萬磊 劉健 黃傳兵 趙磊 孫廣瀚 朱子衡 李舒 馬熙檬 胡賽賽 李方澤 程靜 陳瑩瑩 LI Zheng
【摘 要】 風(fēng)濕病發(fā)病機(jī)制目前尚不明確,N6-甲基腺苷(m6A)甲基化修飾可能參與風(fēng)濕病發(fā)生、發(fā)展過程。m6A甲基化通過甲基轉(zhuǎn)移酶、去甲基化酶、閱讀蛋白調(diào)節(jié)器識別和結(jié)合m6A位點(diǎn),使m6A修飾的RNA發(fā)揮特定作用。m6A甲基化通過對免疫系統(tǒng)的影響,調(diào)控免疫細(xì)胞參與風(fēng)濕病的過程,從而參與風(fēng)濕病的修飾作用。探討m6A甲基化修飾與風(fēng)濕病之間的關(guān)聯(lián),以期為風(fēng)濕病領(lǐng)域的未來診治提供方向。
【關(guān)鍵詞】 風(fēng)濕病;N6-甲基腺苷;甲基化修飾;免疫細(xì)胞;關(guān)節(jié)炎
N6-甲基腺苷(m6A)是真核生物mRNA中最常見的內(nèi)部修飾,RNA甲基化除了揭示修飾過程外,相關(guān)研究還探索RNA甲基化與各種疾病發(fā)生、發(fā)展的關(guān)系[1-3]。m6A甲基化修飾有3類調(diào)節(jié)器,甲基轉(zhuǎn)移酶(MTC),負(fù)責(zé)催化;去甲基化酶(Demethylase),負(fù)責(zé)去除甲基化;閱讀蛋白(Binding Proteins),直接識別和結(jié)合m6A位點(diǎn),使m6A修飾的RNA發(fā)揮特定的作用。m6A甲基化與多種疾病尤其是風(fēng)濕病的發(fā)生、發(fā)展密切相關(guān)[4]。本文將從描述m6A甲基化的具體機(jī)制及其與免疫反應(yīng)之間的聯(lián)系,在現(xiàn)有研究基礎(chǔ)上提出m6A甲基化修飾與風(fēng)濕病發(fā)病機(jī)制之間的關(guān)聯(lián),討論風(fēng)濕病領(lǐng)域的未來診治發(fā)展方向。
1 m6A甲基化酶
1.1 m6A甲基轉(zhuǎn)移酶 m6A甲基轉(zhuǎn)移酶促進(jìn)m6A對RNA的甲基化修飾,其編碼基因被稱為Writers。m6A甲基轉(zhuǎn)移酶包括METTL3、METTL14和Wilms腫瘤1相關(guān)蛋白(WTAP)。在m6A的甲基轉(zhuǎn)移酶中,METTL3具有重要的功能。METTL3功能包括mRNA前體剪接、核輸出、翻譯調(diào)控、mRNA降解和miRNA加工等[5]。METTL14能穩(wěn)定METTL3并識別靶RNA[6-7]。METTL14和METTL3的結(jié)合在一定程度上促進(jìn)了METTL3對m6A的識別。METTL3是唯一具有體外催化活性的亞基。全長多肽甲基化與METTL3和METTL14催化堿位點(diǎn)的點(diǎn)突變密切相關(guān)。METTL3和METTL14之間存在廣泛的作用,這對于穩(wěn)定2個(gè)結(jié)構(gòu)域的結(jié)構(gòu)以及結(jié)構(gòu)域間的協(xié)調(diào)十分重要。WTAP參與細(xì)胞周期的調(diào)節(jié)、細(xì)胞增殖和細(xì)胞凋亡。研究表明,WTAP與腫瘤細(xì)胞的惡性度有關(guān),在病變組織中明顯變化,并引起細(xì)胞的遷移能力增加[8-9]。說明WTAP在增殖和侵襲能力中起著至關(guān)重要的作用[10-11]。
