)明顯變化.在CB中可以觀察到28°、41°和50°處的峰,同時(shí)MgO-CB在41°處出現(xiàn)了明顯的特征峰[28],該特征峰對(duì)應(yīng)了MgO晶面,說(shuō)明MgO成功負(fù)載到生物炭表面,且MgO顆粒的負(fù)載并未破壞生物炭本身的晶體結(jié)構(gòu).

      圖2 堿改性凹凸棒和生物炭的XRD譜圖

      由圖3(a)可以看出,原始玉米芯表面較為平整,具有明顯的多層均質(zhì)薄片結(jié)構(gòu);高溫?zé)瞥缮锾亢笕鐖D3(b)所示,表面較平整,且孔較少;由圖3(c)可見,MgO-CB表面上覆蓋了MgO顆粒,且MgO顆粒分布均勻,且表面孔明顯增多;由圖3(d)可以看出,堿改性凹凸棒表面有堆積一些顆粒物,且出現(xiàn)了一些大孔.

      圖3 玉米芯、CB、MgO-CB和堿改性凹凸棒的SEM圖

      2.2 水中磷的吸附性能

      2.2.1 不同材料除磷效率對(duì)比

      為了研究不同吸附劑的磷吸附性能,測(cè)試了25℃時(shí),不同吸附劑的磷吸附量.將40mg不同吸附劑分別投加在100mL濃度為5mg/L的模擬磷廢水溶液中,吸附6h后測(cè)水中磷濃度.如圖4所示,CB、MgO-CB、AMAP和MgO-CB-AMAP(AMAP和堿改性玉米芯質(zhì)量比為3∶1)的吸附量分別為3.6、6.1、6.6和9.7mg/g.堿改性生物炭-凹凸棒復(fù)合物的吸附性能明顯優(yōu)于其他3種吸附劑,這是由于MgO負(fù)載在CB生物炭中,增強(qiáng)了材料的堿性,與溶液中的磷酸鹽結(jié)合,發(fā)生沉淀并固定在材料表面.同時(shí),復(fù)合材料中的CB和堿改性凹凸棒也具有一定的吸附 作用.

      圖4 不同吸附劑對(duì)磷的吸附

      2.2.2 吸附劑配比的影響

      為了研究MgO-CB-AMAP中AMAP與MgO-CB的比例對(duì)吸附性能的影響,測(cè)試了25℃時(shí)不同比例MgO-CB-AMAP吸附劑除磷效率.將0.2g不同配比的MgO-CB-AMAP吸附劑分別投入100mL濃度為5mg/L的模擬磷溶液,吸附時(shí)間為6h,實(shí)驗(yàn)結(jié)果如圖5所示.當(dāng)AMAP與堿改性玉米芯質(zhì)量比為3∶1時(shí),吸附性能最佳.該比例條件下的MgO-CB- AMAP對(duì)磷的去除率高達(dá)91%.繼續(xù)增加凹凸棒的比例,磷去除率反而下降,可能是過(guò)多的凹凸棒降低了MgO-CB 的比例,減弱了鎂與磷結(jié)合的化學(xué)吸附作用.同時(shí),過(guò)多的凹凸棒還可能會(huì)堵塞生物炭孔,使活性吸附位點(diǎn)減少,造成吸附效率下降[29].

      圖5 凹凸棒添加量對(duì)磷去除率的影響

      2.2.3 投加量的影響

      為了研究吸附過(guò)程中吸附材料的投加量對(duì)吸附性能的影響,測(cè)試了25℃時(shí)不同質(zhì)量的MgO-CB-AMAP對(duì)磷的吸附性能.分別稱取0.05g、0.06g、0.07g、0.08g、0.09g、0.1g、0.2gMgO-CB-AMAP投加到250mL敞口錐形瓶中,加入100mL濃度為5mg/L的總磷溶液,在160r/min條件下振蕩吸附6h,然后使用0.45μm濾膜抽濾取上清液測(cè)量吸光度,獲得總磷濃度,實(shí)驗(yàn)結(jié)果如圖6所示.

