張瀟筠,徐坤,沈俊岑,穆璐,錢泓潤,崔婕妤,馬寶霞,陳知龍,張智英,魏澤輝
一種新型提高HDR效率的CRISPR/Cas9-Gal4BD供體適配基因編輯系統(tǒng)
張瀟筠,徐坤,沈俊岑,穆璐,錢泓潤,崔婕妤,馬寶霞,陳知龍,張智英,魏澤輝
西北農(nóng)林科技大學(xué)動(dòng)物科技學(xué)院,楊凌 712100
近年來,CRISPR基因編輯及衍生技術(shù)迅速發(fā)展,在生命科學(xué)、生物醫(yī)學(xué)研究以及動(dòng)植物育種領(lǐng)域得到了廣泛應(yīng)用。基于DNA雙鏈斷裂(double-stranded break, DSB)同源指導(dǎo)修復(fù)(homology-directed repair, HDR)機(jī)制的基因敲入和點(diǎn)編輯是基因編輯的重要策略,但效率偏低亟待提高。本文提出了驅(qū)動(dòng)供體DNA富集至DSB處以提高HDR效率的新策略,并設(shè)計(jì)了一套CRISPR/Cas9-Gal4BD 供體適配基因編輯系統(tǒng)(donor adapting system, DAS)。該系統(tǒng)主要利用Gal4 DNA結(jié)合域(Gal4 binding domain, Gal4BD)作為配體蛋白與Cas9融合表達(dá),將Gal4BD結(jié)合序列(Gal4 binding sequence, Gal4BS)作為受體序列與雙鏈DNA (double-stranded DNA, dsDNA)供體結(jié)合,以期提高HDR效率。使用HEK293T-HDR.GFP報(bào)告細(xì)胞系的初步研究結(jié)果表明當(dāng)dsDNA供體同源臂在一定長度(100~60 bp)時(shí)該系統(tǒng)能夠提高HDR效率2~4倍。進(jìn)一步的優(yōu)化研究表明,融合端口和融合使用連接子(linker)的選擇會(huì)影響Cas9表達(dá)效果及活性,而GGS5作為Cas9-Gal4BD融合的連接子則影響較小。同時(shí),本研究還發(fā)現(xiàn)Gal4BS-dsDNA供體的差異化設(shè)計(jì)也會(huì)影響HDR效率,將Gal4BS添加到dsDNA供體5′-端的效果最佳。綜上所述,本研究利用CRISPR/Cas9-Gal4BD DAS在和位點(diǎn)上實(shí)現(xiàn)了HDR編輯效率的提高,為進(jìn)一步利用該系統(tǒng)進(jìn)行動(dòng)物分子設(shè)計(jì)育種研究提供了參考和借鑒。
CRISPR/Cas9;基因編輯;供體DNA;供體適配;同源指導(dǎo)修復(fù)
CRISPR/Cas9基因編輯被稱為能夠“改變世界”的技術(shù),以其為基礎(chǔ)的分子設(shè)計(jì)育種能夠?qū)崿F(xiàn)動(dòng)植物性狀的快速改良,被廣泛應(yīng)用到了動(dòng)植物育種研究中[1~3]。CRISPR/Cas9系統(tǒng)通過單鏈引導(dǎo)RNA (single guide RNA, sgRNA)在特定的靶位點(diǎn)誘導(dǎo)DNA雙鏈斷裂(double-stranded break, DSB),進(jìn)而利用細(xì)胞自身的DSB修復(fù)機(jī)制實(shí)現(xiàn)基因編輯[4,5]。細(xì)胞主要通過非同源末端連接(non-homologous end joining, NHEJ)和同源重組(homologous recombination, HR)兩種修復(fù)機(jī)制進(jìn)行DSB的修復(fù)。其中,HR包括在基因組編輯中廣泛應(yīng)用的同源指導(dǎo)修復(fù)(homology- directed repair, HDR)和相對(duì)小眾的單鏈退火(single- stranded annealing, SSA)[6]。
在哺乳動(dòng)物細(xì)胞中,DSB絕大部分通過NHEJ機(jī)制進(jìn)行修復(fù),相關(guān)修復(fù)蛋白直接將DNA斷裂末端拉近,通過連接酶進(jìn)行重新連接。在此過程中通常會(huì)導(dǎo)致斷裂末端核苷酸的丟失或插入,進(jìn)而引起基因功能的喪失。HR修復(fù)發(fā)生的概率相對(duì)較低,當(dāng)DNA雙鏈斷裂后,MRN復(fù)合物(包括MRE11、Rad50、Nbs1三種蛋白質(zhì))結(jié)合到DSBs,引起核酸內(nèi)切酶(CtIP)對(duì)DSBs末端進(jìn)行切除,導(dǎo)致長3′單鏈DNA片段被復(fù)制蛋白A (replication protein A, RPA)包裹。隨后,Rad51取代了RPA與ssDNA結(jié)合,形成核蛋白突觸前絲,促進(jìn)尋找同源供體。待異源雙鏈DNA結(jié)構(gòu)形成后,Rad51分解,同時(shí)伴隨著DNA合成和最后的連接步驟。
在使用CRISPR/Cas9進(jìn)行相關(guān)研究時(shí),基于NHEJ修復(fù)的基因編輯通常被用于目標(biāo)基因的移碼敲除,而HDR機(jī)制常被用于基因精確編輯(精確的點(diǎn)突變、小片段的插入或缺失等)、置換和敲入等。但是,HDR機(jī)制依賴于供體DNA的重組效應(yīng),普遍存在著效率低下的缺點(diǎn)[7]。近年來,研究者們開發(fā)了一系列的提高HDR效率的策略,包括抑制NHEJ通路、增強(qiáng)HDR機(jī)制、優(yōu)化供體形式和控制打靶時(shí)效等(表1)。
Ruff等[8]首次提出了將供體DNA靶向募集到DSB附近以提高HDR效率的策略。該研究直接將I-I核酸酶作為配體蛋白,篩選出具有強(qiáng)結(jié)合活性的受體DNA元件(I-I適配子)。通過在單鏈DNA (single-stranded DNA, ssDNA)短供體(小于100 nt)一端引入適配子序列,成功在酵母和人類細(xì)胞中將HDR效率提高了32倍和16倍。受此策略的啟發(fā),多個(gè)類似的CRISPR/Cas9基因編輯衍生系統(tǒng)相繼被開發(fā)[9~16]。為了便于描述,本文提出了供體適配基因編輯系統(tǒng)(donor adapting system, DAS)的概念,特指驅(qū)動(dòng)供體DNA富集至DSB處以提高HDR效率的CRISPR/Cas9基因編輯衍生系統(tǒng)。
