• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      數(shù)傳天線機(jī)電耦合建模及微振動(dòng)特性仿真與試驗(yàn)研究

      2022-08-26 08:51:48鄭照明月王光遠(yuǎn)
      振動(dòng)與沖擊 2022年16期
      關(guān)鍵詞:數(shù)傳子結(jié)構(gòu)柔性

      鄭照明月,程 偉,王光遠(yuǎn),李 名

      (1.北京航空航天大學(xué) 航空科學(xué)與工程學(xué)院,北京 100191;2.四川航天系統(tǒng)工程研究所,成都 610100;3.中國空間技術(shù)研究院,北京 100094)

      為了繼續(xù)提升高分辨率遙感衛(wèi)星的成像質(zhì)量,遙感衛(wèi)星的穩(wěn)定度要求隨之不斷提升[1]。但衛(wèi)星上存在著控制力矩陀螺,動(dòng)量輪,太陽翼驅(qū)動(dòng)機(jī)構(gòu),數(shù)傳天線等活動(dòng)部件[2-6]。衛(wèi)星在軌運(yùn)行時(shí),活動(dòng)部件會(huì)產(chǎn)生微振動(dòng)。微振動(dòng)不僅影響相機(jī)等有效載荷的分辨率和指向精度,而且還可能影響衛(wèi)星姿態(tài)控制[7]。其中,星載數(shù)傳天線在航天器數(shù)據(jù)中繼和星間鏈路等任務(wù)中扮演著重要角色,但也是低頻段微振動(dòng)的主要擾振源[8-10]。

      混合式兩相步進(jìn)電機(jī)由于其結(jié)構(gòu)簡單、定位精度高、易于開環(huán)控制電路等優(yōu)點(diǎn),在航天器活動(dòng)部件低速轉(zhuǎn)動(dòng)上應(yīng)用廣泛[11-12]。目前,細(xì)分驅(qū)動(dòng)(subdivision driving,SDD)被廣泛使用,它通過將電流變化細(xì)分為多個(gè)微電脈沖來提高電機(jī)的分辨率[13]和操作的平穩(wěn)性[14]。星載數(shù)傳天線由兩個(gè)垂直布置的步進(jìn)電機(jī)驅(qū)動(dòng)反射器轉(zhuǎn)動(dòng)[15]。反射器為較大尺寸的柔性結(jié)構(gòu),通過驅(qū)動(dòng)機(jī)構(gòu)與支撐臂連接。為了提高數(shù)傳天線的指向范圍,避免反射器與衛(wèi)星本體出現(xiàn)干涉,雙軸數(shù)傳天線的支撐臂被設(shè)計(jì)為較長的尺寸,且具備一定的柔性。在天線工作時(shí),步進(jìn)電機(jī)的電脈沖信號(hào)和減速機(jī)構(gòu)的嚙合齒諧波傳動(dòng)都會(huì)產(chǎn)生微擾動(dòng)[16-17]。這種微擾動(dòng)可能引起柔性負(fù)載-反射器、柔性邊界-支撐臂產(chǎn)生結(jié)構(gòu)振動(dòng),并反作用于步進(jìn)電機(jī)。進(jìn)而既影響星上有效載荷的性能指標(biāo),又會(huì)影響數(shù)傳天線本身的指向精度。所以,數(shù)傳天線的微振動(dòng)現(xiàn)象可以歸納為在柔性邊界上步進(jìn)電機(jī)驅(qū)動(dòng)柔性負(fù)載的耦合振動(dòng)問題,而這種問題的建模和分析比較復(fù)雜。

      多數(shù)研究者以數(shù)傳天線的指向精度為設(shè)計(jì)目標(biāo),從步進(jìn)電機(jī)和控制方法的角度建模。劉輝等[18]從指向算法、指向執(zhí)行、地面站指向、大氣傳輸?shù)确矫娣治隽藬?shù)傳天線指向精度的影響因素。周勇等[19]考慮了諧波齒輪的非線性和驅(qū)動(dòng)電路的動(dòng)態(tài)特性,建立了數(shù)傳跟蹤天線驅(qū)動(dòng)機(jī)構(gòu)模型。這類思路雖能有效分析數(shù)傳天線的指向精度,但卻無法預(yù)測數(shù)傳天線產(chǎn)生微振動(dòng)的力矩大小。部分研究者從柔性結(jié)構(gòu)角度建立了數(shù)傳天線的動(dòng)力學(xué)模型。宋建虎[20]通過有限元法建立了數(shù)傳天線的動(dòng)力學(xué)模型,計(jì)算分析了振動(dòng)特性。Cao等[21]通過采用加載模態(tài)綜合-混合坐標(biāo)法建立了數(shù)傳天線的柔性耦合動(dòng)力學(xué)方程。他們的研究未考慮步進(jìn)電機(jī)與柔性結(jié)構(gòu)的耦合作用,不能準(zhǔn)確解釋數(shù)傳天線的微振動(dòng)現(xiàn)象。