      圖6 MgO-CB-AMAP投加量與磷去除率的關(guān)系曲線

      當(dāng)MgO-CB-AMAP的投加量由0.05g增至0.1g時(shí),磷去除率快速上升至84.0%,當(dāng)吸附劑投加量由0.1g增加到0.2g時(shí),磷去除率增長(zhǎng)趨于平緩,由84.0%增長(zhǎng)至89.2%.結(jié)果表明對(duì)磷的吸附量隨著吸附劑投加量的提高,表現(xiàn)出先增大而后趨于平衡的趨勢(shì),這證明了MgO-CB-AMAP的劑量增加,提供了更多的活性位點(diǎn),有助于磷酸鹽的吸附.同時(shí)從經(jīng)濟(jì)成本角度看,當(dāng)投加量到達(dá)0.1g后,可以認(rèn)為除磷吸附反應(yīng)已達(dá)到平衡,繼續(xù)投入更多的吸附劑對(duì)吸附效率的提升不明顯.

      2.2.4 吸附時(shí)間的影響

      從圖7可以看出,兩種不同配比MgO-CB-AMAP吸附劑在模擬廢水中對(duì)總磷的吸附均在120min時(shí)基本達(dá)到平衡,磷去除率分別為69.6%和77.4%.在120min到1440min的時(shí)間段內(nèi),二者磷去除率分別緩慢增加至81.2%和82.2%.可知吸附除磷反應(yīng)在實(shí)驗(yàn)開始的前120min已經(jīng)基本達(dá)到平衡,隨著反應(yīng)的進(jìn)行,MgO-CB-AMAP吸附越來(lái)越多的磷并沉淀在材料表面,阻塞生物炭和凹凸棒的孔道,吸附反應(yīng)達(dá)到平衡,后續(xù)去除率大大降低.

      圖7 磷去除率隨吸附時(shí)間的變化

      2.2.5 pH的影響

      溶液pH值是影響固液界面總磷吸附的重要因素,不同初始pH 值(2.1~10.2)對(duì)于吸附磷的影響見圖8.在強(qiáng)酸強(qiáng)堿條件下,復(fù)合吸附劑對(duì)總磷的吸附效率較高.當(dāng)溶液的pH較低時(shí),由于靜電吸引,在吸附劑上形成的帶正電的表面部位有利于磷酸鹽的吸附,這種現(xiàn)象與大多數(shù)以前的研究是一致的[30-31],在酸性條件下,氧化物或氫氧化物對(duì)磷的吸附是有利的[32].結(jié)果表明,MgO-CB-AMAP具有很高的磷酸鹽吸附能力,pH值范圍為2~10,活性位點(diǎn)沒有受到很大影響,且該材料非常穩(wěn)定.

      圖8 不同pH對(duì)磷去除率的影響

      2.2.6 動(dòng)力學(xué)實(shí)驗(yàn)擬合分析

      為了探究生物炭的吸附機(jī)理,分別使用準(zhǔn)一級(jí)和準(zhǔn)二級(jí)動(dòng)力學(xué)模型對(duì)實(shí)驗(yàn)數(shù)據(jù)進(jìn)行擬合分析,具體見式(5)和(6).吸附動(dòng)力學(xué)曲線如圖9所示,可以看出前2h吸附速率較快,隨后下降趨于平衡.模擬所得參數(shù)如表2所示.偏差較大的點(diǎn)集中于初始吸附階段(0~100min),這可能是由于在初始階段,溶液中磷濃度變化非???,在實(shí)驗(yàn)過(guò)程中采集時(shí)間有一定 偏差.

      式中:是反應(yīng)時(shí)間,min;1、2分別是準(zhǔn)一級(jí)、準(zhǔn)二級(jí)動(dòng)力學(xué)模型常數(shù).

      由于準(zhǔn)二級(jí)模型方程相關(guān)系數(shù)較高(2>0.940),表明MgO-CB-AMAP吸附磷的過(guò)程主要是由化學(xué)吸附主導(dǎo).

