謝甜,王梅,高瑞鈺,苗艷尼,張燚銘,蔣婧
光控誘導重組系統(tǒng)的開發(fā)與應用
謝甜,王梅,高瑞鈺,苗艷尼,張燚銘,蔣婧
中國科學院分子細胞科學卓越創(chuàng)新中心(生物化學與細胞生物學研究所),基因組標簽計劃研發(fā)中心,上海 200031
位點特異性重組系統(tǒng)由重組酶和特異性識別位點兩部分組成,是一種強大的基因操作工具,被廣泛運用于生命科學研究。已開發(fā)的誘導型重組系統(tǒng)以時空方式精準調(diào)控細胞和動物的基因表達,被用于基因功能研究、細胞譜系示蹤和疾病治療等領(lǐng)域。根據(jù)誘導重組酶時空表達方式的不同,誘導型重組系統(tǒng)可分為化學誘導和光控誘導兩種方式。光控誘導重組系統(tǒng)是利用光作為誘導劑,根據(jù)光控方式和對象的不同,可進一步分為光籠和光遺傳學兩類。光籠誘導重組系統(tǒng)是利用光敏基團來控制化學誘導劑或重組酶,光誘導前它們的活性被光敏基團抑制;在特定光照射后,它們的活性被恢復,進而實現(xiàn)光控誘導基因重組。光遺傳學誘導重組系統(tǒng)是通過光遺傳學開關(guān)介導分割型重組酶的重新激活來誘導基因重組。其中光遺傳學開關(guān)由一系列基因編碼的光敏蛋白組成,包括隱花色素、VIVID蛋白、光敏色素等。這些類型豐富的光控誘導重組系統(tǒng)為從高時空分辨率的維度解析基因的表達和功能提供了更多的工具,以滿足日益復雜的生命科學研究需求。本文主要對不同類型光控誘導重組系統(tǒng)的開發(fā)原理及應用進行綜述,比較其優(yōu)缺點,最后對未來開發(fā)更多光控重組系統(tǒng)進行展望, 旨在為系統(tǒng)優(yōu)化升級提供理論基礎(chǔ)和指導。
光控誘導重組系統(tǒng);光籠;光遺傳學開關(guān);位點特異性重組酶;時空調(diào)控
位點特異性重組酶(site-specific recombinases, SSRs)是一類具有催化活性,能夠特異性識別DNA序列,實現(xiàn)位點特異性重組的基因操作工具。其中酪氨酸重組酶家族成員如Cre[1~3]、Flp[4]和Dre[5,6],由于其重組特異性和高效性,在基因工程中發(fā)揮著關(guān)鍵作用。這些重組酶能夠在沒有輔助蛋白的幫助下,實現(xiàn)基因組DNA的切除(excision)、倒位(inver-sion)和易位(translocation)[7]。因此,SSRs介導的基因重組系統(tǒng)是生物醫(yī)學研究不可或缺的工具。
SSRs家族成員Cre重組酶因其卓越的重組效率成為小鼠遺傳學中最常用的工具。Cre/重組系統(tǒng)來源于P1噬菌體[8],包含Cre重組酶和34 bp的位點兩種組分,由Cre重組酶催化位點之間發(fā)生DNA重組[9]。Cre重組酶的表達可受啟動子調(diào)控,因此操縱不同類型啟動子即可調(diào)控Cre重組酶的時空表達。在過去的幾十年中,已開發(fā)了一系列誘導型重組系統(tǒng)用于復雜的科學研究,主要包括化學誘導和光控誘導兩種方式。
化學誘導重組系統(tǒng)(chemical-inducible recombi-nation system)是指通過小分子化合物來介導SSRs的時空表達,已被廣泛應用于在特定發(fā)育階段和特定組織細胞中對特定基因進行遺傳操作。以化學誘導Cre重組酶為例,主要包含有CreER[10]、基于Tet-on的Cre[11,12]、Di-Cre[13]和DD-Cre[14]等方式。CreER的使用最為廣泛,是將Cre與雌激素受體(estrogen receptor, ER)的配體結(jié)合域(ligand binding domain, LBD)相融合。CreER通常定位于細胞質(zhì)中,在他莫昔芬(tamoxifen, Tam)誘導下,融合的Cre蛋白才會進入細胞核,識別位點并發(fā)生基因重組[15,16]?;赥et-on的Cre則是通過強力霉素(doxycycline, Dox)誘導型啟動子,即TRE啟動子驅(qū)動Cre的表達。Tet-on系統(tǒng)的另一個元件rtTA由普遍存在或組織特異性的啟動子驅(qū)動表達,強力霉素可以結(jié)合并激活rtTA,使得激活的rtTA結(jié)合到TRE啟動子上誘導Cre的表達[17]。另外,Di-Cre[13]和DD-Cre[14]分別是通過小分子化合物介導重組酶二聚化或穩(wěn)定化從而實現(xiàn)Cre的時間特異性激活。其中Di-Cre是利用雷帕霉素(rapamycin, Rap)誘導FKBP12和FRB的二聚化來重新組合分割型Cre重組酶。分割型重組酶是指將重組酶拆分成兩個小蛋白,當它們重新拼接組裝后可恢復重組酶的功能進而催化重組反應[18,19]。然而,化學誘導重組系統(tǒng)存在細胞毒性、系統(tǒng)泄漏和潛在脫靶等缺點。此外,由于小分子化合物可自由擴散,缺乏組織特異性,多用于時間軸上的調(diào)控;并且小分子化合物擴散時間長且難以立即去除,導致時間調(diào)控不夠精準[20,21]。
為了精準實現(xiàn)時間和空間的雙調(diào)控,相比小分子化合物,光是一種理想的誘導劑,可在不同環(huán)境中自然調(diào)節(jié)許多細胞過程[22~24]?;谧贤?UV light)、藍光(blue light)和遠紅光(far-red light)照射的光控誘
導重組系統(tǒng)(light-controlled inducible recombination system)已被開發(fā)用于時空特異地精準遺傳操作。根據(jù)光控方式及對象的不同,光控誘導重組系統(tǒng)分為光籠和光遺傳學兩種類型。光籠誘導重組系統(tǒng)(pho-tocaged inducible recombination system)是利用光敏基團來控制化學誘導劑或重組酶。而光遺傳學誘導重組系統(tǒng)(optogenetic inducible recombination system)主要是利用光遺傳學開關(guān)來介導分割型重組酶的重新激活。本綜述將對這兩大類光控誘導重組系統(tǒng)的開發(fā)原理及其應用進行總結(jié)比較。
光籠(photocage)是一種可光控釋放的光敏物質(zhì),其原理是通過物理或化學等方法將光敏基團安裝到目標釋放物的核心位置,使其處于非活性狀態(tài)。在特定光照射下,目標釋放物被釋放出來,恢復生物天然活性[25]。光籠已被用于多種生物學研究中,包括轉(zhuǎn)錄研究[26]、蛋白質(zhì)–蛋白質(zhì)相互作用[27]、細胞遷移與增殖[28]、蛋白質(zhì)磷酸化[29]以及CreER系統(tǒng)的基因表達調(diào)控[30]等。光籠一般包含目標釋放物(target substance)和光敏基團(photosensitive group)兩個基本組成部分,目標釋放物可以是藥物、氨基酸、多肽、蛋白質(zhì)和核酸等[31~33]。根據(jù)目標釋放物類型的不同,光籠誘導重組系統(tǒng)的應用可以分為兩類:光籠化學誘導劑和光籠重組酶。
光籠化學誘導劑(photocaged chemical inducer)是將化學誘導重組系統(tǒng)的小分子化合物進行光籠修飾。例如CreER系統(tǒng)的小分子化合物包括4-羥基他莫昔芬氮丙啶(4-hydroxytamoxifen aziridine)、4-羥基環(huán)芬(4-hydroxycyclofen)、他莫昔芬(Tam)和4-羥基他莫昔芬(4-hydroxytamoxifen)等,都可以設計成為光籠(圖1 A)。Link等[30]合成了釋放4-羥基他莫昔芬氮丙啶的光籠,在紫外光刺激下能夠觸發(fā)培養(yǎng)細胞中CreER系統(tǒng)激活重組,但是該系統(tǒng)存在背景泄露。相比之下,4-羥基環(huán)芬具有更好的光穩(wěn)定性且易于合成[34]。Sinha等[35]合成了釋放4-羥基環(huán)芬的光籠,在水溶液中可以滲透入斑馬魚胚胎,通過紫外照射或雙光子照射后可快速恢復活性進而激活CreER重組系統(tǒng),實現(xiàn)高時空分辨率單細胞標記以及調(diào)控基因表達。當光籠化合物作用于復雜的生物體內(nèi),其活性受藥代動力學、遞送障礙和光與組織復雜相互作用等多種因素的影響。釋放4-羥基環(huán)芬光籠的光控功能除了在體外細胞培養(yǎng)系統(tǒng)和斑馬魚體內(nèi)模型中得到證實,還在復雜生物體內(nèi)被證明。Lu等[36]的實驗表明,釋放4-羥基環(huán)芬的光籠在類器官與小鼠體內(nèi)仍具有活性,可在紫外光下有效地誘導CreER介導DNA重組,實現(xiàn)單細胞水平的精準基因時空調(diào)控(表1)。