Gal4轉(zhuǎn)錄因子是半乳糖誘導(dǎo)基因表達(dá)的正調(diào)節(jié)因子,由DNA結(jié)合域(binding domain, BD)和激活域(activating domain, AD)兩個(gè)功能域組成。兩個(gè)結(jié)構(gòu)域可以獨(dú)立表達(dá)并行使功能,已被成功應(yīng)用于商業(yè)化的酵母雙雜交系統(tǒng)(yeast two-hybrid system, Y2H)。Gal4BD位于Gal4 N-末端,是一個(gè)屬于Zn(2)-C6家族的鋅指結(jié)構(gòu),能夠特異性識(shí)別Gal1啟動(dòng)子中的上游激活序列(upstream activation sequence, UAS)[43]。野生型UAS由幾個(gè)具有高度同源性的結(jié)合序列(binding sequence, BS)組成。研究人員發(fā)現(xiàn)單個(gè)結(jié)合序列是約為20 bp的保守序列,兩端均有保守的GC堿基[44]。
表1 不同HDR效率提高策略的比較
本研究基于課題組在CRISPR/Cas9和Y2H方面的研究基礎(chǔ)提出了一種新型的CRISPR/Cas9-Gal4BD DAS基因編輯系統(tǒng),通過將Cas9蛋白與酵母源的Gal4 BD[45]融合表達(dá)以提高HDR效率。
采用pLL3.7作為載體骨架,分別用U6和CMV啟動(dòng)子起始CRISPR/Cas9系統(tǒng)sgRNA和Cas9的表達(dá)。通過PCR,從Y2H載體pGBKT7 (美國Clontech公司)上擴(kuò)增獲得Gal4BD及C-端28 aa鏈接的DNA表達(dá)序列,克隆至pLL3.7-U6/sgRNA-CMV-Cas9中基因的上游(N-端),構(gòu)建獲得N-ter Gal4BD Cas9融合蛋白表達(dá)載體;將課題組研究常用的針對(duì)VEGF基因相關(guān)靶位點(diǎn)(CTCGGCCACCACAGGG-AAGCPAM)的sgRNA克隆至該載體中U6啟動(dòng)子下游,構(gòu)建sgVEGF/N-ter Gal4BD Cas9表達(dá)載體,初步建立CRISPR/Cas9-Gal4BD DAS (圖1A)。
為了進(jìn)一步優(yōu)化該系統(tǒng),采用兩類不同的柔性linker,即不同長度的GGSn (n=1/3/5/7,為GGS氨基酸串聯(lián)重復(fù)的個(gè)數(shù))和全長及截短的XTEN (XTEN1- SGSETPGTSESATPES和XTEN2-SESATPES),將基因克隆至基因的下游(C-端),進(jìn)而構(gòu)建獲得相應(yīng)的C-ter Gal4BD Cas9融合蛋白表達(dá)載體,同樣采用sgVEGF作為后續(xù)功能驗(yàn)證實(shí)驗(yàn)的sgRNA構(gòu)建相應(yīng)的CRISPR/Cas9-Gal4BD DAS表達(dá)載體。
本研究中所使用的pSSA.GFP.VEGF和pHDR.GFP.VEGF熒光報(bào)告載體分別為課題組前期研究所構(gòu)建[27,46]。兩個(gè)報(bào)告載體中的報(bào)告基因均被插入的VEGF靶序列打斷,經(jīng)過CRISPR/Cas9系統(tǒng)打靶造成DSB后,分別通過SSA和HDR機(jī)制進(jìn)行修復(fù),進(jìn)而可以通過熒光細(xì)胞流式計(jì)數(shù)評(píng)估Cas9活性和HDR效率。
采用HEK293T細(xì)胞進(jìn)行相關(guān)細(xì)胞實(shí)驗(yàn)檢測(cè)。細(xì)胞培養(yǎng)條件均為:90% DMEM培養(yǎng)基,10% FBS,100 μg/mL的青鏈霉素,5% CO2(均為體積分?jǐn)?shù)),溫度37℃。采用上海YEASEN公司的Hieff Trans?脂質(zhì)體核酸轉(zhuǎn)染試劑根據(jù)說明書步驟進(jìn)行轉(zhuǎn)染實(shí)驗(yàn):轉(zhuǎn)染前1天將細(xì)胞接種于12孔板中,在細(xì)胞密度達(dá)到80%~90%后進(jìn)行轉(zhuǎn)染,每孔轉(zhuǎn)染2 μg的質(zhì)粒,每組最少設(shè)置3個(gè)平行轉(zhuǎn)染孔。
課題組前期通過轉(zhuǎn)座系統(tǒng)將HDR.GFP報(bào)告基因表達(dá)盒隨機(jī)整合至HEK293T基因組中構(gòu)建了相應(yīng)的HEK293T-HDR.GFP報(bào)告細(xì)胞系[46]。本研究利用該報(bào)告細(xì)胞系初步驗(yàn)證CRISPR/Gal4BD- Cas9 DAS的可行性,通過PCR在不同長度的GFP dsDNA供體5′-端添加長度為20 bp的Gal4BD結(jié)合序列(binding sequence, BS; 5′-TCCGGAGGACTG-TCCTCCGG-3′) (圖1B)。對(duì)照組供體添加同樣長度的無關(guān)序列(irrelevant sequence, IS; 5′-TTCAGAC-GAGATAGTCTGAG-3′)。將上述構(gòu)建的sgVEGF/ N-ter Gal4BD Cas9表達(dá)載體與經(jīng)5′-端改造的GFP dsDNA供體以質(zhì)量比1∶1轉(zhuǎn)染HEK293T-HDR.GFP報(bào)告細(xì)胞系,轉(zhuǎn)染48 h后使用BD FACS Aria III流式細(xì)胞儀對(duì)GFP陽性(GFP+)細(xì)胞進(jìn)行計(jì)數(shù)以評(píng)估HDR效率。