      隨著時(shí)間的增長(zhǎng),總磷的吸附去除率逐漸升高,其中主要分為兩個(gè)階段:第1階段是前2h;第2階段是在2~6h之間時(shí),吸附速率迅速上升.在最初的2h內(nèi),磷濃度迅速?gòu)?mg/L降至0.45mg/L(去除率91%),在6h后濃度基本保持不變.

      圖9 MgO-CB-AMAP吸附磷的動(dòng)力學(xué)曲線

      在固液界面,當(dāng)MgO-CB與AMAP投加到總磷溶液中,磷通過(guò)靜電引力、范德華力、化學(xué)沉淀反應(yīng)等被迅速吸附在堿改性生物炭-凹凸棒表面,溶液中總磷濃度迅速下降,隨著吸附過(guò)程持續(xù)進(jìn)行,凹凸棒

      分子表明的內(nèi)孔道充分打開,也帶來(lái)總磷溶液濃度的下降,使得磷去除率逐漸升高.

      本文選用Langmuir、Freundlich等溫吸附模型(分別見式(7)和(8))對(duì)實(shí)驗(yàn)結(jié)果進(jìn)行了擬合,結(jié)果如圖10和表3所示.

      式中:max是最大飽和吸附量,mg/g;L是Langmuir常數(shù),L/mg;F是Freundlich常數(shù),mg /g;1/是等溫線常數(shù).

      由表3可知,Langmuir等溫吸附曲線的擬合相關(guān)性系數(shù)為0.931,具有較好的線性關(guān)系,說(shuō)明MgO-CB-AMAP對(duì)磷為單層化學(xué)吸附.

      圖10 MgO-CB-AMAP吸附磷的等溫吸附曲線

      表2 MgO-CB-AMAP吸附磷的動(dòng)力學(xué)參數(shù)

      表3 MgO-CB-AMAP吸附磷的熱力學(xué)參數(shù)

      3 結(jié) 論

      本文對(duì)玉米芯殘?jiān)M(jìn)行堿改性,并與堿改性凹凸棒復(fù)合,成功制備了一種堿改性生物炭-凹凸棒復(fù)合物(MgO-CB-AMAP),大大提升了生物炭對(duì)水中磷的吸附能力.主要結(jié)論如下.

      (1) 相較于未改性生物炭,堿改性生物炭的比表面積從132.7m2/g增至396.2m2/g,MgO和凹凸棒土的引入使得MgO-CB-AMAP的比表面積大幅提高.

      (2) 當(dāng)堿改性凹凸棒與堿改性玉米芯質(zhì)量比為3∶1時(shí),MgO-CB-AMAP對(duì)總磷的去除率高達(dá)91%,總磷含量從5mg/L顯著降低到0.45mg/L,最大飽和吸附量達(dá)16.5mg/g.該復(fù)合物通過(guò)靜電作用、范德華力等將磷吸附在其表面,由于其比表面積增大,表面吸附量增加;而負(fù)載在表面的MgO則通過(guò)沉淀進(jìn)一步增強(qiáng)了磷的吸附.

      (3) MgO-CB-AMAP對(duì)水中磷的吸附過(guò)程符合準(zhǔn)二級(jí)動(dòng)力學(xué)模型和Langmuir等溫吸附模型,表明MgO-CB-AMAP吸附磷的過(guò)程屬于化學(xué)吸附.

      [1] Chen Zhongli,F(xiàn)ang Fang,Shao Ying,et al. The biotransformation of soil phosphorus in the water level fluctuation zone could increase eutrophication in reservoirs[J]. Science of the Total Environment,2021,763:142976.

      [2] Krishna C K B,Aryal A,Jansen T. Comparative study of ground water treatment plants sludges to remove phosphorous from wastewater[J]. Journal of Environ-mental Management,2016,180:17-23.