光籠進行光反應釋放目標物的關(guān)鍵是光敏基團,上述兩種光籠使用的光敏基團為4,5-二甲氧基- 2-硝基苯甲醇(4,5-dimethoxy-2-nitrobenzyl alcohol)。Inlay等[37]利用另一種光敏基團——鄰硝基芐基(o- nitrobenzyl)合成了釋放他莫昔芬的光籠。不同的是,首先它允許直接對他莫昔芬進行光籠修飾,而無需對藥物分子進行任何結(jié)構(gòu)修改或衍生,其次與幾乎不溶于水的他莫昔芬相比,光籠修飾后大大提高了水溶性。值得注意的是,他莫昔芬必須轉(zhuǎn)化為4-羥基他莫昔芬才能有效地結(jié)合CreER[43]。因此光籠他莫昔芬的使用僅限于能將他莫昔芬轉(zhuǎn)化為4-羥基他莫昔芬的部分細胞。然而體外細胞的這種轉(zhuǎn)化效率低,需要使用接近毒性濃度的他莫昔芬才能實現(xiàn)穩(wěn)健的基因重組。因此,F(xiàn)aal等[38]直接將4-羥基他莫昔芬共價連接鄰硝基芐基基團,合成釋放4-羥基他莫昔芬的光籠,其活性比釋放他莫昔芬的光籠高100倍以上,可以封閉的非活性形式有效進入細胞并在細胞內(nèi)光依賴性釋放,實現(xiàn)更精準地基因重組(表1)。
Tet-on表達調(diào)控系統(tǒng)的化學誘導劑為四環(huán)素類似物,最常用的是強力霉素(Dox)。釋放強力霉素或其類似物的光籠已被證明可以用于在不同生物系統(tǒng)中通過紫外線或雙光子局部照射誘導基因表達,包括體外培養(yǎng)的細胞、離體培養(yǎng)的小鼠海馬體、發(fā)育中的小鼠胚胎和非洲爪蟾蝌蚪[44~46]。利用這種方式可以設計基于Tet-on表達Cre的光籠重組系統(tǒng),但尚未有研究者開展相關(guān)研究驗證。
Di-Cre的化學誘導劑是雷帕霉素(Rap),Rap誘導的FKBP12和FRB蛋白異二聚化是常用的條件性控制生物過程的開關(guān)之一[47]。Brown等[39]開發(fā)了一種釋放Rap的光籠,稱為光裂解雷帕霉素二聚體(light-cleavable rapamycin dimer, dRap),可在紫外照射后裂解釋放Rap,誘導形成FKBP12-Rap-FRB三元復合物。而FKBP12和FRB分別融合Cre的N端(氨基酸19~59)和C端(氨基酸60~343),隨著三元復合物的形成,Cre可重構(gòu)恢復活性,進而誘導基因重組(圖1 B)。dRap在紫外線照射之前不會誘導FKBP12和FRB的異二聚化,很好地防止了背景泄露(表1)。
圖1 基于光籠分子的光控誘導重組系統(tǒng)
A:光籠化學誘導劑。在光控誘導CreER/系統(tǒng)中,經(jīng)光籠修飾的小分子化合物活性被抑制。在特定波段的光照下,光控釋放的小分子化合物恢復活性,使得CreER融合蛋白與HSP90發(fā)生解離。CreER被轉(zhuǎn)運進入細胞核后可識別序列,誘導兩個序列之間的目標基因(gene of interest,GOI)發(fā)生重組。B:光裂解雷帕霉素二聚體dRap。紫外光照射后,dRap裂解釋放天然雷帕霉素Rap,從而誘導FRB-CreC和FKBP12-CreN二聚化,使得分割型Cre重組酶重構(gòu)恢復催化活性。C:光籠重組酶。紫外光照射后,光籠Cre重組酶恢復活性。
表1 光籠誘導重組系統(tǒng)的比較
與化學誘導重組系統(tǒng)相比,利用紫外光的局部照射增強了系統(tǒng)的時空特異性。然而,基于紫外光的光籠技術(shù)在使用中也存在一些問題,例如紫外照射會導致不同程度的DNA損傷,從而引起細胞毒性;紫外光組織穿透能力較差,需要進行多次輻照等。相比之下,近紅外光的光毒性低且具有高效的組織穿透性,因此Gorka等[40]設計了一種基于花菁(cyanine)的光籠,在報告細胞系中可以依賴近紅外光釋放4-羥基環(huán)芬,從而結(jié)合CreER調(diào)控基因表達。這種近紅外解鎖策略需要進一步在體內(nèi)進行驗證,以便未來在復雜生理環(huán)境中應用(表1)。
光籠重組酶(photocaged recombinase)是直接對重組酶蛋白進行光籠修飾(圖1 C)。Edwards等[41]設計了一種基因編碼釋放Cre重組酶的光籠,可以直接在Cre蛋白的Y324催化位點安裝光敏基團鄰硝基芐基,紫外光照射下可恢復Cre活性,實現(xiàn)基因重組。光籠Cre重組酶的生成方法是將攜帶突變的表達質(zhì)粒和鄰硝基芐基酪氨酸表達質(zhì)粒共轉(zhuǎn)化大腸桿菌[48],表達生成的光籠Cre蛋白需要分離純化后才能使用,制備麻煩限制了其應用。Luo等[42]將突變的基因克隆入鄰硝基芐基酪氨酸表達載體,無需額外的蛋白表達和純化,轉(zhuǎn)染了表達載體和報告質(zhì)粒的細胞在紫外暴露下可產(chǎn)生功能性Cre重組酶,高效誘導報告基因重組。但這種光籠重組酶系統(tǒng)僅在哺乳動物細胞中得到驗證,還需要更深入廣泛的生物體內(nèi)運用驗證(表1)。
光遺傳學(optogenetics)是一種新興的融合光學(optics)和遺傳學(genetics)的生物技術(shù)。其中基因編碼的光遺傳學開關(guān)(optogenetic switch)是一類強大的光遺傳學工具,由響應光刺激產(chǎn)生聚合反應或構(gòu)象變化的光敏蛋白(photosensitive protein)組成?;诟鞣N光敏蛋白已開發(fā)一系列光遺傳學開關(guān):隱花色素[49~52]、VIVID(VVD)[53~55]、Magnets[56]、植物光敏色素[57~59]、UVR8[60~62]、細菌光敏色素[63~65]、LOV結(jié)構(gòu)域[66~68]等。隱花色素和VVD系統(tǒng)的光遺傳學開關(guān)是最廣泛使用的光遺傳學工具,主要由波長為450~490 nm的藍光控制。然而,藍光的組織穿透力不足,需要較長的曝光時間,導致對細胞的光毒性增加,限制了藍光光遺傳學開關(guān)在動物體內(nèi)的應用。使用更長波長的光源可以突破這一限制。光譜區(qū)域在700~900 nm內(nèi)的遠紅光和近紅外光譜可以穿透更深的組織或內(nèi)臟器官[69,70]。由此,研究者們又開發(fā)了一系列基于響應紅光或遠紅光的植物和細菌光敏色素的光遺傳學開關(guān),來進行胚胎組織或深部組織中的光遺傳學操作。利用上述光遺傳學開關(guān)和不同分割型重組酶,可以產(chǎn)生多樣的光遺傳學誘導重組系統(tǒng)。目前已開發(fā)的分割型重組酶包括Cre、Dre和Flp等,其中以分割型Cre重組酶的光遺傳學誘導重組系統(tǒng)最廣泛應用(表2)。
來源于擬南芥()中的隱花色素CRY2是一種藍光響應光感受器,其天然結(jié)合配體為具有螺旋-環(huán)-螺旋結(jié)構(gòu)的CIB1蛋白。在藍光刺激條件下,CRY2與CIB1相互作用形成二聚體,并且在黑暗條件下二者逐漸解聚,無需外源輔助因子。CRY2蛋白含有一個保守的N端光裂合酶同源區(qū)域(photolyase homology region, PHR),是與CIB1結(jié)合的最小相互作用域。在藍光調(diào)控下,CRY2或CRY2PHR可與全長CIB1或截短形式的CIBN發(fā)生聚合或解聚作用[49]。CRY2-CIB1二聚化系統(tǒng)已被廣泛用于功能研究,如用于蛋白質(zhì)分布和定位[49,81]、轉(zhuǎn)錄調(diào)節(jié)[82~85]、磷酸肌醇水平[86~88]、細胞骨架動力學[89]等。
最早將CRY2-CIB1系統(tǒng)和Cre重組酶聯(lián)合使用的是Kennedy等[49],通過將CRY2和CIBN分別融合到分割型Cre重組酶的N端(氨基酸19~104)和C端(氨基酸106~343)。在藍光照射下CRY2和CIBN的二聚化重構(gòu)Cre恢復催化活性,介導DNA重組。這被認為是第一代光遺傳學Cre重組系統(tǒng)(PA-Cre 1.0) (圖2 A,表2)。Boulina等[90]將編碼三色熒光蛋白的Brainbow基因盒與PA-Cre結(jié)合,在果蠅中誘導熒光蛋白的表達,實現(xiàn)了多色標記細胞的光控實時成像。Schindler等[91]利用光纖傳導的藍光照射激活PA-Cre,實現(xiàn)對小鼠海馬體永久性基因修飾,并且使用組織穿透力較強的雙光子激活可以對小鼠大腦中亞毫米精度組織進行基因表達調(diào)控。