1.2 m6A去甲基化酶 m6A去甲基化酶稱為Erasers,它是RNA中去除m6A甲基化基團(tuán)。m6A去甲基化酶包括FTO和ALKHB5等。FTO通過抑制RNA剪接因子(SRSF2)在剪接位點(diǎn)的結(jié)合控制mRNA剪接[12]。然而,當(dāng)FTO被識別為RNA脫甲基酶時(shí),發(fā)現(xiàn)它具有控制生物過程各個(gè)方面的作用。FTO能在某些腫瘤細(xì)胞的增殖和凋亡以及葡萄糖和脂質(zhì)代謝中起作用[13-14]。FTO還可以作用于炎癥免疫細(xì)胞,抑制炎癥細(xì)胞因子的釋放,緩解炎癥性疾病如關(guān)節(jié)炎的發(fā)生[15]。ALKBH5是另外一種m6A去甲基化酶,在許多惡性腫瘤中調(diào)節(jié)轉(zhuǎn)錄修飾并維持mRNA穩(wěn)定性[16]。ALKBH5主要參與m6A的去甲基化修飾,并在mRNA成核和其他代謝過程中發(fā)揮作用。m6A修飾的功能涉及調(diào)節(jié)環(huán)狀RNA、長鏈非編碼RNA(lncRNA)以影響疾病的發(fā)展[17]。
1.3 m6A甲基化閱讀器 閱讀器通過與RNA中的m6A甲基化位點(diǎn)結(jié)合發(fā)揮特定作用,其編碼基因被稱為閱讀器。在人類基因組中有5種含有YTH結(jié)構(gòu)域的蛋白質(zhì):YTHDC1、YTHDC2、YTHDF1、YTMDF2和YTHDF3。YTHDC1通過與YTHDC2結(jié)合促進(jìn)RNA降解。YTHDC1位于細(xì)胞核中,而YTHDC2和YTHDF2位于細(xì)胞質(zhì)中。YTHDC1影響細(xì)胞中pre-mRNA轉(zhuǎn)錄物的加工,并直接影響母細(xì)胞的成熟[18]。YTHDC2選擇性地與m6A的共有基序結(jié)合。YTHDC2的高表達(dá)可能提高了其靶標(biāo)的翻譯效率。YTHDF1不僅參與mRNA翻譯,其直接靶向YTHDF1或與某些癌細(xì)胞中的翻譯起始因子結(jié)合,而且還參與新抗原特異性免疫。YTHDF2使某些生物過程中的關(guān)鍵基因轉(zhuǎn)錄物不穩(wěn)定。此外,YTHDF2敲除導(dǎo)致肺癌細(xì)胞增生[19]。某些信號通路和m6A修飾之間的功能性存在聯(lián)系[20-22]。YTHDF3通過lncRNA、GAS5和YTHDF3之間的負(fù)反饋環(huán)識別m6A修飾的GAS5誘導(dǎo)GAS5衰變。
2 m6A甲基化對免疫系統(tǒng)的影響
2.1 影響炎癥性巨噬細(xì)胞極化 巨噬細(xì)胞作為天然免疫的重要組成部分,可分為M1型巨噬細(xì)胞和M2型巨噬細(xì)胞。M1、M2型巨噬細(xì)胞的表型調(diào)節(jié)各種生理和病理過程。巨噬細(xì)胞中METTL3介導(dǎo)的m6A甲基化可能成為治療炎癥性疾病的潛在抗炎靶點(diǎn)。研究表明,m6A甲基轉(zhuǎn)移酶METTL3促進(jìn)M1巨噬細(xì)胞極化,從而發(fā)揮促炎作用[23]。METTL3直接甲基化STAT1的mRNA,STAT1是啟動促炎性巨噬細(xì)胞的關(guān)鍵轉(zhuǎn)錄因子,并增強(qiáng)mRNA的穩(wěn)定性,上調(diào)STAT1表達(dá)和促進(jìn)M1巨噬細(xì)胞極化。METTL3在氧化低密度脂蛋白誘導(dǎo)的單核細(xì)胞炎癥中發(fā)揮作用。在人單核細(xì)胞中,m6A甲基轉(zhuǎn)移酶METTL3和閱讀蛋白YTHDF2共同影響上皮細(xì)胞-間充質(zhì)轉(zhuǎn)化、線粒體形態(tài),從而增強(qiáng)單核-巨噬細(xì)胞表達(dá)[24-25]。研究發(fā)現(xiàn),巨噬細(xì)胞經(jīng)LPS刺激后YTHDF2表達(dá)水平上調(diào)。YTHDF2的敲除有助于mRNA促炎因子水平的下調(diào)[26]。因此,m6A甲基化修飾在預(yù)防炎癥反應(yīng)中的功能,為免疫炎癥性疾病提供了一個(gè)潛在的治療靶點(diǎn)。