采用SSA報(bào)告實(shí)驗(yàn)比較不同Cas9-Gal4BD融合表達(dá)方案對(duì)Cas9活性的影響。其中,pSSA.GFP.VEGF報(bào)告載體中的報(bào)告基因被CRISPR/Cas9系統(tǒng)打靶后無需供體DNA即可通過SSA機(jī)制直接修復(fù)(圖2A)。以1∶1的質(zhì)量比或摩爾比,將sgVEGF/Cas9表達(dá)載體與pSSA.GFP.VEGF報(bào)告載體共轉(zhuǎn)染HEK293T細(xì)胞進(jìn)行預(yù)實(shí)驗(yàn),初步結(jié)果表明1∶1的質(zhì)量比效果最佳。進(jìn)而以質(zhì)量比1∶1將不同融合表達(dá)方案(圖2, B和D)的sgVEGF/Cas9-Gal4BD表達(dá)載體與pSSA.GFP.VEGF報(bào)告載體共轉(zhuǎn)染HEK293T細(xì)胞,轉(zhuǎn)染48 h后,使用美國BD公司FACS Aria III流式細(xì)胞儀對(duì)GFP陽性(GFP+)細(xì)胞進(jìn)行計(jì)數(shù)以評(píng)估Cas9活性。同時(shí)收集每個(gè)轉(zhuǎn)染組的細(xì)胞提取總蛋白,使用抗-Gal4BD (美國Abbkine公司,ABP57232)和抗-Cas9 (英國Abcam公司,ab191468)抗體分別進(jìn)行免疫印跡(Western blot, WB)實(shí)驗(yàn)檢測(cè)不同Cas9- Gal4BD融合蛋白的表達(dá)情況。
為了獲得最佳的BS-dsDNA供體設(shè)計(jì),使用HDR報(bào)告實(shí)驗(yàn)對(duì)不同BS-dsDNA供體介導(dǎo)的HDR效率進(jìn)行評(píng)估。其中,pHDR.GFP.VEGF報(bào)告載體中報(bào)告基因被CRISPR/Cas9系統(tǒng)打靶后僅能通過供體DNA依賴的HDR機(jī)制實(shí)現(xiàn)修復(fù)(圖3A)。以1∶1∶1的質(zhì)量比或摩爾比,將sgVEGF/Cas9表達(dá)載體、pHDR.GFP.VEGF報(bào)告載體和長度為700 bp的GFP dsDNA供體共轉(zhuǎn)染HEK293T細(xì)胞進(jìn)行預(yù)實(shí)驗(yàn),初步結(jié)果表明1∶1∶1的質(zhì)量比效果最佳。根據(jù)相關(guān)報(bào)道,Gal4BD結(jié)合序列的一般結(jié)構(gòu)是5′- CGG-N11-CCG-3'[44,47,48],進(jìn)一步選擇長度為17 bp的短BS序列[49]進(jìn)行BS-dsDNA供體的設(shè)計(jì)(圖3,B和D)。以質(zhì)量比1∶1∶1將sgVEGF/Cas9-GGS5- Gal4BD載體、pHDR.GFP.VEGF報(bào)告載體和通過PCR擴(kuò)增獲得的不同BS-dsDNA供體共轉(zhuǎn)染HEK293T細(xì)胞。轉(zhuǎn)染48 h后,使用美國BD公司FACS Aria III流式細(xì)胞儀對(duì)GFP陽性(GFP+)細(xì)胞進(jìn)行計(jì)數(shù)以評(píng)估HDR效率。
使用優(yōu)化后Cas9-Gal4BD和BS-dsDNA組成的CRISPR/Cas9-Gal4BD DAS對(duì)HEK293T細(xì)胞三個(gè)基因組位點(diǎn)(、、)進(jìn)行點(diǎn)編輯。將sgVEGF/Cas9-GGS5-Gal4BD載體中的sgVEGF替換為sgAAVS1、sgEMX1和sgNUDT5,構(gòu)建相應(yīng)的CRISPR/Cas9-Gal4BD DAS載體。以課題組前期構(gòu)建的質(zhì)粒供體[50]為模板,通過PCR引入5′-BS獲得相應(yīng)的BS-dsDNA供體。供體左右同源臂長度均設(shè)計(jì)為1000 bp左右,且序列中sgRNA靶點(diǎn)PAM均突變?yōu)橄拗菩詢?nèi)切酶(RE)位點(diǎn)(圖4A),以便通過限制性片段長度多態(tài)性(restriction fragment length polymorphism, RFLP)分析評(píng)估HDR編輯效率。
以質(zhì)量比1∶1∶1將CRISPR/Cas9-Gal4BD DAS載體、相應(yīng)的BS-dsDNA供體和HDR通用型報(bào)告篩選載體(HDR-universal surrogate reporter, HDR- USR)共轉(zhuǎn)染HEK293T細(xì)胞。HDR-USR為課題組前期開發(fā)的HDR編輯陽性細(xì)胞輔助篩選報(bào)告載體[50]。轉(zhuǎn)染后24 h,用含有嘌呤霉素的培養(yǎng)基篩選3天,更換正常培養(yǎng)基繼續(xù)培養(yǎng)2天,收集各組細(xì)胞,提取基因組DNA,PCR擴(kuò)增目的基因片段并進(jìn)行限制性內(nèi)切酶消化實(shí)驗(yàn)及RFLP分析。其中,一條PCR檢測(cè)引物設(shè)計(jì)在dsDNA供體模版之外,PCR產(chǎn)物及酶切后片段大小(bp)為:, 1274=1087+187;, 2147=1087+1060;, 2186=1105+1081。通過ImageJ軟件對(duì)消化和未消化的DNA條帶進(jìn)行灰度對(duì)比分析,進(jìn)而評(píng)估目標(biāo)基因位點(diǎn)的HDR編輯效率。
所有實(shí)驗(yàn)均至少設(shè)置三個(gè)平行重復(fù)或獨(dú)立重復(fù),數(shù)據(jù)以“平均值±SD”表示,使用檢驗(yàn)進(jìn)行顯著性檢驗(yàn)。*:<0.05為差異顯著,**:<0.01為差異極顯著。
本研究最初將Gal4BD與Cas9 N-端進(jìn)行融合,初步建立了CRISPR/Cas9-Gal4BD DAS 基因編輯系統(tǒng)(圖1A),并嘗試?yán)谜n題組前期研究構(gòu)建的HEK293T-HDR.GFP報(bào)告細(xì)胞系進(jìn)行功能驗(yàn)證。該報(bào)告細(xì)胞系中整合的報(bào)告基因修復(fù)原理如圖1B所示。其中,Gal4BD結(jié)合序列BS可以通過PCR技術(shù)直接添加到dsDNA供體的5'-端,IS為無關(guān)對(duì)照序列。本實(shí)驗(yàn)采用了長度分別為215 bp、100 bp和60 bp的GFP dsDNA供體,初步檢測(cè)結(jié)果表明,當(dāng)供體DNA在一定長度內(nèi)時(shí),HDR編輯效率可提高2~4倍(圖1C)。但CRISPR/Cas9-Gal4BD DAS能否有效提高長dsDNA供體的HDR效率尚有待商榷。
圖1 CRISPR/Cas9-Gal4BD DAS及HEK293T-HDR.GFP報(bào)告細(xì)胞系驗(yàn)證結(jié)果