表2 光遺傳學誘導重組系統(tǒng)的比較
盡管CRY2-CIB1系統(tǒng)可以在亞秒時間分辨率和亞細胞空間分辨率上實現(xiàn)二聚化,但是存在元件體積大、暗背景泄露、誘導效率低等局限性。通過優(yōu)化CRY2-CIB1元件可以升級該系統(tǒng)。Taslimi等[71]發(fā)現(xiàn)CRY2()-CreN突變體在短暫的光照時間下可快速結(jié)合CIBN-CreC誘導DNA重組,且減緩二聚體的解聚,延長相互作用時間。該系統(tǒng)與PA-Cre 1.0相比,重組酶活性提高約35%,暗背景下本底泄露顯著降低50%,被稱為PA-Cre 1.5 (圖2 A,表2)。在PA-Cre 1.5的基礎(chǔ)上將CRY2()-CreN和CIB1-CreC構(gòu)建在同一載體上,可使得重組背景極低,在哺乳動物細胞和小鼠體內(nèi)實驗中顯示出更加靈敏的光響應性以及更高的重組效率,升級為PA-Cre 2.0[71](表2)。Meador等[72]系統(tǒng)地檢查了PA-Cre 2.0的兩個模塊蛋白的表達和定位對重組效率的影響,發(fā)現(xiàn)PA-Cre 2.0的低暗背景是由于CRY2()- CreN的核-胞質(zhì)穿梭所導致,突變削弱了CRY2的核定位,而主要表達在細胞質(zhì)中。隨著細胞中整體蛋白質(zhì)表達的增加,細胞核中CRY2()- CreN減少。基于此,利用化學和光控雙重誘導,設計產(chǎn)生他莫昔芬調(diào)控核轉(zhuǎn)位的ER- CRY2()- CreN和核定位的NLS-CIB1-CreC構(gòu)成的改良型PA-Cre 2.0,實現(xiàn)對DNA重組的嚴格控制(圖2 B,表2)。
圖2 基于隱花色素的光控誘導重組系統(tǒng)
A:CRY2或者CRY2()融合CreN,CIBN融合CreC構(gòu)建的PA-Cre 1.0以及優(yōu)化的PA-Cre 1.5系統(tǒng)。在黑暗條件下,Cre被分成兩個片段對位點沒有催化活性。在藍光照射下,CRY2或者CRY2()與CIBN發(fā)生二聚化介導CreN和CreC互補重構(gòu),使得Cre迅速恢復催化活性,可識別兩個位點發(fā)生DNA重組。B:光與他莫昔芬Tam雙重調(diào)控的改良型PA-Cre 2.0系統(tǒng),包含融合了ER的CRY2 ()-CreN和NLS-CIB1-CreC,通過Tam控制核轉(zhuǎn)運和光介導組裝分割片段,實現(xiàn)對Cre重組酶活性的雙重控制,提供更為復雜的DNA重組調(diào)控。C:Li-rtTA系統(tǒng)。rtTA的兩個功能域即DNA結(jié)合域rTetR和轉(zhuǎn)錄激活結(jié)構(gòu)域VP16分別與CIBN和CRY2PHR相融合。藍光刺激CRY2PHR和CIBN的二聚化,促使rTetR和VP16組合發(fā)揮完整的rtTA功能。在強力霉素Dox存在的情況下,二聚化的融合蛋白激活Tet-on系統(tǒng),驅(qū)動Cre的表達。NLS:核定位信號。
利用Tet-on表達調(diào)控系統(tǒng)的元件也可以設計成光遺傳學誘導重組系統(tǒng)。Li等[50]通過將Tet-on系統(tǒng)的rtTA元件的兩個功能域VP16和rTetR分別與CRY2PHR和CIBN融合,設計了一種新型光控rtTA (Li-rtTA)系統(tǒng)。通過CRY2PHR和CIBN的二聚化而重新結(jié)合形成的rtTA,在強力霉素存在的情況下,能夠結(jié)合TRE并驅(qū)動下游基因表達。在藍光和強力霉素的雙重誘導之后,Li-rtTA系統(tǒng)以時空特異的方式激活小鼠報告基因。使用rtTA作為光激活模塊,能夠利用許多現(xiàn)有的遺傳工具來實現(xiàn)多樣化的時空調(diào)控,如與基于Tet-on的Cre工具鼠交配獲得的子代小鼠可以實現(xiàn)時空特異性基因重組(圖2 C,表2)。
VIVID (VVD)是一種來源于絲狀真菌粗糙脈孢菌()的藍光光感受器,是目前作為光遺傳學工具的最小的光感受器之一,可以響應藍光從單體可逆地轉(zhuǎn)換為同源二聚體[53~55]。但這種天然同源二聚化親和力低,影響結(jié)合效率且解聚動力學太慢,無法精確調(diào)控蛋白質(zhì)相互作用[56,92,93]。因此開發(fā)能夠克服天然光感受器限制的強大且多功能的光遺傳學開關(guān)至關(guān)重要。Kawano等[56]通過改造VVD開發(fā)了兩種不同類型的變體,分別是帶正電荷的“正磁體”(pMag)和帶負電荷的“負磁體”(nMag),稱為Magnets。Magnets的磁體對pMag和nMag在藍光照射下通過靜電相互作用識別吸引從而發(fā)生異源二聚化,可以防止不需要的同源二聚化。Magnets為蛋白活動和相關(guān)細胞功能的時空調(diào)控研究提供了強大的工具。該研究者將Magnets和分割型Cre重組酶聯(lián)合使用,開發(fā)了一種新型Magnets-PA-Cre系統(tǒng)。通過Magnets的異源二聚化重新組裝分割型Cre重組酶,恢復Cre重組酶的催化活性,促使在低強度或短周期脈沖的藍光照射下能夠快速介導DNA重組,該系統(tǒng)在體內(nèi)具有高時空分辨率[73](圖3 A)。與CRY2-CIB1系統(tǒng)不同的是,Magnets-PA-Cre系統(tǒng)使用的分割型Cre片段是CreN59 (氨基酸19~59)和CreC60 (氨基酸60~343),恢復活性后的Cre重組酶不僅可以識別序列還可以識別其他變體如和位點[94~96],極大地擴展了Magnets-PA- Cre的適用性。為了減少在黑暗及自然光下的系統(tǒng)泄露,Morikawa等[74]進一步開發(fā)了升級版本Magnets- PA-Cre 3.0,通過使用CAG啟動子與2A自切割肽、優(yōu)化密碼子,使得該系統(tǒng)最大程度地減少了暗泄漏,并且具有高重組效率(表2)。
另外,利用他莫昔芬結(jié)合CreER調(diào)控核轉(zhuǎn)位也可以減少黑暗背景下的系統(tǒng)泄露[72]。Allen等[75]將CreER系統(tǒng)與Magnets相結(jié)合,創(chuàng)建了TamPA-Cre系統(tǒng)(圖3 B)。通過將胞質(zhì)定位的ER配體結(jié)合域融合到CreN(2~59)-nMag的N端,使其與核定位的NLS-pMag-CreC(60~343)在空間上實現(xiàn)物理分離。這種物理分離防止了Magnets-PA-Cre系統(tǒng)中出現(xiàn)的自發(fā)、濃度依賴的nMag-pMag二聚化,從而阻止了系統(tǒng)泄漏。TamPA-Cre系統(tǒng)的光刺激模式(脈沖與連續(xù)曝光)、他莫昔芬添加時間和光控開始時間,都能調(diào)控該系統(tǒng)的重組效率。在他莫昔芬處理3小時后的脈沖藍光刺激下,TamPA-Cre系統(tǒng)表現(xiàn)出對低強度、短時間藍光暴露的高敏感性,可高效誘導DNA重組(表2)。
Tet-off是另一種基因調(diào)控系統(tǒng),與Tet-on系統(tǒng)相反,在沒有強力霉素(Dox)情況下持續(xù)性開啟基因表達,而在強力霉素存在的情況下關(guān)閉基因表達[97,98]。將Tet-off系統(tǒng)與Magnets結(jié)合構(gòu)建的tTA依賴性啟動子驅(qū)動PA-Cre表達的TRE-PA-Cre小鼠,在藍光照射下可實現(xiàn)時空特異性DNA重組,而且該系統(tǒng)可以通過強力霉素來關(guān)閉,一定程度上減少系統(tǒng)的背景泄露[76],但該系統(tǒng)在小鼠模型的基因調(diào)控效果還需要更深入的表征與研究(圖3 C,表2)。