2.2 影響免疫性T細(xì)胞穩(wěn)態(tài) m6A對免疫性T細(xì)胞的穩(wěn)態(tài)和分化穩(wěn)定性有顯著影響。研究發(fā)現(xiàn),如果T細(xì)胞中缺乏m6A甲基轉(zhuǎn)移酶METTL3,則T細(xì)胞的穩(wěn)態(tài)很容易被破壞[27]。在穩(wěn)定狀態(tài)下檢測METTL3敲除小鼠的免疫細(xì)胞發(fā)現(xiàn),在脾臟和淋巴結(jié)中發(fā)現(xiàn)異常T細(xì)胞,并且淋巴結(jié)中幼稚T細(xì)胞數(shù)量增加。m6A甲基化修飾在T細(xì)胞分化中起重要作用。在非小細(xì)胞肺癌中,CD8+ T細(xì)胞和METTL3依賴于YTHDC1參與其甲基化修飾的過程。輔助T細(xì)胞(Th)1和Th17細(xì)胞在METTL3缺陷的初始T細(xì)胞中減少,Th2細(xì)胞增加,而調(diào)節(jié)性T細(xì)胞保持不變[28-29]。m6A介導(dǎo)的關(guān)鍵轉(zhuǎn)錄本降解也在T細(xì)胞穩(wěn)態(tài)和白細(xì)胞介素(IL)-7誘導(dǎo)分化的控制中發(fā)揮作用[30]。
2.3 影響其他免疫應(yīng)答和調(diào)控 樹突狀細(xì)胞(DC)是一種特殊的抗原呈遞細(xì)胞(APC)。研究表明,在抑制m6A修飾后,DC活化和促進(jìn)CD4+ T細(xì)胞增殖的功能下降[31]。在DC成熟期間,METTL3催化CD40、CD80和TIRAP中的m6A,通過增加翻譯效率和促進(jìn)T細(xì)胞活化的功能促進(jìn)DC活化。m6A在天然免疫應(yīng)答和免疫調(diào)控中起著重要的作用。DC中YTHDF1的缺失增強(qiáng)了體內(nèi)腫瘤抗原的呈遞和CD8+ T細(xì)胞的交叉增殖[32]。YTHDF1區(qū)分DC中m6A相關(guān)mRNA表達(dá)。m6A標(biāo)記的mRNAs和YTHDF1之間的結(jié)合促進(jìn)溶酶體蛋白酶的翻譯,從而抑制吞噬的腫瘤新抗原的呈遞。m6A甲基化修飾過程是一種新的免疫應(yīng)答和調(diào)控機(jī)制。
3 m6A甲基化修飾在風(fēng)濕病中的作用
m6A甲基化修飾可參與類風(fēng)濕關(guān)節(jié)炎(rheumatoid arthritis,RA)、骨關(guān)節(jié)炎(osteoarthritis,OA)、系統(tǒng)性紅斑狼瘡(systemic lupus erythe-matosus,SLE)等疾病過程。m6A可能通過調(diào)節(jié)免疫系統(tǒng)對RA的發(fā)生和發(fā)展具有潛在影響作用。研究表明,m6A甲基化相關(guān)酶METTL14、FTO、ALKBH5、YTHDF1和YTHDF2蛋白在RA中表達(dá)升高[33]。且相關(guān)性分析顯示,METTL3表達(dá)增加與CRP和ESR水平呈正相關(guān)。m6A還可能通過調(diào)節(jié)細(xì)胞因子參與RA相關(guān)疾病過程[34]。研究發(fā)現(xiàn),采用m6A修飾的RNA免疫沉淀序列(m6A-seq)和RNA序列(RNA-seq)進(jìn)行鑒定,在用腫瘤壞死因子-α刺激后,人RA成纖維細(xì)胞樣滑膜細(xì)胞系MH7A中差異表達(dá)的m6A甲基化[35]。WTAP、RIPK2、JAK3和TNFRSF10A的驗(yàn)證與m6A和RNA測序結(jié)果一致。說明RNA甲基化修飾與RA相關(guān)基因之間的潛在關(guān)系。結(jié)果提示m6A修飾與RA的發(fā)生和病程有一定的相關(guān)性。