A:Cas9-Gal4BD融合蛋白驅(qū)動(dòng)BS-dsDNA供體示意圖;B:CRISPR/Cas9-Gal4BD DAS介導(dǎo)報(bào)告細(xì)胞系基因HDR示意圖;C:CRISPR/Gal4BD-Cas9 DAS介導(dǎo)的不同GFP dsDNA供體HDR效率比較。BS/IS-GFP215/100/60分別代表5’-端連接BS或IS、長度為215/100/60 bp的GFP dsDNA供體;BS為Gal4BD結(jié)合序列,IS為無關(guān)對(duì)照序列。數(shù)據(jù)以平均值±SD表示,=3,**:<0.01。
鑒于Gal4BD與Cas9 N-端融合(N-ter Gal4BD)可能會(huì)嚴(yán)重影響Cas9的活性,進(jìn)一步將Gal4BD與Cas9 C-端進(jìn)行融合(C-ter Gal4BD),并采用了多個(gè)不同的linker,構(gòu)建了優(yōu)化的CRISPR/Cas9-Gal4BD DAS。利用課題組前期開發(fā)的SSA報(bào)告系統(tǒng)(圖2A)進(jìn)行Cas9活性的驗(yàn)證,結(jié)果表明C-ter Gal4BD保留了與野生型(WT)Cas9相近的活性,而N-ter Gal4BD活性顯著降低(圖2,B和C);不同linker連接的C-ter Gal4BD對(duì)Cas9活性造成了不同程度的影響(圖2,D和E)。進(jìn)一步采用抗-Gal4BD和抗-Cas9抗體對(duì)Cas9-Gal4BD融合蛋白的表達(dá)情況進(jìn)行WB檢測(cè),結(jié)果表明除了GGS5和XTEN1,其余l(xiāng)inker連接的C-ter Gal4BD均對(duì)Cas9表達(dá)造成了顯著影響(圖2,F(xiàn)和G)。結(jié)合SSA報(bào)告實(shí)驗(yàn)結(jié)果及Cas9、Gal4BD蛋白表達(dá)檢測(cè)情況,推測(cè)采用GGS5 (5個(gè)GGS重復(fù)) linker的C-ter Gal4BD融合表達(dá)策略是相對(duì)較優(yōu)的選擇。
作為CRISPR/Cas9-Gal4BD DAS重要組成部分,BS-dsDNA供體的設(shè)計(jì)也是提高HDR效率的關(guān)鍵。為了探討最佳的BS-dsDNA供體設(shè)計(jì),采用課題組前期開發(fā)的HDR報(bào)告系統(tǒng)(圖3A)進(jìn)行不同BS-dsDNA供體的HDR效率驗(yàn)證。鑒于Gal4 BS的一般結(jié)構(gòu)為5′-CGG-N11-CCG-3′,改用長度為17 bp的短BS序列,并采用不含啟動(dòng)子的全長序列(約700bp)作為供體模板。首先,將不同數(shù)量的BS添加到dsDNA供體的5′-端,HDR報(bào)告實(shí)驗(yàn)結(jié)果表明增加BS并不能提高HDR效率,反而單個(gè)BS (1×BS)可能是最好的選擇(圖3,B和C)。其次,將BS序列添加到供體模板的5′-或/和3′-端(圖3D),結(jié)果表明將BS添加到供體DNA 5′-端的效果較好(圖3E)。
圖2 SSA報(bào)告實(shí)驗(yàn)驗(yàn)證不同Cas9-Gal4BD融合蛋白活性的結(jié)果
A:pSSA.GFP報(bào)告載體修復(fù)原理示意圖;B,D:Cas9 N-端和C-端融合Gal4BD (N-ter Gal4BD, C-ter Gal4BD)及l(fā)inker示意圖;C:N-ter Gal4BD和C-ter Gal4BD對(duì)Cas9活性影響的檢測(cè)結(jié)果;E:不同linker鏈接的C-ter Gal4BD對(duì)Cas9活性影響的檢測(cè)結(jié)果;F:使用抗-Gal4BD (上)和抗-Cas9 (下)抗體的WB檢測(cè)結(jié)果;G:Cas9蛋白表達(dá)水平WB檢測(cè)結(jié)果的灰度分析。數(shù)據(jù)以平均值±SD表示,n=3~5,*:<0.05;**:<0.01。
圖3 HDR報(bào)告實(shí)驗(yàn)驗(yàn)證不同BS-dsDNA供體HDR效率的結(jié)果
A:pHDR.GFP報(bào)告載體修復(fù)原理示意圖;B:5′-端添加不同數(shù)目BS的dsDNA供體及HDR報(bào)告實(shí)驗(yàn)設(shè)計(jì)示意圖;C:5′-端添加不同數(shù)目BS的dsDNA供體HDR效率檢測(cè)結(jié)果;D:5′-端或/和3′-端添加BS的dsDNA供體及HDR報(bào)告實(shí)驗(yàn)設(shè)計(jì)示意圖;E:5′-端或/和3′-端添加BS的dsDNA供體HDR效率檢測(cè)結(jié)果。數(shù)據(jù)以平均值±SD表示,=3~5,**:<0.01。
使用優(yōu)化后Cas9-Gal4BD和BS-dsDNA組成的CRISPR/Cas9-Gal4BD DAS對(duì)HEK293T細(xì)胞的三個(gè)基因組位點(diǎn)(、、)進(jìn)行點(diǎn)編輯。將BS-dsDNA供體中sgRNA靶序列的PAMs突變?yōu)镽E位點(diǎn)防止供體DNA被打靶,同時(shí)方便后續(xù)通過RFLP實(shí)驗(yàn)進(jìn)行HDR效率檢測(cè)(圖4A)。結(jié)果表明和位點(diǎn)的HDR編輯效率顯著提高了約20%,但是基因位點(diǎn)則與對(duì)照組相比無顯著差異(圖4,B和C)。據(jù)此推測(cè),HDR編輯效率的提高具有位點(diǎn)依賴性,可能與基因的結(jié)構(gòu)和活躍情況有關(guān)。
為了提高供體DNA的HDR效率,本研究開發(fā)了新型的CRISPR/Cas9-Gal4BD供體適配基因編輯系統(tǒng)。優(yōu)化結(jié)果表明Cas9-Gal4BD C-端融合效果較好,這可能是因?yàn)镽uvC-1位于Cas9 N-端且N-端的完整性對(duì)Cas9的核酸酶活性至關(guān)重要[11]。為了降低Gal4BD融合對(duì)Cas9活性的影響,本研究采用了兩類不同的柔性linker,即不同長度的GGSn和全長及截短的XTEN。雖然最終確認(rèn)了相對(duì)較優(yōu)的GGS5和XTEN1,但不同linker鏈接的Cas9-Gal4BD融合均對(duì)Cas9的表達(dá)及活性均造成了一定程度的影響。這可能與Cas9蛋白較大、空間結(jié)構(gòu)折疊容易受到影響有關(guān)。在后續(xù)相關(guān)研究中可以嘗試比較更多類型及不同長度的linker以降低融合蛋白對(duì)Cas9活性的影響。在BS-dsDNA供體的優(yōu)化過程中,本研究發(fā)現(xiàn)單個(gè)BS序列添加在dsDNA 5′-端的效果較好,推測(cè)dsDNA供體的3′-游離端有助于同源重組,非同源BS的額外添加反而不利于重組,但該假設(shè)仍有待進(jìn)一步探討。