來自植物擬南芥的光敏色素A(phytochrome A, PhyA)是一種紅光和遠紅光響應光感受器。在與發(fā)色團藻藍膽素(phycocyanobilin, PCB)共價結(jié)合后,對紅光和遠紅光均敏感,可逆地與伴侶蛋白FHY1結(jié)合(660 nm紅光)或分離(730 nm遠紅光)[99~101]。此外,更為常用的是另一種來自擬南芥的光敏色素B (phytochrome B, PhyB)。在紅光照射下,PhyB在PCB的介導下發(fā)生可逆構(gòu)象變化,從而與光敏色素相互作用因子(phytochrome interaction factor, PIF)發(fā)生結(jié)合,并且這種結(jié)合在遠紅光照射下發(fā)生解離[102,103]。PhyB/PIF系統(tǒng)被用于在哺乳動物細胞中以精準的時空分辨率調(diào)控基因表達、蛋白質(zhì)-蛋白質(zhì)相互作用和蛋白質(zhì)定位等[58,59,104]。Yen等[77]將PhyB/PIF6系統(tǒng)與分割型Cre重組酶相結(jié)合開發(fā)了CreLite系統(tǒng),在紅光照射下,PhyB-CreC和PIF6-CreN融合蛋白在PCB存在下結(jié)合在一起,從而恢復Cre重組酶活性。CreLite系統(tǒng)被用于培養(yǎng)細胞和離體器官中的時空調(diào)控基因表達(圖4 A,表2)。值得注意的是,PCB對于PhyA和PhyB介導的光控開關(guān)至關(guān)重要,可它不能在哺乳動物細胞內(nèi)自然合成[105],因而限制了Phy系統(tǒng)的應用。
圖3 基于Magnets的光控誘導重組系統(tǒng)
A:Magnets-PA-Cre和Magnets-PA-Cre3.0系統(tǒng)。藍光照射下,nMag和pMag的二聚化重構(gòu)分割型Cre重組酶活性,促使兩個位點的目標基因(GOI)發(fā)生重組。B:TamPA-Cre系統(tǒng)。通過將胞質(zhì)定位的雌激素受體(ER)融合到分割型CreN-nMag的N端,使TamPA-Cre蛋白ER-CreN-nMag與核定位的NLS-pMag-CreC在空間上分離。在他莫昔芬Tam處理和藍光刺激下,分割型Cre重組酶隨著nMag-pMag的二聚化而互補重構(gòu)。C:TRE-PA-Cre系統(tǒng)。tTA依賴的TRE啟動子驅(qū)動CreN-nMag和CreC-pMag的表達,在沒有Dox情況下,藍光照射激活nMag-pMag二聚化重構(gòu)分割型Cre重組酶恢復催化活性。
圖4 基于光敏色素的光控誘導重組系統(tǒng)
A:基于PhyB的CreLite系統(tǒng)。在這個系統(tǒng)中,PhyB和PIF6分別與CreC和CreN融合。PhyB需要輔助因子PCB才能發(fā)揮功能。PhyB與PCB共價結(jié)合后吸收紅光和紅外光。當紅光暴露后,PhyB發(fā)生構(gòu)象變化,從失活的Pr形式(紅色吸收)轉(zhuǎn)變?yōu)橛谢钚缘腜fr形式(遠紅色吸收)。這個過程可以被遠紅外光逆轉(zhuǎn)。Pfr狀態(tài)下的PhyB和PIF6相互結(jié)合,將分割型Cre重組酶的兩個片段組合重構(gòu),恢復其重組酶活性。B:基于BphS的FISC系統(tǒng)。在這個系統(tǒng)中,Cre重組酶被分為兩個片段,其中CreN與Coh2融合,由組成型啟動子PhCMV驅(qū)動,CreC與DocS融合,由遠紅光誘導啟動子PFRLx驅(qū)動。遠紅光照射下,光感受器BphS將三磷酸鳥苷酸GTP轉(zhuǎn)化為環(huán)二鳥苷酸單磷酸鹽c-di-GMP,誘導遠紅光依賴的轉(zhuǎn)錄激活因子FRTA(P65-VP64-BldD)與啟動子PFRLx結(jié)合,驅(qū)動DocS-CreC表達?;贑oh2和DocS結(jié)構(gòu)域的強大親和力,兩個分割型Cre片段組裝在一起,恢復Cre重組酶的催化活性。
細菌中也存在類似的光敏色素,如BphP1和BphS[64,106]。與Phy系統(tǒng)相比,細菌光敏色素使用的發(fā)色團膽綠素(biliverdin, BV)在包括哺乳動物細胞在內(nèi)的真核細胞中天然存在且含量豐富,無需額外引入[107~109]。因此,細菌光敏色素已被設計成用于哺乳動物組織的多種近紅外探針[110]。已經(jīng)構(gòu)建了基于細菌光敏色素BphP1及其天然配體PpsR2的近紅外光遺傳調(diào)控系統(tǒng),能夠介導細胞內(nèi)信號傳導、調(diào)控體內(nèi)基因表達[63,111]。但該系統(tǒng)存在一些缺點如BphP1和PpsR2的蛋白質(zhì)分子量相對較大,光控效率相對較低等。Wu等[78]設計了一種基于BphS的遠紅光誘導系統(tǒng),將BphS光遺傳學開關(guān)和分割型Cre重組酶聯(lián)合構(gòu)建了FISC (far-red light-induced split Cre/system)系統(tǒng),僅通過遠紅光就可以實現(xiàn)體內(nèi)基因的光遺傳學調(diào)控。FISC系統(tǒng)表現(xiàn)出低背景、低細胞毒性,強大器官穿透力等優(yōu)點,可高效光控介導活體小鼠內(nèi)臟器官的DNA重組,性能大大優(yōu)于基于藍光誘導的光控重組系統(tǒng)(圖4 B,表2)。
單個重組酶系統(tǒng)滿足不了研究復雜生命過程的遺傳工具需求。隨著其他新型SSRs如Flp[4,79]、Dre[5]、Vika[112]和Nigri[113,114]等的發(fā)現(xiàn)鑒定,極大地豐富了基因操作工具。SSRs之間通常不會發(fā)生交叉重組,因而經(jīng)常聯(lián)合使用以實現(xiàn)更為精確的基因操作。已有報道表明可在小鼠體內(nèi)同時使用Cre/、Flp/和Dre/這三種重組系統(tǒng)[115,116]。
Jung等[79]基于Magnets首次開發(fā)了一種適用于體內(nèi)基因操作的高光敏和高效率的光控誘導Flp重組酶(PA-Flp),并將其與Cre重組酶聯(lián)合構(gòu)成Flp依賴的Cre重組系統(tǒng),可光控激活Flp進而激活Cre用于小鼠的行為學研究。該系統(tǒng)具有高度光敏、非侵襲性、高效、易操作的優(yōu)點,利用藍光即可激活小鼠大腦深部區(qū)域的基因發(fā)生重組(表2)。Li等[80]借助分子動力學模擬,通過一系列篩選和優(yōu)化,設計了一種可光控誘導的PA-Dre系統(tǒng),并證明該系統(tǒng)在藍光照射下不僅在細胞上,還可在小鼠的肝臟和腦部高效精準靈活地調(diào)控基因表達。此外,通過雙floxed倒置開放閱讀框策略,構(gòu)建了Cre激活的光誘導Dre系統(tǒng)(Cre-activated light-inducible Dre, CALID),在小鼠體內(nèi)細胞群體中實現(xiàn)時空特異性基因調(diào)控[80](表2)。為了針對單個神經(jīng)元進行結(jié)構(gòu)和功能研究,Yao等[117]研究團隊基于VVD系統(tǒng)創(chuàng)建了Cre、Dre和Flp重組酶系統(tǒng)RecV。通過單光子或雙光子照射誘導后,RecV系統(tǒng)能夠?qū)π∈蠛桶唏R魚中的單細胞或特定細胞群體進行精準基因調(diào)控。
光控誘導重組系統(tǒng)在近幾年獲得了長足的發(fā)展和應用。為了彌補化學誘導重組系統(tǒng)的空間局限性,可以將化學誘導劑設計成光籠,利用光控釋放的方法增強化學誘導重組系統(tǒng)的時空調(diào)控分辨率。現(xiàn)有的可被光敏基團修飾的化學誘導劑主要是針對CreER和Di-Cre系統(tǒng),后續(xù)可以進一步研發(fā)針對Tet-on和DD-Cre系統(tǒng)的光敏基團修飾化學誘導劑。另外,現(xiàn)有的光敏基團大多是響應紫外光誘導,會造成DNA損傷,應用范圍較為局限。為此可以開發(fā)響應藍光、紅光、遠紅光等其他光源誘導的新型光敏基團,進而豐富光敏基團種類,拓寬應用范圍,提升光籠誘導重組系統(tǒng)的安全性和靈活性。