      [3] 李智卓. 環(huán)境法視角下的環(huán)發(fā)協(xié)調(diào)[J]. 天津大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版),2019,21(2):97-105.

      Li Zhizhuo. Study on coordination between economic development and environmental protection from the perspective of environmental law[J]. Journal of Tianjin University(Social Sciences),2019,21(2):97-105(in Chinese).

      [4] 凌 欣,劉家沂. 論可持續(xù)發(fā)展理念在各國(guó)海洋環(huán)境立法中的典型性應(yīng)用[J]. 天津大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版),2019,21(2):114-119.

      Ling Xin,Liu Jiayi. On the typical application of the concept of sustainable development in marine environ-mental legislation around the world[J]. Journal of Tianjin University(Social Sciences),2019,21(2):114-119(in Chinese).

      [5] Zhao Fengliang,Yang Weidong,Zeng Zeng,et al. Nutrient removal efficiency and biomass production of different bioenergy plants in hypereutrophic water[J]. Biomass & Bioenergy,2012,42:212-218.

      [6] Yao Ying,Gao Bin,Chen Jianjun,et al. Engineered biochar reclaiming phosphate from aqueous solutions:Mechanisms and potential application as a slow-release fertilizer[J]. Environmental Science & Technology,2013,47(15):8700-8708.

      [7] Cui X Q,Dai X,Khan K Y,et al. Removal of phosphate from aqueous solution using magnesium-alginate/chitosan modified biochar microspheres derived from[J]. Bioresource Technology,2016,218:1123-1132.

      [8] Cordell D,Rosemarin A,Schroder J J,et al. Towards global phosphorus security:A systems framework for phosphorus recovery and reuse options[J]. Chemos-phere,2011,84(6):747-758.

      [9] Guo Zizhang,Zhang Xudong,Kang Yan,et al. Biomass-derived carbon sorbents for Cd(Ⅱ)removal:Activation and adsorption mechanism[J]. ACS Sustain-able Chemistry & Engineering,2017,5(5):4103-4109.

      [10] Hedan S,Hubert F,Prêt D,et al. Measurement of the elastic properties of swelling clay minerals using the digital image correlation method on a single macro-scopic crystal[J]. Applied Clay Science,2015,116/117:248-256.

      [11] Li X G,Elgarhy A H,Hassan M E,et al. Removal of inorganic and organic phosphorus compounds from aqueous solution by ferrihydrite decoration onto graphene [J]. Environmental Monitoring and Assessment,2020,192:410.

      [12] 袁才登,楊 嵐,趙 萌,等. 聚苯乙烯/石墨烯微球的制備及其對(duì)有機(jī)污染物的吸附[J]. 天津大學(xué)學(xué)報(bào)(自然科學(xué)與工程技術(shù)版),2018,51(12):1296-1302.

      Yuan Caideng,Yang Lan,Zhao Meng,et al. Preparation of polystyrene/graphene microspheres and its adsorption to organic pollutants[J]. Journal of Tianjin University(Science and Techelogy),2018,51(12):1296-1302(in Chinese).

      [13] Derikvandi N E. Comprehensive study on enhanced photocatalytic activity of heterojunction ZnS-NiS/zeolite nanoparticles:Experimental design based on response surface methodology(RSM),impedance spectroscopy and GC-MASS studies[J]. Journal of Colloid and Interface Science,2017,490:652-664.

      [14] Zhai Yuanyuan,Qu Hongmei,Li Zhongxuan,et al. Rapid and efficient adsorption removal of reactive Blue 4 from aqueous solution by cross-linked microcrystalline cellulose-epichlorohydrin polymers:Isothermal,ki-netic,and thermodynamic study[J]. Transactions of Tianjin University,2021,27(1):77-86.

      [15] Mourhly A,Khachani M,Hamidi A E,et al. The synthesis and characterization of low-cost mesoporous silica SiO2from local pumice rock[J]. Nanomaterials and Nanotechnology,2015,5:35.