OA是以疼痛、僵硬和活動困難為特征的關(guān)節(jié)病[36]。OA涉及完整性、遺傳易感性、局部炎癥、機(jī)械力和其他細(xì)胞生化過程。關(guān)節(jié)軟骨損傷可能導(dǎo)致退行性O(shè)A,其中涉及多種因素,包括對軟骨各種成分的炎癥反應(yīng)。m6A甲基化修飾可參與OA過程。研究顯示,用IL-1β處理OA軟骨細(xì)胞后,METTL3 mRNA的豐度和m6A甲基化mRNA的比率總mRNA增強(qiáng)。METTL3的干擾降低了IL-1β誘導(dǎo)的細(xì)胞凋亡比例,抑制了IL-1β誘導(dǎo)的炎癥細(xì)胞因子水平增加和軟骨細(xì)胞中核轉(zhuǎn)錄因子-κB信號傳導(dǎo)的激活[37]。METTL3的破壞通過降低OA基質(zhì)金屬蛋白酶-13和膠原蛋白的表達(dá)水平,以及提高蛋白聚糖和Coll Ⅱ的表達(dá)水平改善ECM破壞。因此,m6A可能通過調(diào)節(jié)細(xì)胞因子參與OA發(fā)生、發(fā)展過程。
LUO等[38]研究發(fā)現(xiàn),在SLE患者中觀察到MTEEL14、ALKBH5和YTHDF2的mRNA表達(dá)降低。METTL14 mRNA表達(dá)降低與白細(xì)胞計(jì)數(shù)和單核細(xì)胞計(jì)數(shù)相關(guān),ALKBH5 mRNA表達(dá)降低與C反應(yīng)蛋白、中性粒細(xì)胞百分比、淋巴細(xì)胞百分比、中性粒細(xì)胞-淋巴細(xì)胞比率、補(bǔ)體C3和發(fā)熱,以及YTHDF2 mRNA表達(dá)的降低與淋巴細(xì)胞百分比、中性粒細(xì)胞-淋巴細(xì)胞比率、補(bǔ)體C3和發(fā)熱有關(guān)。此外,SLE患者PBMC中METTL14、ALKBH5與YTHDF2的mRNA表達(dá)呈正相關(guān)。回歸分析顯示,YTHDF2 mRNA表達(dá)降低是SLE的危險(xiǎn)因素。研究結(jié)果表明,與疾病活動相關(guān)的YTHDF2減少可能在SLE的發(fā)病機(jī)制中起重要作用,METTL14和ALKBH5可能同時(shí)減少。
LUO等[39]通過定量逆轉(zhuǎn)錄-聚合酶鏈反應(yīng)測定外周血中m6A甲基轉(zhuǎn)移酶(METTL3、MTEEL14和WTAP)、去甲基轉(zhuǎn)移酶(FTO和ALKBH5)和閱讀蛋白(YTHDF2)的mRNA水平,結(jié)果表明,SLE患者外周血中METTL3、WTAP、FTO、ALKBH5和YTHDF2的mRNA水平顯著降低,ALKBH5 mRNA水平與抗ds-DNA抗體、抗核小體、皮疹和潰瘍有關(guān)。此外,SLE患者中m6A甲基轉(zhuǎn)移酶(METTL3和WTAP)、去甲基轉(zhuǎn)移酶(FTO和ALKBH5)和閱讀蛋白(YTHDF2)之間存在正相關(guān)。提示外周血ALKBH5 mRNA水平可能參與了SLE的發(fā)病機(jī)制。
綜上所述,m6A甲基化修飾通過調(diào)控免疫細(xì)胞參與風(fēng)濕病的過程。目前,已有研究提供了RNA甲基化與風(fēng)濕病發(fā)病機(jī)制之間關(guān)系的證據(jù)。但是,m6A與疾病的相關(guān)性研究較少,缺乏深入的研究和分析。因此,m6A甲基化與風(fēng)濕病之間的關(guān)系仍需進(jìn)一步研究。
參考文獻(xiàn)
[1] ZHANG M,WU J,ZHONG W,et al.DNA-methylation-induced silencing of DIO3OS drives non-small cell lung cancer progression via activating hnRNPK-MYC-CDC25A axis[J].Mol Ther Oncolytics,2021,23(1):205-219.