由于化學誘導劑和光敏基團種類有限,合成毒性小、兼容性強的光籠仍具有挑戰(zhàn)性。相比之下,利用光遺傳學的光控二聚化開關(guān)來介導分割型重組酶重新激活的策略具有更強的靈活性和兼容性。多種類型的光遺傳學開關(guān)和重組酶為精準遺傳操作提供了更廣泛的空間和更多的可能,以滿足生物醫(yī)學研究日益復雜的需求。最佳的光控誘導系統(tǒng)應該是安全、高效、簡單、可控,并具有精準的時空調(diào)控、低泄漏、低背景、低毒性的屬性。綜合上述的研究,可以在兩個方面進行系統(tǒng)升級改進。一方面,可以根據(jù)研究需要,通過不同光遺傳學開關(guān)和不同重組酶組合方式來開發(fā)新的光遺傳學誘導重組系統(tǒng)。另一方面,可以通過篩選有效的重組酶分割形式,優(yōu)化光控元件的蛋白大小、組合方式、表達順序及其在表達載體的位置,以及優(yōu)化光控元件的氨基酸密碼子、Linker序列、核定位信號種類與位置等途徑進一步升級系統(tǒng)。未來,迭代更新的光控誘導重組系統(tǒng)將廣泛用于生命科學研究領(lǐng)域,實現(xiàn)高時空分辨率遺傳操作,解析尚未可知的復雜生物過程。
[1] Sternberg N, Hamilton D. Bacteriophage P1 site- specific recombination. I. Recombination between loxP sites.,1981, 150(4): 467–486.
[2] Sternberg N, Hamilton D, Hoess R. Bacteriophage P1 site-specific recombination. II. Recombination between loxP and the bacterial chromosome.,1981, 150(4): 487–507.
[3] Sternberg N. Bacteriophage P1 site-specific recombina-tion. III. Strand exchange during recombination at lox sites.,1981, 150(4): 603–608.
[4] Golic KG, Lindquist S. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome.,1989, 59(3): 499–509.
[5] Anastassiadis K, Fu J, Patsch C, Hu SB, Weidlich S, Duerschke K, Buchholz F, Edenhofer F, Stewart AF. Dre recombinase, like Cre, is a highly efficient site-specific recombinase in E. coli, mammalian cells and mice.,2009, 2(9–10): 508–515.
[6] Han XM, Zhang ZQ, He LJ, Zhu H, Li Y, Pu WJ, Han MY, Zhao H, Liu K, Li Y, Huang XZ, Zhang MJ, Jin HW, Lv Z, Tang J, Wang JJ, Sun RL, Fei J, Tian XY, Duan SZ, Wang QD, Wang LX, He B, Zhou B. A suite of new Dre recombinase drivers markedly expands the ability to perform intersectional genetic targeting.,2021, 28(6): 1160–1176.e7.
[7] Tronche F, Casanova E, Turiault M, Sahly I, Kellendonk C. When reverse genetics meets physiology: the use of site-specific recombinases in mice.,2002, 529(1): 116–121.
[8] Sauer B, Henderson N. Site-specific DNA recombi-nation in mammalian cells by the Cre recombinase of bacteriophage P1.,1988, 85(14): 5166–5170.
[9] Brault V, Besson V, Magnol L, Duchon A, Hérault Y. Cre/loxP-mediated chromosome engineering of the mouse genome.,2007(178): 29–48.
[10] Indra AK, Warot X, Brocard J, Bornert JM, Xiao JH, Chambon P, Metzger D. Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases.,1999, 27(22): 4324– 4327.
[11] Sch?nig K, Schwenk F, Rajewsky K, Bujard H. Stringent doxycycline dependent control of CRE recombinase in vivo.,2002, 30(23): e134.
[12] Utomo AR, Nikitin AY, Lee WH. Temporal, spatial, and cell type-specific control of Cre-mediated DNA recombination in transgenic mice.,1999, 17(11): 1091–1096.
[13] Jullien N, Sampieri F, Enjalbert A, Herman JP. Regulation of Cre recombinase by ligand-induced complementation of inactive fragments.,2003, 31(21): e131.
[14] Sando R, Baumgaertel K, Pieraut S, Torabi-Rander N, Wandless TJ, Mayford M, Maximov A. Inducible control of gene expression with destabilized Cre.,2013, 10(11): 1085–1088.
[15] Metzger D, Clifford J, Chiba H, Chambon P. Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase.,1995, 92(15): 6991–6995.
[16] Feil R, Wagner J, Metzger D, Chambon P. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains.,1997, 237(3): 752–757.
[17] Gossen M, Freundlieb S, Bender G, Müller G, Hillen W, Bujard H. Transcriptional activation by tetracyclines in mammalian cells.,1995, 268(5218): 1766–1769.
[18] Hirrlinger J, Scheller A, Hirrlinger PG, Kellert B, Tang WN, Wehr MC, Goebbels S, Reichenbach A, Sprengel R, Rossner MJ, Kirchhoff F. Split-cre complementation indicates coincident activity of different genes in vivo.,2009, 4(1): e4286.
[19] Tang JCY, Rudolph S, Dhande OS, Abraira VE, Choi S, Lapan SW, Drew IR, Drokhlyansky E, Huberman AD, Regehr WG, Cepko CL. Cell type-specific manipulation with GFP-dependent Cre recombinase.,2015, 18(9): 1334–1341.