      [16] Wang Xin,F(xiàn)eng Jinghua,Cai Yawen,et al. Porous biochar modified with polyethyleneimine(PEI)for effective enrichment of U(VI) in aqueous solution[J]. Science of the Total Environment,2020,708:134575.

      [17] Yin Qianqian,Wang Ruikun,Zhao Zhenghui. Applica-tion of Mg-Al-modified biochar for simultaneous removal of ammonium,nitrate,and phosphate from eutrophic water[J]. Journal of Cleaner Production,2018,176:230-240.

      [18] Hoslett J,Ghazal H,Ahmad D,et al. Removal of copper ions from aqueous solution using low temperature biochar derived from the pyrolysis of municipal solid waste[J]. Science of the Total Environment,2019,673:777-789.

      [19] Gustavsson J,Stage J. Retail waste of horticultural products in Sweden[J]. Resources Conservation and Recycling,2011,55(5):554-556.

      [20] Tseng R L,Tseng S K. Pore structure and adsorption performance of the KOH-activated carbons prepared from corncob[J]. Journal of Colloid and Interface Science,2005,287(2):428-437.

      [21] Yin Hongbin,Yang pan,Kong Ming,et al. Prepara-tion of the lanthanum-aluminum-amended attapulgite composite as a novel inactivation material to immobilize phosphorus in lake sediment[J]. Environmental Science & Technology,2020,54(18):11602-11610.

      [22] Liu Wujun,Jiang Hong,Tian Ke,et al. Mesoporous carbon stabilized MgO nanoparticles synthesized by pyrolysis of MgCl2preloaded waste biomass for highly efficient CO2capture[J]. Environmental Science & Technology,2013,47(16):9397-9403.

      [23] Boudriche L,Calvet R,Hamdi B,et al. Effect of acid treatment on surface properties evolution of attapulgite clay:An application of inverse gas chromatography[J]. Colloids and Surfaces A—Physicochemical and Engi-neering Aspects,2011,392(1):45-54.

      [24] Niu Zhiwei,F(xiàn)an Qiaohui,Wang Wenhua,et al. Effect of pH,ionic strength and humic acid on the sorption of uranium(Ⅵ)to attapulgite[J]. Applied Radiation and Isotopes,2009,105(3):1582-1590.

      [25] Takaya C A,F(xiàn)letcher L A,Singh S,et al. Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes[J]. Chemosphere,2016,145:518-527.

      [26] Budai A,Calucci L,Rasse D P,et al. Effects of pyrolysis conditions on Miscanthus and corncob chars:Characterization by IR,solid state NMR and BPCA analysis[J]. Journal of Analytical and Applied Pyroly-sis,2017,128:335-345.

      [27] Vu T M,Trinh V T,Doan D P,et al. Removing ammonium from water using modified corncob-biochar[J]. Science of the Total Environment,2017,579:612-619.

      [28] Hao Fanghua,Zhao Xuchen,Ouyang Wei,et al. Molecular structure of corncob-derived biochars and the mechanism of atrazine sorption[J]. Agronomy Journal,2013,105(3):773-782.

      [29] Yin Hongbin,Ren Chao,Li Wei. Introducing hydrate aluminum into porous thermally-treated calcium-rich attapulgite to enhance its phosphorus sorption capacity for sediment internal loading management[J]. Chemical Engineering Journal,2018,348:704-712.

      [30] Gan Fangqun,Zhou Jianmin,Wang Huoyang,et al. Removal of phosphate from aqueous solution by thermally treated natural palygorskite[J]. Water Re-search,2009,43(11):2907-2915.

      [31] Mucci M,Maliaka V,Noyma N P,et al. Assessment of possible solid-phase phosphate sorbents to mitigate eutrophication:Influence of pH and anoxia[J]. Science of the Total Environment,2018,619:1431-1440.

      [32] Xu Rui,Zhang Meiyi,Mortimer,et al. Enhanced phosphorus locking by novel lanthanum/aluminum-hydroxide composite:Implications for eutrophication control[J]. Environmental Science & Technology,2017,51(6):3418-3425.