此外,課題組也注意到了預(yù)實(shí)驗(yàn)中HKE293T- HDR.GFP報(bào)告細(xì)胞系的驗(yàn)證結(jié)果與后續(xù)優(yōu)化過程中的HDR報(bào)告載體實(shí)驗(yàn)及基因組編輯結(jié)果并不呼應(yīng),這可能與報(bào)告細(xì)胞系的質(zhì)量、供體長度改變、融合linker優(yōu)化以及后續(xù)檢測(cè)手段不同等因素有關(guān)。在報(bào)告細(xì)胞系驗(yàn)證實(shí)驗(yàn)中,dsDNA供體長度為100 bp和60 bp時(shí)的HDR效率有所提高。推測(cè)修復(fù)模版較短時(shí),可能存在效率較HDR高的微同源末端鏈接(microhomology-mediated end joining, MMEJ)修復(fù),故提升效果明顯。但CRISPR/Cas9-Gal4BD DAS能否有效提高長dsDNA供體的HDR效率尚有待商榷。由于HKE293T-HDR.GFP報(bào)告細(xì)胞系是一個(gè)轉(zhuǎn)基因細(xì)胞混池,基因型背景不清晰,存在著一定的不確定因素,課題組后續(xù)放棄了使用該細(xì)胞系進(jìn)行優(yōu)化研究。另鑒于較短的dsDNA供體不能介導(dǎo)基因敲入,其應(yīng)用前景有限,且與ssDNA供體相比HDR效率相對(duì)較低,后續(xù)優(yōu)化研究及內(nèi)源基因編輯均采用了長dsDNA供體,以期應(yīng)用于基因大片段敲入研究。在進(jìn)一步的內(nèi)源基因編輯實(shí)驗(yàn)中,盡管利用CRISPR/Cas9-Gal4BD DAS在和位點(diǎn)實(shí)現(xiàn)了編輯效率的提高,但仍需在更多類型的細(xì)胞中針對(duì)更多基因組位點(diǎn)進(jìn)行適用性驗(yàn)證。另外,通過藥物瞬時(shí)篩選富集基因點(diǎn)編輯細(xì)胞后進(jìn)行RFLP分析的檢驗(yàn)方法具有一定的局限性,受細(xì)胞篩選、基因組提取、PCR及酶切等過程的影響,存在著一定的干擾因素。鑒于CRISPR/Cas9-Gal4BD DAS所采用的dsDNA供體主要優(yōu)勢(shì)在于基因大片段敲入,后續(xù)研究可采用熒光或抗性基因敲入的策略并優(yōu)化下游檢測(cè)手段,更嚴(yán)謹(jǐn)?shù)卣撟C該系統(tǒng)的可行性。
圖4 CRISPR/Cas9-Gal4BD DAS介導(dǎo)的基因精確編輯
A:以基因座為例的基因編輯設(shè)計(jì)及檢測(cè)示意圖,其中一條PCR檢測(cè)引物設(shè)計(jì)在dsDNA供體模版之外;B:RFLP實(shí)驗(yàn)檢測(cè)HDR編輯效率的瓊脂糖凝膠電泳結(jié)果,PCR產(chǎn)物及酶切后片段大小(bp)為:,1274=1087+187;,2147=1087+1060;,2186=1105+1081;C:基于RFLP實(shí)驗(yàn)DNA條帶灰度分析的HDR編輯效率檢測(cè)結(jié)果。數(shù)據(jù)以平均值±SD表示,=3,*:<0.05。
在本研究開展前后,多種以相似設(shè)計(jì)理念改進(jìn)的CRISPR/Cas9 DAS被相繼報(bào)道(表2) 。其中,Cas9-SNAP/O6-BG-ssDNA系統(tǒng)以SNAP-Tag作為適配配體,以O(shè)6-芐基鳥嘌呤(BG)作為“受體”修飾ssDNA供體[9]。Cas9-Avidin/Biotin-dsDNA系統(tǒng)[10]將與Cas9蛋白融合的親和素作為適配配體,同時(shí)將生物素作為適配“受體”與PCR獲得的dsDNA供體進(jìn)行化學(xué)偶聯(lián)。Cas9-Avidin/Biotin-ssDNA系統(tǒng)[11]與Cas9-Avidin/Biotin-dsDNA系統(tǒng)類似,但采用了長ssDNA供體(~1000 nt)。另一個(gè)sgRNA-S1m.Avidin/ Biotin-ssDNA系統(tǒng)[12]采用了新穎的sgRNA導(dǎo)向策略,該系統(tǒng)將親和素特異性結(jié)合序列(S1mRNA)與sgRNA融合,作為驅(qū)動(dòng)鏈霉親和素/生物素-ssDNA供體的接頭部分。該系統(tǒng)增加了供體和sgRNA設(shè)計(jì)的復(fù)雜程度,且ssDNA供體需要與生物素–鏈霉親和素偶聯(lián),理論上并不實(shí)用。ssDNA供體與dsDNA供體介導(dǎo)的DNA修復(fù)機(jī)制有所不同,前者具有重組效率高、操作簡單方便等優(yōu)點(diǎn),但是長ssDNA供體制備相對(duì)困難、價(jià)格昂貴、不穩(wěn)定且容易降解。因此,基因編輯研究中多使用長度小于120 nt的短ssDNA供體進(jìn)行點(diǎn)編輯,而大片段基因敲入研究仍受限于相對(duì)偏低的dsDNA供體重組效率。
表2 目前已報(bào)道的CRISPR/Cas9 DAS系統(tǒng)
Linker,一段短肽鏈用于連接Cas9蛋白和適配器。S1m*,一段與sgRNA連接的用于連接鏈霉素親和素的RNA序列。MW,分子量。
與本研究思路類似,在最新的報(bào)道中不同的dsDNA結(jié)合蛋白也被用于開發(fā)新型CRISPR/Cas9 DAS。對(duì)于這些DAS,通常可以通過PCR便捷地獲得BS-dsDNA供體,并且可以通過重組DNA技術(shù)以質(zhì)粒的形式組裝大型供體進(jìn)而介導(dǎo)復(fù)雜的基因編輯。在Cas9-THAP11/THAP11.BS-dsDNA系統(tǒng)中,將滅活的轉(zhuǎn)錄因子THAP11與Cas9 C-端融合[15],可以提高HDR敲入效率2倍。Cas9-N57/N57.BS-dsDNA系統(tǒng)[16]采用了來自睡美人轉(zhuǎn)座子SB100X的N57 DNA結(jié)合域,該系統(tǒng)具有上述相似的供體適配特征,但使用了非同源依賴靶向整合(homology-in-dependent targeted integration,HITI)供體[51],可以在分裂和非分裂細(xì)胞中提高靶向敲入效率。