[20] Gengenbacher M, Zimmerman MD, Sarathy JP, Kaya F, Wang H, Mina M, Carter C, Hossen MA, Su HW, Trujillo C, Ehrt S, Schnappinger D, Dartois V. Tissue distribution of doxycycline in animal models of tuberculosis.,2020, 64(5): e02479–e02519.
[21] Wilking N, Appelgren LE, Carlstr?m K, Pousette A, Theve NO. The distribution and metabolism of 14C-labelled tamoxifen in spayed female mice.,1982, 50(3): 161–168.
[22] Zhang JS, Wong SHD, Wu X, Lei H, Qin M, Shi P, Wang W, Bian LM, Cao Y. Engineering photoresponsive ligand tethers for mechanical regulation of stem cells.,2021, 33(48): e2105765.
[23] Richter F, Fonfara I, Bouazza B, Schumacher CH, Bratovi? M, Charpentier E, M?glich A. Engineering of temperature- and light-switchable Cas9 variants.,2016, 44(20): 10003–10014.
[24] Liu RM, Yang J, Yao J, Zhao Z, He W, Su N, Zhang ZY, Zhang CX, Zhang Z, Cai HB, Zhu LY, Zhao YZ, Quan S, Chen XJ, Yang Y. Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins.,2022, 40(5): 779–786.
[25] Mayer G, Heckel A. Biologically active molecules with a “l(fā)ight switch”.,2006, 45(30): 4900–4921.
[26] Pinheiro AV, Baptista P, Lima JC. Light activation of transcription: photocaging of nucleotides for control over RNA polymerization.,2008, 36(14): e90.
[27] Karginov AV, Zou Y, Shirvanyants D, Kota P, Dokholyan NV, Young DD, Hahn KM, Deiters A. Light regulation of protein dimerization and kinase activity in living cells using photocaged rapamycin and engineered FKBP.,2011, 133(3): 420–423.
[28] Miller DS, Chirayil S, Ball HL, Luebke KJ. Manipulating cell migration and proliferation with a light-activated polypeptide.,2009, 10(3): 577–584.
[29] Lemke EA, Summerer D, Geierstanger BH, Brittain SM, Schultz PG. Control of protein phosphorylation with a genetically encoded photocaged amino acid.,2007, 3(12): 769–772.
[30] Link KH, Shi YH, Koh JT. Light activated recom-bination.,2005, 127(38): 13088–13089.
[31] Lawrence DS. The preparation and in vivo applications of caged peptides and proteins.,2005, 9(6): 570–575.
[32] Young DD, Deiters A. Photochemical control of biological processes.,2007, 5(7): 999–1005.
[33] Tang XJ, Dmochowski IJ. Regulating gene expression with light-activated oligonucleotides.,2007, 3(2): 100–110.
[34] Sinha DK, Neveu P, Gagey N, Aujard I, Benbrahim- Bouzidi C, Le Saux T, Rampon C, Gauron C, Goetz B, Dubruille S, Baaden M, Volovitch M, Bensimon D, Vriz S, Jullien L. Photocontrol of protein activity in cultured cells and zebrafish with one- and two-photon illumina-tion.,2010, 11(5): 653–663.
[35] Sinha DK, Neveu P, Gagey N, Aujard I, Le Saux T, Rampon C, Gauron C, Kawakami K, Leucht C, Bally- Cuif L, Volovitch M, Bensimon D, Jullien L, Vriz S. Photoactivation of the CreER T2 recombinase for conditional site-specific recombination with high spatiotemporal resolution.,2010, 7(2): 199– 204.
[36] Lu X, Agasti SS, Vinegoni C, Waterman P, DePinho RA, Weissleder R. Optochemogenetics (OCG) allows more precise control of genetic engineering in mice with CreER regulators.,2012, 23(9): 1945–1951.
[37] Inlay MA, Choe V, Bharathi S, Fernhoff NB, Baker JR Jr, Weissman IL, Choi SK. Synthesis of a photocaged tamoxifen for light-dependent activation of Cre-ER recombinase-driven gene modification.,2013, 49(43): 4971–4973.
[38] Faal T, Wong PT, Tang SZ, Coulter A, Chen Y, Tu CH, Baker JR, Choi SK, Inlay MA. 4-Hydroxytamoxifen probes for light-dependent spatiotemporal control of Cre-ER mediated reporter gene expression.,2015, 11(3): 783–790.
[39] Brown KA, Zou Y, Shirvanyants D, Zhang J, Samanta S, Mantravadi PK, Dokholyan NV, Deiters A. Light- cleavable rapamycin dimer as an optical trigger for protein dimerization.,2015, 51(26): 5702–5705.
[40] Gorka AP, Nani RR, Zhu JJ, Mackem S, Schnermann MJ. A near-IR uncaging strategy based on cyanine photochemistry.,2014, 136(40): 14153–14159.
[41] Edwards WF, Young DD, Deiters A. Light-activated Cre recombinase as a tool for the spatial and temporal control of gene function in mammalian cells.,2009, 4(6): 441–445.
[42] Luo J, Arbely E, Zhang J, Chou C, Uprety R, Chin JW, Deiters A. Genetically encoded optical activation of DNA recombination in human cells.,2016, 52(55): 8529–8532.
[43] Beverage JN, Sissung TM, Sion AM, Danesi R, Figg WD. CYP2D6 polymorphisms and the impact on tamoxifen therapy.,2007, 96(9): 2224– 2231.
[44] Cambridge SB, Geissler D, Keller S, Cürten B. A caged doxycycline analogue for photoactivated gene expression.,2006, 45(14): 2229–2231.
[45] Goegan B, Terzi F, Bolze F, Cambridge S, Specht A. Synthesis and characterization of photoactivatable doxycycline analogues bearing two-photon-sensitive photoremovable groups suitable for light-induced gene expression.,2018, 19(12): 1341–1348.
[46] Cambridge SB, Geissler D, Calegari F, Anastassiadis K, Hasan MT, Stewart AF, Huttner WB, Hagen V, Bonhoeffer T. Doxycycline-dependent photoactivated gene expression in eukaryotic systems.,2009, 6(7): 527–531.
[47] Zheng YJ, Nandakumar KS, Cheng K. Optimization of CAR-T cell-based therapies using small-molecule-based safety switches.,2021, 64(14): 9577–9591.
[48] Deiters A, Groff D, Ryu Y, Xie JM, Schultz PG. A genetically encoded photocaged tyrosine.,2006, 45(17): 2728–2731.
[49] Kennedy MJ, Hughes RM, Peteya LA, Schwartz JW, Ehlers MD, Tucker CL. Rapid blue-light-mediated induction of protein interactions in living cells.,2010, 7(12): 973–975.
[50] Li F, Lu ZW, Wu WB, Qian NN, Wang FC, Chen T. Optogenetic gene editing in regional skin.,2019, 29(10): 862–865.
[51] Bugaj LJ, Choksi AT, Mesuda CK, Kane RS, Schaffer DV. Optogenetic protein clustering and signaling activation in mammalian cells.,2013, 10(3): 249–252.
[52] Taslimi A, Vrana JD, Chen D, Borinskaya S, Mayer BJ, Kennedy MJ, Tucker CL. An optimized optogenetic clustering tool for probing protein interaction and function.,2014, 5: 4925.
[53] Zoltowski BD, Schwerdtfeger C, Widom J, Loros JJ, Bilwes AM, Dunlap JC, Crane BR. Conformational switching in the fungal light sensor Vivid.,2007, 316(5827): 1054–1057.
[54] Zoltowski BD, Crane BR. Light activation of the LOV protein vivid generates a rapidly exchanging dimer.,2008, 47(27): 7012–7019.
[55] Vaidya AT, Chen CH, Dunlap JC, Loros JJ, Crane BR. Structure of a light-activated LOV protein dimer that regulates transcription.,2011, 4(184): ra50.
[56] Kawano F, Suzuki H, Furuya A, Sato M. Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins.,2015, 6: 6256.
[57] Liu HT, Yu XH, Li KW, Klejnot J, Yang HY, Lisiero D, Lin CT. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis.,2008, 322(5907): 1535–1539.
[58] Shimizu-Sato S, Huq E, Tepperman JM, Quail PH. A light-switchable gene promoter system.,2002, 20(10): 1041–1044.