      Alkali Modification of Biochar and Attapulgite for the Removal of Phosphorus from Water

      Huang Renliang1, 2,Long Yuxuan1,XiaoYao1,Cui Mei3,Su Rongxin2, 3

      (1. School of Environmental Science and Engineering,Tianjin University,Tianjin 300072,China;2. School of Marine Science and Technology,Tianjin University,Tianjin 300072,China;3. School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China)

      Phosphorus is an essential nutrient for plants and animals. However,excessive phosphorus in the surface water can cause the explosive growth of aquatic plants and algae. In this study,a composite of MgO-modified biochar(MgO-CB)and alkali-modified attapulgite composite(AMAP)was prepared by modification of corncob residues by magnesium chloride,calcination at high temperature under anaerobic conditions,and then mixing with alkali-modified attapulgite. The as-prepared composite(MgO-CB-AMAP)has a specific surface area of 396.2m2/g,which is significantly higher than that of CB(132.7m2/g). Meanwhile,the adsorption performance of MgO-CB-AMAP to the phosphorus in water was evaluated. The results showed that the removal efficiency reached 91% and the adsorption capacity was 9.7mg/g after 6h,when the concentration of phosphorus was 5mg/L,the ratio of corncob to attapulgite residues was 1∶3,and the dosage was 2g/L. The adsorption capacity of MgO-CB-AMAP was higher than that of CB(3.6mg/g)and alkali-modified attapulgite(6.1mg/g). Finally,the adsorption kinetics of MgO-CB-AMAP in the simulated wastewater containing phosphorus was studied. The adsorption process was in accordance with the pseudo-second-order kinetic model. The results showed that MgO-CB-AMAP has a good potential for the removal of phosphorus from water.

      phosphorus;biochar;corncob;attapulgite;adsorption

      X524

      A

      0493-2137(2022)09-0919-08

      10.11784/tdxbz202103048

      2021-03-24;

      2021-04-15.

      黃仁亮(1985— ),男,博士,副教授.

      黃仁亮,tjuhrl@tju.edu.cn.

      國(guó)家自然科學(xué)基金資助項(xiàng)目(21976132).

      the National Natural Science Foundation of China(No. 21976132).

      (責(zé)任編輯:田 軍)

      猜你喜歡
      凹凸棒玉米芯復(fù)合物
      BeXY、MgXY(X、Y=F、Cl、Br)與ClF3和ClOF3形成復(fù)合物的理論研究
      巴斯夫改進(jìn)凹凸棒土添加劑供應(yīng) 滿足各主要市場(chǎng)日益增長(zhǎng)的需求
      上海建材(2019年3期)2019-02-13 12:12:42
      柚皮素磷脂復(fù)合物的制備和表征
      中成藥(2018年7期)2018-08-04 06:04:18
      黃芩苷-小檗堿復(fù)合物的形成規(guī)律
      中成藥(2018年3期)2018-05-07 13:34:18
      白銀地區(qū)玉米芯金針菇高產(chǎn)栽培技術(shù)
      農(nóng)科問(wèn)答
      改性凹凸棒土對(duì)軟質(zhì)聚氯乙烯中增塑劑抽出性的影響
      凹凸棒土填充EPDM性能研究
      得閑愛搓玉米芯
      雙水相超聲波法輔助提取甜玉米芯多酚及抑菌性研究
      邢台市| 鄄城县| 周口市| 安泽县| 新丰县| 大厂| 建德市| 德令哈市| 肃南| 新乐市| 镇赉县| 萝北县| 江源县| 竹溪县| 桦川县| 和林格尔县| 信丰县| 北宁市| 二连浩特市| 建湖县| 余姚市| 中宁县| 岐山县| 和顺县| 新河县| 青河县| 昭平县| 吉安市| 民和| 津市市| 双城市| 曲松县| 永清县| 织金县| 永川市| 青岛市| 牟定县| 从化市| 通渭县| 饶河县| 岢岚县|