最后,值得注意的是滅活的轉(zhuǎn)錄因子THAP11、轉(zhuǎn)座酶SB100X的N57 DNA結(jié)合域和本研究使用的酵母源Gal4BD長度分別為105 aa、57 aa和146 aa,均遠(yuǎn)小于Cas9蛋白(1368 aa)。此外,Cas9-N57系統(tǒng)采用了HITI供體進(jìn)行非同源依賴靶向基因敲入,表明CRISPR/Cas9 DASs能夠同時(shí)適用于HDR和HITI介導(dǎo)的基因編輯。在BS-dsDNA供體方面,Cas9- Gal4BD系統(tǒng)和Cas9-THAP11系統(tǒng)具有更短BS (17 bp和19 bp)的相對(duì)優(yōu)勢(shì)。
綜上所述,本研究開發(fā)了一種新型提高HDR效率的CRISPR/Cas9-Gal4BD供體適配基因編輯系統(tǒng),并在Cas9-Gal4BD融合表達(dá)和BS-dsDNA供體設(shè)計(jì)方面進(jìn)行了優(yōu)化。最終利用優(yōu)化后的CRISPR/ Gal4BD-Cas9 DAS實(shí)現(xiàn)了對(duì)和位點(diǎn)的HDR增強(qiáng)編輯,為進(jìn)一步利用該系統(tǒng)進(jìn)行動(dòng)物分子設(shè)計(jì)育種研究提供了參考和借鑒。
[1] Zhou SW, Yu HH, Zhao XE, Cai B, Ding Q, Huang Y, Li YX, Li Y, Niu YY, Lei AM, Kou QF, Huang XX, Petersen B, Ma BH, Chen YL, Wang XL. Generation of gene-edited sheep with a defined Booroola fecundity gene (FecB ) mutation in bone morphogenetic protein receptor type 1B (BMPR1B) via clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9., 2018, 30(12): 1616–1621.
[2] Niu YY, Zhao XE, Zhou JK, Li Y, Huang Y, Cai B, Liu YT, Ding Q, Zhou SW, Zhao J, Zhou GX, Ma BH, Huang XX, Wang XL, Chen YL. Efficient generation of goats with defined point mutation (I397V) in GDF9 through CRISPR/Cas9., 2018, 30(2): 307–312.
[3] Park KE, Kaucher AV, Powell A, Waqas MS, Sandmaier SES, Oatley MJ, Park CH, Tibary A, Donovan DM, Blomberg LA, Lillico SG, Whitelaw CBA, Mileham A, Telugu BP, Oatley JM. Generation of germline ablated male pigs by CRISPR/Cas9 editing of the NANOS2 gene., 2017, 7: 40176.
[4] Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering., 2014, 157(6): 1262–1278.
[5] Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, Kühn R. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells., 2015, 33(5): 543–548.
[6] Decottignies A. Alternative end-joining mechanisms: a historical perspective., 2013, 4: 48.
[7] Vasquez KM, Marburger, K, Intody Z, Wilson JH. Manipulating the mammalian genome by homologous recombination., 2001, 98(15): 8403–10.
[8] Ruff P, Koh KD, Keskin H, Pai RB, Storici F. Aptamer-guided gene targeting in yeast and human cells., 2014, 42(7): e61.
[9] Savic N, Ringnalda FC, Lindsay H, Berk C, Bargsten K, Li YZ, Neri D, Robinson MD, Ciaudo C, Hall J, Jinek M, Schwank G. Covalent linkage of the DNA repair template to the CRISPR-Cas9 nuclease enhances homology- directed repair., 2018, 7: e33761.
[10] Gu B, Posfai E, Rossant J. Efficient generation of targeted large insertions by microinjection into two-cell-stage mouse embryos., 2018, 36(7): 632–637.
[11] Ma M, Zhuang FF, Hu XB, Wang BL, Wen XZ, Ji JF, Xi JZJ. Efficient generation of mice carrying homozygous double-floxp alleles using the Cas9-Avidin/Biotin-donor DNA system., 2017, 27(4): 578–581.