[59] Levskaya A, Weiner OD, Lim WA, Voigt CA. Spatiotemporal control of cell signalling using a light-switchable protein interaction.,2009, 461(7266): 997–1001.
[60] Wu D, Hu Q, Yan Z, Chen W, Yan CY, Huang X, Zhang J, Yang PY, Deng HT, Wang JW, Deng XW, Shi YG. Structural basis of ultraviolet-B perception by UVR8.,2012, 484(7393): 214–219.
[61] Cloix C, Kaiserli E, Heilmann M, Baxter KJ, Brown BA, O'Hara A, Smith BO, Christie JM, Jenkins GI. C-terminal region of the UV-B photoreceptor UVR8 initiates signaling through interaction with the COP1 protein.,2012, 109(40): 16366–16370.
[62] Crefcoeur RP, Yin RH, Ulm R, Halazonetis TD. Ultraviolet-B-mediated induction of protein-protein interactions in mammalian cells.,2013, 4: 1779.
[63] Kaberniuk AA, Shemetov AA, Verkhusha VV. A bacterial phytochrome-based optogenetic system controllable with near-infrared light.,2016, 13(7): 591–597.
[64] Ryu MH, Gomelsky M. Near-infrared light responsive synthetic c-di-GMP module for optogenetic applications.,2014, 3(11): 802–810.
[65] Shao JW, Xue S, Yu GL, Yu YH, Yang XP, Bai Y, Zhu SC, Yang LF, Yin JL, Wang YD, Liao SY, Guo SW, Xie MQ, Fussenegger M, Ye HF. Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice.,2017, 9(387): eaal2298.
[66] Strickland D, Lin Y, Wagner E, Hope CM, Zayner J, Antoniou C, Sosnick TR, Weiss EL, Glotzer M. TULIPs: tunable, light-controlled interacting protein tags for cell biology.,2012, 9(4): 379–384.
[67] Woolley GA. Designing chimeric LOV photoswitches.,2012, 19(4): 441–442.
[68] Guntas G, Hallett RA, Zimmerman SP, Williams T, Yumerefendi H, Bear JE, Kuhlman B. Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins.,2015, 112(1): 112–117.
[69] Wan S, Parrish JA, Anderson RR, Madden M. Transmittance of nonionizing radiation in human tissues.,1981, 34(6): 679–681.
[70] Gomelsky M. Photoactivated cells link diagnosis and therapy.,2017, 9(387): eaan3936.
[71] Taslimi A, Zoltowski B, Miranda JG, Pathak GP, Hughes RM, Tucker CL. Optimized second-generation CRY2-CIB dimerizers and photoactivatable Cre recombinase.,2016, 12(6): 425–430.
[72] Meador K, Wysoczynski CL, Norris AJ, Aoto J, Bruchas MR, Tucker CL. Achieving tight control of a photoactivatable Cre recombinase gene switch: new design strategies and functional characterization in mammalian cells and rodent.,2019, 47(17): e97.
[73] Kawano F, Okazaki R, Yazawa M, Sato M. A photoactivatable Cre-loxP recombination system for optogenetic genome engineering.,2016, 12(12): 1059–1064.
[74] Morikawa K, Furuhashi K, de Sena-Tomas C, Garcia-Garcia AL, Bekdash R, Klein AD, Gallerani N, Yamamoto HE, Park SHE, Collins GS, Kawano F, Sato M, Lin CS, Targoff KL, Au E, Salling MC, Yazawa M. Photoactivatable Cre recombinase 3.0 for in vivo mouse applications.,2020, 11(1): 2141.
[75] Allen ME, Zhou W, Thangaraj J, Kyriakakis P, Wu YQ, Huang ZL, Ho P, Pan YJ, Limsakul P, Xu XD, Wang YX. An AND-Gated drug and photoactivatable Cre-loxP system for spatiotemporal control in cell-based therapeutics.,2019, 8(10): 2359–2371.
[76] Takao T, Hiraoka Y, Kawabe K, Yamada D, Ming L, Tanaka K, Sato M, Takarada T. Establishment of a tTA-dependent photoactivatable Cre recombinase knock-in mouse model for optogenetic genome engineering.,2020, 526(1): 213–217.
[77] Yen ST, Trimmer KA, Aboul-Fettouh N, Mullen RD, Culver JC, Dickinson ME, Behringer RR, Eisenhoffer GT. CreLite: An optogenetically controlled Cre/loxP system using red light.,2020, 249(11): 1394–1403.
[78] Wu JL, Wang MY, Yang XP, Yi CW, Jiang J, Yu YH, Ye HF. A non-invasive far-red light-induced split-Cre recombinase system for controllable genome engineering in mice.,2020, 11(1): 3708.
[79] Jung H, Kim SW, Kim M, Hong J, Yu D, Kim JH, Lee Y, Kim S, Woo D, Shin HS, Park BO, Heo WD. Noninvasive optical activation of Flp recombinase for genetic manipulation in deep mouse brain regions.,2019, 10(1): 314.
[80] Li HY, Zhang QS, Gu YR, Wu YY, Wang YM, Wang LR, Feng SJ, Hu YQ, Zheng YS, Li YM, Ye HF, Zhou B, Lin LN, Liu MY, Yang HY, Li DL. Efficient photoac-tivatable Dre recombinase for cell type-specific spatio-temporal control of genome engineering in the mouse.,2020, 117(52): 33426–33435.
[81] Duan LT, Che D, Zhang K, Ong QX, Guo SL, Cui BX. Optogenetic control of molecular motors and organelle distributions in cells.,2015, 22(5): 671–682.
[82] Hughes RM, Bolger S, Tapadia H, Tucker CL. Light-mediated control of DNA transcription in yeast.,2012, 58(4): 385–391.
[83] Konermann S, Brigham MD, Trevino A, Hsu PD, Heidenreich M, Cong L, Platt RJ, Scott DA, Church GM, Zhang F. Optical control of mammalian endogenous transcription and epigenetic states.,2013, 500(7463): 472–476.
[84] Polstein LR, Gersbach CA. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation.,2015, 11(3): 198–200.
[85] Nihongaki Y, Furuhata Y, Otabe T, Hasegawa S, Yoshimoto K, Sato M. CRISPR-Cas9-based photoac-tivatable transcription systems to induce neuronal differentiation.,2017, 14(10): 963–966.
[86] Idevall-Hagren O, Dickson EJ, Hille B, Toomre DK, De Camilli P. Optogenetic control of phosphoinositide metabolism.,2012, 109(35): E2316–E2323.
[87] Giordano F, Saheki Y, Idevall-Hagren O, Colombo SF, Pirruccello M, Milosevic I, Gracheva EO, Bagriantsev SN, Borgese N, De Camilli P. PI(4,5)P(2)-dependent and Ca(2+)-regulated ER-PM interactions mediated by the extended synaptotagmins.,2013, 153(7): 1494–1509.
[88] Kakumoto T, Nakata T. Optogenetic control of PIP3: PIP3 is sufficient to induce the actin-based active part of growth cones and is regulated via endocytosis.,2013, 8(8): e70861.
[89] Maiuri P, Rupprecht JF, Wieser S, Ruprecht V, Bénichou O, Carpi N, Coppey M, De Beco S, Gov N, Heisenberg CP, Lage Crespo C, Lautenschlaeger F, Le Berre M, Lennon-Dumenil AM, Raab M, Thiam HR, Piel M, Sixt M, Voituriez R. Actin flows mediate a universal coupling between cell speed and cell persistence.,2015, 161(2): 374–386.
[90] Boulina M, Samarajeewa H, Baker JD, Kim MD, Chiba A. Live imaging of multicolor-labeled cells in Drosophila.,2013, 140(7): 1605–1613.
[91] Schindler SE, McCall JG, Yan P, Hyrc KL, Li MJ, Tucker CL, Lee JM, Bruchas MR, Diamond MI. Photo-activatable Cre recombinase regulates gene expression in vivo.,2015, 5: 13627.
[92] Zoltowski BD, Vaccaro B, Crane BR. Mechanism-based tuning of a LOV domain photoreceptor.,2009, 5(11): 827–834.
[93] Lamb JS, Zoltowski BD, Pabit SA, Crane BR, Pollack L. Time-resolved dimerization of a PAS-LOV protein measured with photocoupled small angle X-ray scattering.,2008, 130(37): 12226–12227.