[2] GAO Y,OUYANG X,ZUO L,et al.R-2HG downregulates ERalpha to inhibit cholangiocarcinoma via the FTO/m6A-methylated ERalpha/miR16-5p/YAP1 signal pathway[J].Mol Ther Oncolytics,2021,23(1):65-81.
[3] YU H,PU Q,WENG Z,et al.DNAzyme based three-way junction assay for antibody-free detection of locus-specific N6-methyladenosine modifications[J].Biosens Bioelectron,2021,194(15):113625.
[4] XIE Z,WANG Q,HU S.Coordination of PRKCA/PRKCA-AS1 interplay facilitates DNA methyltransferase 1 recruitment on DNA methylation to affect protein kinase C alpha transcription in mitral valve of rheumatic heart disease[J].Bioengineered,2021,12(1):5904-5915.
[5] ZOU J,ZHONG X,ZHOU X,et al.The m6A methyltransferase METTL3 regulates proliferation in esophageal squamous cell carcinoma[J].Biochem Biophys Res Commun,2021,580(26):48-55.
[6] WENG H,HUANG H,WU H,et al.METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m6A modifific-ation[J].Cell Stem Cell,2018,22(2):191-205.
[7] ZHANG B,JIANG H,DONG Z,et al.The critical roles of m6A modification in metabolic abnormality and cardiovascular diseases[J].Genes Dis,2020,8(6):746-758.
[8] CHEN Y,PENG C,CHEN J,et al.WTAP facilitates progression of hepatocellular carcinoma via m6A-hur-dependent epigenetic silencing of ETS1[J].Mol Cancer,2019,18(1):127.
[9] GE Y,LING T,WANG Y,et al.Degradation of WTAP blocks antiviral responses by reducing the m6A levels of IRF3 and IFNAR1 mRNA[J].EMBO Rep,2021,22(11):e52101.
[10] WEI W,SUN J,ZHANG H,et al.Circ0008399 interaction with WTAP promotes assembly and activity of the m6A methyltransferase complex and promotes cisplatin resistance in bladder cancer[J].Cancer Res,2021,81(24):6142-6156.
[11] YU HL,MA XD,TONG JF,et al.WTAP is a prognostic marker of high-grade serous ovarian cancer and regulates the progression of ovarian cancer cells[J].Onco Targets Ther,2019,12(6):6191-6201.
[12] ZHAO X,YANG Y,SUN BF,et al.FTO-Dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis[J].Cell Res,2014,24(12):1403-1419.
[13] CHENG L,YU P,LI F,et al.Human umbilical cordderived mesenchymal stem cell-exosomal miR-627-5p ameliorates nonalcoholic fatty liver disease by repressing fto expression[J].Hum Cell,2021,34(6):1697-1708.
[14] LIU S,HUANG M,CHEN Z,et al.FTO promotes cell proliferation and migration in esophageal squamous cell carcinoma through up-regulation of MMP13[J].Exp Cell Res,2020,389(1):111894.
[15] LUO J,WANG F,SUN F,et al.Targeted inhibition of FTO demethylase protects mice against LPS-induced septic shock by suppressing NLRP3 inflammasome[J].Front Immunol,2021,12(4):663295.
[16] ZHANG S,ZHAO BS,ZHOU A,et al.m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program[J].Cancer Cell,2017,31(4):591-606.
[17] DERDERIAN C,ORUNMUYI AT,OLAPADE-OLAOPA EO,et al.PVT1 signaling is a mediator of cancer progression[J].Front Oncol,2019,9(1):502.
[18] KASOWITZ SD,MA J,ANDERSON SJ,et al.Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte develop-ment[J].PLoS Genet,2018,14(5):e1007412.
[19] SHENG H,LI Z,SU S,et al.YTH domain family 2 promotes lung cancer cell growth by facilitating 6-phosphogluconate dehydrogenase mrna translation[J].Carcinogenesis,2019,41(5):541-550.
[20] GAO Y,OUYANG X,ZUO L,et al.R-2HG downregulates ERalpha to inhibit cholangiocarcinoma via the FTO/m6A-methylated ERalpha/miR16-5p/YAP1 signal pathway[J].Mol Ther Oncolytics,2021,23(10):65-81.