[12] Carlson-Stevermer J, Abdeen AA, Kohlenberg L, Goedland M, Molugu K, Lou M, Saha K. Assembly of CRISPR ribonucleoproteins with biotinylated oligonucleotides via an RNA aptamer for precise gene editing., 2017, 8(1): 1711.
[13] Aird EJ, Lovendahl KN, Martin AS, Harris RS, Gordon WR. Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template., 2018, 1: 54.
[14] Ali Z, Shami A, Sedeek K, Kamel R, Alhabsi A, Tehseen M, Hassan N, Butt H, Kababji A, Hamdan SM, Mahfouz MM. Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice., 2020, 3(1): 44.
[15] Li GL, Wang HQ, Zhang XW, Wu ZF, Yang HQ. A Cas9- transcription factor fusion protein enhances homology- directed repair efficiency., 2021, 296: 100525.
[16] Ma SF, Wang XL, Hu YF, Lv J, Liu CF, Liao KT, Guo XH, Wang D, Lin Y, Rong ZL. Enhancing site-specific DNA integration by a Cas9 nuclease fused with a DNA donor-binding domain., 2020, 48(18): 10590–10601.
[17] Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining., 2015, 33(5): 538–542.
[18] Hu Z, Shi Z, Guo X, Jiang B, Wang G, Luo D, Chen Y, Zhu YS. Ligase IV inhibitor SCR7 enhances gene editing directed by CRISPR-Cas9 and ssODN in human cancer cells.. 2018 19(8):12.
[19] Riesenberg S, Maricic T. Targeting repair pathways with small molecules increases precise genome editing in pluripotent stem cells., 2018, 9(1): 2164.
[20] Riesenberg S, Chintalapati M, Macak D, Kanis P, Maricic T, P??bo S. Simultaneous precise editing of multiple genes in human cells.. 2019 47(19):e116.
[21] Robert F, Barbeau M, éthier S, Dostie J, Pelletier J. Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing., 2015, 7(1): 93.
[22] Li G, Liu D, Zhang X, Quan R, Zhong C, Mo J, Huang Y, Wang H, Ruan X, Xu Z, Zheng E, Gu T, Hong L, Li Z, Wu Z, Yang H. Suppressing Ku70/Ku80 expression elevates homology-directed repair efficiency in primary fibroblasts., 2018, 99: 154–160.
[23] Nambiar TS, Billon P, Diedenhofen G, Hayward SB, Taglialatela A, Cai KH, Huang JW, Leuzzi G, Cuella-Martin R, Palacios A, Gupta A, Egli D, Ciccia A. Stimulation of CRISPR-mediated homology-directed repair by an engineered RAD18 variant., 2019, 10(1): 3395.
[24] Paulsen BS, Mandal PK, Frock RL, Boyraz B, Yadav R, Upadhyayula S, Gutierrez-Martinez P, Ebina W, Fasth A, Kirchhausen T, Talkowski ME, Agarwal S, Alt FW, Rossi DJ. Ectopic expression of RAD52 and dn53BP1 improves homology-directed repair during CRISPR-Cas9 genome editing., 2017, 1(11): 878–888.
[25] Tran NT, Bashir S, Li X, Rossius J, Chu VT, Rajewsky K, Kühn R. Enhancement of precise gene editing by the association of Cas9 with homologous recombination Factors., 2019, 10: 365.
[26] Hackley CR. A novel set of Cas9 fusion proteins to stimulate homologous recombination: Cas9-HRs., 2021, 4(2): 253–263.
[27] Shao SM, Ren CH, Liu ZT, Bai YC, Chen ZL, Wei ZH, Wang X, Zhang ZY, Xu K. Enhancing CRISPR/Cas9- mediated homology-directed repair in mammalian cells by expressing Saccharomyces cerevisiae Rad52., 2017, 92: 43–52.
[28] Richardson CD, Ray GJ, DeWitt MA, Curie GL, Corn JE. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA., 2016, 34(3): 339–344.
[29] Shy BR, Vykunta V, Ha A, Roth TL, Talbot A, Nguyen DN, Chen YY, Blaeschke F, Vedova S, Mamedov MR, Chung JY, Li H, Wolf J, Martin TG, Ye LM, Eyquem J, Esensten JH, Marson A. Hybrid ssDNA repair templates enable high yield genome engineering in primary cells for disease modeling and cell therapy manufacturing., 2021, doi:10.1101/2021.09.02.458799.
[30] Cruz-Becerra G, Kadonaga JT. Enhancement of homology-directed repair with chromatin donor templates in cells., 2020, 9: e55780.
[31] Hirotsune S, Kiyonari H, Jin MY, Kumamoto K, Yoshida K, Shinohara M, Watanabe H, Wynshaw-Boris A, Matsuzaki F. Enhanced homologous recombination by the modulation of targeting vector ends., 2020, 10(1): 2518.
[32] Liang X, Potter J, Kumar S, Ravinder N, Chesnut JD. Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA., 2017, 241: 136–146.
[33] Nguyen DN, Roth TL, Li PJ, Chen PA, Apathy R, Mamedov MR, Vo LT, Tobin VR, Goodman D, Shifrut E, Bluestone JA, Puck JM, Szoka FC, Marson A. Polymer- stabilized Cas9 nanoparticles and modified repair templates increase genome editing efficiency., 2020, 38(1): 44–49.
[34] Ling X, Xie B, Gao X, Chang L, Zheng W, Chen H, Huang Y, Tan L, Li M, Liu T. Improving the efficiency of precise genome editing with site-specific Cas9-oligonucleotide conjugates., 2020, 6(15): eaaz0051.
[35] Lomova A, Clark DN, Campo-Fernandez B, Flores- Bjurstr?m C, Kaufman ML, Fitz-Gibbon S, Wang XY, Miyahira EY, Brown D, DeWitt MA, Corn JE, Hollis RP, Romero Z, Kohn DB. Improving gene editing outcomes in human hematopoietic stem and progenitor cells by temporal control of DNA repair., 2019, 37(2): 284–294.
[36] Wienert B, Nguyen DN, Guenther A, Feng SJ, Locke MN, Wyman SK, Shin J, Kazane KR, Gregory GL, Carter MAM, Wright F, Conklin BR, Marson A, Richardson CD, Corn JE. Timed inhibition of CDC7 increases CRISPR- Cas9 mediated templated repair., 2020, 11(1): 2109.