[94] Thomson JG, Rucker EB 3rd, Piedrahita JA. Mutational analysis of loxP sites for efficient Cre-mediated insertion into genomic DNA.,2003, 36(3): 162–167.
[95] Oberdoerffer P, Otipoby KL, Maruyama M, Rajewsky K. Unidirectional Cre-mediated genetic inversion in mice using the mutant loxP pair lox66/lox71.,2003, 31(22): e140.
[96] Araki K, Okada Y, Araki M, Yamamura KI. Comparative analysis of right element mutant lox sites on recombination efficiency in embryonic stem cells.,2010, 10: 29.
[97] Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters.,1992, 89(12): 5547–5551.
[98] Furth PA, St Onge L, B?ger H, Gruss P, Gossen M, Kistner A, Bujard H, Hennighausen L. Temporal control of gene expression in transgenic mice by a tetracycline- responsive promoter.,1994, 91(20): 9302–9306.
[99] Jorissen HJMM, Quest B, Lindner I, de Marsac NT, G?rtner W. Phytochromes with noncovalently bound chromophores: the ability of apophytochromes to direct tetrapyrrole photoisomerization.,2002, 75(5): 554–559.
[100] Kami C, Mukougawa K, Muramoto T, Yokota A, Shinomura T, Lagarias JC, Kohchi T. Complementation of phytochrome chromophore-deficient Arabidopsis by expression of phycocyanobilin:ferredoxin oxidoreductase.,2004, 101(4): 1099–1104.
[101] Zhou Y, Kong DQ, Wang XY, Yu GL, Wu X, Guan NZ, Weber W, Ye HF. A small and highly sensitive red/far- red optogenetic switch for applications in mammals.,2022, 40(2): 262–272.
[102] Müller K, Engesser R, Timmer J, Nagy F, Zurbriggen MD, Weber W. Synthesis of phycocyanobilin in mammalian cells.,2013, 49(79): 8970–8972.
[103] Khanna R, Huq E, Kikis EA, Al-Sady B, Lanzatella C, Quail PH. A novel molecular recognition motif necessary for targeting photoactivated phytochrome signaling to specific basic helix-loop-helix transcription factors.,2004, 16(11): 3033–3044.
[104] Müller K, Engesser R, Metzger S, Schulz S, K?mpf MM, Busacker M, Steinberg T, Tomakidi P, Ehrbar M, Nagy F, Timmer J, Zubriggen MD, Weber W. A red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells.,2013, 41(7): e77.
[105] Wiltbank LB, Kehoe DM. Diverse light responses of cyanobacteria mediated by phytochrome superfamily photoreceptors.,2019, 17(1): 37–50.
[106] Kojadinovic M, Laugraud A, Vuillet L, Fardoux J, Hannibal L, Adriano JM, Bouyer P, Giraud E, Verméglio A. Dual role for a bacteriophytochrome in the bioenergetic control of Rhodopseudomonas palustris: enhancement of photosystem synthesis and limitation of respiration.,2008, 1777(2): 163–172.
[107] Ulijasz AT, Vierstra RD. Phytochrome structure and photochemistry: recent advances toward a complete molecular picture.,2011, 14(5): 498–506.
[108] Piatkevich KD, Subach FV, Verkhusha VV. Engineering of bacterial phytochromes for near-infrared imaging, sensing, and light-control in mammals.,2013, 42(8): 3441–3452.
[109] Tran MTN, Tanaka J, Hamada M, Sugiyama Y, Sakaguchi S, Nakamura M, Takahashi S, Miwa Y. In vivo image analysis using iRFP transgenic mice.,2014, 63(3): 311–319.
[110] Shcherbakova DM, Baloban M, Verkhusha VV. Near- infrared fluorescent proteins engineered from bacterial phytochromes.,2015, 27: 52–63.
[111] Redchuk TA, Kaberniuk AA, Verkhusha VV. Near- infrared light-controlled systems for gene transcription regulation, protein targeting and spectral multiplexing.,2018, 13(5): 1121–1136.
[112] Karimova M, Abi-Ghanem J, Berger N, Surendranath V, Pisabarro MT, Buchholz F. Vika/vox, a novel efficient and specific Cre/loxP-like site-specific recombination system.,2013, 41(2): e37.
[113] Karimova M, Splith V, Karpinski J, Pisabarro MT, Buchholz F. Discovery of Nigri/nox and Panto/pox site-specific recombinase systems facilitates advanced genome engineering.,2016, 6: 30130.
[114] Liu K, Yu W, Tang MX, Tang J, Liu XX, Liu QZ, Li Y, He LJ, Zhang LB, Evans SM, Tian XY, Lui KO, Zhou B. A dual genetic tracing system identifies diverse and dynamic origins of cardiac valve mesenchyme.,2018, 145(18): dev167775.
[115] Plummer NW, Evsyukova IY, Robertson SD, de Marchena J, Tucker CJ, Jensen P. Expanding the power of recombinase-based labeling to uncover cellular diversity.,2015, 142(24): 4385–4393.
[116] Karimova M, Baker O, Camgoz A, Naumann R, Buchholz F, Anastassiadis K. A single reporter mouse line for Vika, Flp, Dre, and Cre-recombination.,2018, 8(1): 14453.
[117] Yao SQ, Yuan P, Ouellette B, Zhou T, Mortrud M, Balaram P, Chatterjee S, Wang Y, Daigle TL, Tasic B, Kuang XL, Gong H, Luo QM, Zeng SQ, Curtright A, Dhaka A, Kahan A, Gradinaru V, Chrapkiewicz R, Schnitzer M, Zeng HK, Cetin A. RecV recombinase system for in vivo targeted optogenomic modifications of single cells or cell populations.,2020, 17(4): 422–429.
Development and application of light-controlled inducible recombination systems
Tian Xie, Mei Wang, Ruiyu Gao, Yanni Miao, Yiming Zhang, Jing Jiang
The site-specific recombination systems are composed of recombinases and specific recognition sites, which are powerful tools for gene manipulation and have been extensively used in life sciences research. Inducible recombination systems have been developed to precisely regulate gene expression in a spatiotemporal manner in cells and animals for applications such as gene function research, cell lineage tracing and disease treatment. Based on different spatiotemporal expression methods of recombinases, inducible recombination systems can be divided into two categories: chemical- controlled and light-controlled inductions. Light-controlled inducible recombination systems that utilize light as inducer consist of photocage and optogenetics in accordance with optical control patterns and objects. Photocaged inducible recombination systems are using photosensitive groups to control chemical inducers or recombinases. Their activities are inhibited by photosensitive groups before light induction and recovered after specific light irradiation, leading to light-controlled inducible gene recombination. While optogenetic inducible recombination systems rely on reactivations of split recombinases that mediated by optogenetic switches. Optogenetic switches are composed of a series of gene-encoded photosensitive proteins, including cryptochromes, VIVID, phytochromes, etc. These types of light-controlled inducible recombination systems provide more possibilities for analyzing gene expression and function from the dimension of high spatiotemporal resolution to meet the increasingly complex demands of life science research. In this review, we summarize the developing principles and applications of different types of light-controlled inducible recombination systems, compare their advantages and disadvantages, and prospect the development of more light-controlled recombination systems in the future, with the aims to provide theoretical basis and guidance for system optimization and upgrade.
light-controlled inducible recombination system; photocage;optogenetic switch;site-specific recombinase;spatiotemporal control
2022-05-15;
2022-06-28;
2022-07-13
國家重點研發(fā)計劃專項(編號:2020YFA0509001),國家自然科學基金項目(編號:31801057)和上海市科學技術(shù)委員會科技計劃項目(編號:21140905100,22140903500)資助[Supported by the National Key Research and Development Program of China (No. 2020YFA0509001), the National Natural Science Foundation of China (No. 31801057), and Shanghai Municipal Commission for Science and Technology Grants (Nos. 21140905100, 22140903500)]
謝甜,碩士,工程師,研究方向:基因組標簽計劃與基因編輯。E-mail: tian.xie@sibcb.ac.cn
蔣婧,博士,副研究員,研究方向:基因組標簽計劃與基因編輯。E-mail: jiangjing@sibcb.ac.cn
10.16288/j.yczz.22-158
(責任編委: 郭偉翔)