[21] YUAN Q,REN J,LI L,et al.Development and validation of a novel N6-methyladenosine(m6A)-related multi-long non-coding RNA(lncRNA)prognostic signature in pancreatic adenocarcinoma[J].Bioengineered,2021,12(1):2432-2448.
[22] NI W,YAO S,ZHOU Y,et al.Long Noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering yap phosphorylation and degradation and is negatively regulated by the m6A reader YTHDF3[J].Mol Cancer,2019,18(1):143.
[23] LIU Y,LIU Z,TANG H,et al.The N6-methyladenosine(m6A)-forming enzyme METTL3 facilitates M1 macrophage polarization through the methylation of STAT1 mRNA[J].Am J Physiol Cell Physiol,2019,
317(4):762-775.
[24] LI K,PENG ZY,GAO S,et al.m6A associated TSUC7 inhibition contributed to Erlotinib resistance in lung adenocarcinoma through a notch signaling activation dependent way[J].J Exp Clin Cancer Res,2021,40(1):325.
[25] ZHANG X,LI X,JIA H,et al.The m6A methyltransferase METTL3 modifies PGC-1α mRNA promoting mitochondrial dysfunction and oxLDL-induced inflammation in monocytes[J].J Biol Chem,2021,297(3):101058.
[26] TANG X,LIU S,CHEN D,et al.The role of the fat mass and obesity-associated protein in the proliferation of pancreatic cancer cells[J].Oncol Lett,2019,17(2):2473-2478.
[27] LIU Z,WANG T,SHE Y,et al.N6-methyladenosine-modified circIGF2BP3 inhibits CD8+ T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer[J].Mol Cancer,2021,20(1):105.
[28] TONG J,CAO G,ZHANG T,et al.m6A mRNA methylation sustains Treg suppressive functions[J].Cell Res,2018,28(2):253-256.
[29] NAGAFUCHI Y,SHODA H,SUMITOMO S,et al.Immunophenotyping of rheumatoid arthritis reveals a linkage between HLA-DRB1 genotype,CXCR4 expression on memory CD4+ T cells,and disease activity[J].Sci Rep,2016,7(6):29338.
[30] LI HB,TONG J,ZHU S,et al.m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways[J].Nature,2017,548(7667):338-342.
[31] WANG H,HU X,HUANG M,et al.Mettl3-mediated mRNA m6A methylation promotes dendritic cell activation[J].Nat Commun,2019,10(1):1898.
[32] HAN D,LIU J,CHEN C,et al.Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells[J].Nature,2019,566(7743):270-274.
[33] JIANG H,CAO K,F(xiàn)AN C,et al.Transcriptome-wide high-throughput m6A sequencing of differential m6A methylation patterns in the human rheumatoid arthritis fibroblast-like synoviocytes cell line MH7A[J].J Inflamm Res,2021,25(14):575-586.
[34] WANG J,YAN S,LU H,et al.METTL3 attenuates LPSinduced inflammatory response in acrophages via NF-κB signaling pathway[J].Mediators Inflamm,2019,24(1):3120391.
[35] YU R,LI Q,F(xiàn)ENG Z,et al.m6A reader YTHDF2 regulates LPSinduced inflammatory response[J].Int J Mol Sci,2019,20(6):1323.
[36] OTA H,WATANABE K,SASAKI H,et al.Outcomes of "Cross-Coupling Suture Button Suspensionplasty" for thumb carpometacarpal joint osteoarthritis:a preliminary report[J].J Hand Surg Asian Pac Vol,2021,26(4):728-733.
[37] LIU Q,LI M,JIANG L,et al.METTL3 promotes experimental osteoarthritis development by regulating inflammatory response and apoptosis in chondrocyte[J].Biochem Biophys Res Commun,2019,516(1):2227.
[38] LUO Q,RAO J,ZHANG L,et al.The study of METTL14,ALKBH5,and YTHDF2 in peripheral blood mononuclear cells from systemic lupus erythemat-osus[J].Mol Genet Genomic Med,2020,8(9):e1298.
[39] LUO Q,F(xiàn)U B,ZHANG L,et al.Decreased peripheral blood ALKBH5 correlates with markers of autoimmune response in systemic lupus erythematosus[J].Dis Markers,2020,25(5):8193895.
收稿日期:2022-02-25;修回日期:2022-03-23