[37] Zhang JP, Li XL, Li GH, Chen W, Arakaki C, Botimer GD, Baylink D, Zhang L, Wen W, Fu YW, Xu J, Chun N, Yuan W, Cheng T, Zhang XB. Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage., 2017, 18(1): 35.
[38] Gutschner T, Haemmerle M, Genovese G, Draetta GF, Chin L. Post-translational regulation of Cas9 during G1 enhances homology-directed repair., 2016, 14(6): 1555–1566.
[39] Matsumoto D, Tamamura H, Nomura W. A cell cycle- dependent CRISPR-Cas9 activation system based on an anti-CRISPR protein shows improved genome editing accuracy., 2020, 3(1): 601–601.
[40] Li G, Zhang X, Zhong C, Mo J, Quan R, Yang J, Liu D, Li Z, Yang H, Wu Z. Small molecules enhance CRISPR/ Cas9-mediated homology-directed genome editing in primary cells., 2017, 7(1): 8943.
[41] Takayama K, Igai K, Hagihara Y, Hashimoto R, Hanawa M, Sakuma T, Tachibana M, Sakurai F, Yamamoto T, Mizuguchi H. Highly efficient biallelic genome editing of human ES/iPS cells using a CRISPR/Cas9 or TALEN system., 2017, 45(9): 5198–5207.
[42] Li GL, Zhang XW, Wang HQ, Liu DW, Li ZC, Wu ZF, Yang HQ. Increasing CRISPR/Cas9-mediated homology- directed DNA repair by histone deacetylase inhibitors., 2020, 125: 105790.
[43] Keegan L, Gill G, Ptashne M. Separation of DNA binding from the transcription-activating function of a eukaryotic regulatory protein., 1986, 231(4739): 699–704.
[44] Marmorstein R, Carey M, Ptashne M, Harrison SC. DNA recognition by GAL4: structure of a protein-DNA complex., 1992, 356(6368): 408–414.
[45] Lohr D, Venkov P, Zlatanova J. Transcriptional regulation in the yeast GAL gene family: a complex genetic network., 1995, 9(9): 777–787.
[46] Xu K, Ren CH, Liu ZT, Zhang T, Zhang TT, Li D, Wang L, Yan Q, Guo LJ, Shen JC, Zhang ZY. Efficient genome engineering in eukaryotes using Cas9 from., 2015, 72(2): 383–399.
[47] Liang SD, Marmorstein R, Harrison SC, Ptashne M. DNA sequence preferences of GAL4 and PPR1: how a subset of Zn2 Cys6 binuclear cluster proteins recognizes DNA., 1996, 16(7): 3773–3780.
[48] Bram RJ, Lue NF, Kornberg RD. A GAL family of upstream activating sequences in yeast: roles in both induction and repression of transcription., 1986, 5(3): 603–608.
[49] Selleck SB, Majors JE. In vivo DNA-binding properties of a yeast transcription activator protein., 1987, 7(9): 3260–3267.
[50] Yan NN, Sun YS, Fang YY, Deng JR, Mu L, Xu K, Mymryk JS, Zhang ZY. A universal surrogate reporter for efficient enrichment of CRISPR/Cas9-mediated homology- directed repair in mammalian cells., 2020, 19: 775–789.
[51] Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J, Kim EJ, Hatanaka F, Yamamoto M, Araoka T, Li Z, Kurita M, Hishida T, Li M, Aizawa E, Guo SC, Chen S, Goebl A, Soligalla RD, Qu J, Jiang TS, Fu X, Jafari M, Esteban CR, Berggren WT, Lajara J, Nu?ez-Delicado E, Guillen P, Campistol JM, Matsuzaki F, Liu GH, Magistretti P, Zhang K, Callaway EM, Zhang K, Belmonte JCI. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration., 2016, 540(7631): 144–149.
A CRISPR/Cas9-Gal4BD donor adapting system for enhancing homology-directed repair
Xiaojun Zhang, Kun Xu, Juncen Shen, Lu Mu, Hongrun Qian, Jieyu Cui, Baoxia Ma, Zhilong Chen, Zhiying Zhang, Zehui Wei
The fast-rising CRISPR-derived gene editing technologies has been widely used in the fields of life science andbiomedicine, as well as plant and animal breeding. However, the efficiency of homology-directed repair (HDR), an important strategy for gene knock-in and base editing, remains to be improved. In this study, we came up with the term Donor Adapting System (DAS) to summarize those CRISPR/Cas9 systems modified with adaptor for driving aptamer-fused donor DNA. A set of CRISPR/Cas9-Gal4BD DAS was designed in our study.In this system, Gal4 DNA binding domain (Gal4BD) is used as adaptor to fuse with Cas9 protein, and Gal4 binding sequence (Gal4BS) is used as aptamer to bind to the double-stranded DNA (dsDNA) donor, in order to improve the HDR efficiency. Preliminary results from the HEK293T-HDR.GFP reporter cell line show that the HDR editing efficiency could be improved up to 2-4 times when donor homologous arms under certain length (100-60 bp). Further optimization results showed that the choice of fusion port and fusion linker would affect the expression and activity of Cas9, while the Cas9-Gal4BD fusion with a GGS5 linker was the prior choice.In addition, the HDR efficiency was likely dependent on the aptamer-dsDNA donor design, and single Gal4BD binding sequence (BS) addition to the 5′-end of intent dsDNA template was suggested. Finally, we achieved enhanced HDR editing on the endogenousandsites by using the CRISPR/Gal4BD-Cas9 DAS, which we believe can be applied to facilitate animal molecular design breeding in the future.
CRISPR/Cas9; gene editing; donor DNA; donor adapting; homology-directed repai
2022-04-05;
2022-05-11;
2022-05-23
國家自然科學(xué)基金項(xiàng)目(編號(hào):32172736),陜西省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(編號(hào):2021NY-027)資助[Supported by the National Natural Science Foundation of China (No. 32172736), and the Shaanxi Key R&D Program (No. 2021NY-027)]
張瀟筠, 在讀碩士研究生,專業(yè)方向:動(dòng)物生物技術(shù)。E-mail: mshn15@163.com
魏澤輝,博士,副教授,研究方向:動(dòng)物分子設(shè)計(jì)育種,E-mail:weizehui7848@163.com
徐坤,博士,副教授,研究方向:動(dòng)物基因編輯技術(shù),E-mail: xukunas@nwafu.edu.cn
10.16288/j.yczz.22-118
(責(zé)任編委: 谷峰)