      在步進(jìn)電機(jī)與結(jié)構(gòu)耦合振動(dòng)的研究中,Yang等[22]通過試驗(yàn)和仿真驗(yàn)證了步進(jìn)電機(jī)存在電磁剛度。劉希剛[23]根據(jù)步進(jìn)電機(jī)原理,將負(fù)載簡化為剛性,建立了數(shù)傳天線的微振動(dòng)的一般解析模型和簡化模型。Chen等[24]通過簡化和線性化步進(jìn)電機(jī)的電磁轉(zhuǎn)矩建立了步進(jìn)電機(jī)的振動(dòng)方程,并用兩自由度柔性系統(tǒng)進(jìn)行了仿真分析。Sattar等[25]根據(jù)拉格朗日能量法建立了步進(jìn)電機(jī)與剛性載荷運(yùn)動(dòng)學(xué)和微振動(dòng)耦合的動(dòng)力學(xué)模型。他們在研究中未考慮負(fù)載柔性和邊界柔性的影響,或?qū)ω?fù)載柔性和邊界柔性進(jìn)行一定程度的簡化。也有研究者通過試驗(yàn)研究了數(shù)傳天線的微振動(dòng)現(xiàn)象,但未深入討論其產(chǎn)生原因和耦合機(jī)理。Wu等綜合考慮了步進(jìn)電機(jī)和天線結(jié)構(gòu)模態(tài),通過試驗(yàn)給出了一種半經(jīng)驗(yàn)半解析的數(shù)傳天線微振動(dòng)模型。Oh等使用KISTLER公司生產(chǎn)的測力臺(tái)測試了一種數(shù)傳天線的微振動(dòng),并設(shè)計(jì)了一種可以抑制其微振動(dòng)的偽彈性SMA網(wǎng)墊。但他們均未揭示步進(jìn)電機(jī)和天線結(jié)構(gòu)的耦合關(guān)系。因此,需通過數(shù)學(xué)建模研究在柔性邊界上步進(jìn)電機(jī)驅(qū)動(dòng)柔性負(fù)載的耦合振動(dòng)問題,并通過試驗(yàn)驗(yàn)證和分析數(shù)傳天線微振動(dòng)產(chǎn)生的機(jī)理和影響因素。

      本文研究了在柔性邊界上步進(jìn)電機(jī)驅(qū)動(dòng)柔性負(fù)載的動(dòng)力學(xué)模型。通過線性化方法簡化了步進(jìn)電機(jī)的動(dòng)力學(xué)方程。采用動(dòng)態(tài)子結(jié)構(gòu)方法建立了在柔性邊界上步進(jìn)電機(jī)驅(qū)動(dòng)柔性負(fù)載的動(dòng)力學(xué)模型,并給出了數(shù)傳天線微振動(dòng)的解析表達(dá)式。通過坐標(biāo)變化法分析了系統(tǒng)振動(dòng)的耦合關(guān)系。最后,通過仿真和試驗(yàn)驗(yàn)證了方法的有效性。

      1 雙軸數(shù)傳天線機(jī)電耦合模型

      1.1 電流細(xì)分化的步進(jìn)電機(jī)動(dòng)力學(xué)方程的簡化

      兩相混合式步進(jìn)電機(jī)的驅(qū)動(dòng)模型為

      (1)

      式中:Φ為磁鏈?zhǔn)噶?;I為電流矢量;L為電感矩陣。電感矩陣為對(duì)稱矩陣,忽略周期性磁導(dǎo)函數(shù)的高階諧波分量,電感矩陣可表示為

      式中,z為轉(zhuǎn)子齒數(shù)。為了使步進(jìn)電機(jī)運(yùn)行過程具備較好的平穩(wěn)性,通常將步進(jìn)電機(jī)的驅(qū)動(dòng)電流進(jìn)行階梯化細(xì)分,因此電流矢量I可表示為

      (3)

      式中:IA和IB分別為A,B兩相繞組電流;If為永磁體的等效勵(lì)磁電流;Im為兩相繞組電流細(xì)分后的幅值;γ為電流細(xì)分后的電步距角;i為運(yùn)行步數(shù)。

      兩相混合式步進(jìn)電機(jī)的動(dòng)力學(xué)模型為

      (4)

      式中:θ為轉(zhuǎn)子的轉(zhuǎn)角;J0和C0為電機(jī)轉(zhuǎn)子的轉(zhuǎn)動(dòng)慣量和電機(jī)內(nèi)部的黏性阻尼系數(shù);Te和Tl為電磁轉(zhuǎn)矩和負(fù)載轉(zhuǎn)矩。由式(1)~式(3),電磁轉(zhuǎn)矩Te可化為

      Km[IBcos(zθ)-IAsin(zθ)]-Kdcos(4zθ)=

      (5)

      (6)

      (7)

      所以,電流細(xì)分化的步進(jìn)電機(jī)的動(dòng)力學(xué)方程可化為

      (8)

      式中:K0=KmImz為步進(jìn)電機(jī)的等效電磁剛度;Tex=KmImγi為電磁轉(zhuǎn)矩中的階梯激勵(lì),該分量與轉(zhuǎn)子角位移無關(guān)。根據(jù)上式可知,電流細(xì)分化的步進(jìn)電機(jī)可等效為電磁彈簧-阻尼系統(tǒng),為進(jìn)一步分析步進(jìn)電機(jī)和數(shù)傳天線柔性負(fù)載和柔性支撐臂的耦合振動(dòng)提供基礎(chǔ)。

      1.2 柔性結(jié)構(gòu)動(dòng)力學(xué)模型降階

      雙軸數(shù)傳天線由支撐臂、X軸步進(jìn)電機(jī)、Y軸步進(jìn)電機(jī)和反射器組成,其中支撐臂和反射器為柔性結(jié)構(gòu)。圖1給出了雙軸數(shù)傳天線的結(jié)構(gòu)示意圖。采用有限元方法對(duì)柔性結(jié)構(gòu)建模時(shí),結(jié)構(gòu)自由度高,迭代計(jì)算量大,效率低。故選用動(dòng)態(tài)子結(jié)構(gòu)方法,對(duì)柔性結(jié)構(gòu)的動(dòng)力學(xué)模型進(jìn)行縮聚,將高自由度的物理坐標(biāo)轉(zhuǎn)化成低自由度的模態(tài)坐標(biāo),從而提高了計(jì)算效率。數(shù)傳天線的微振動(dòng)主要集中于低頻段,忽略高階模態(tài)影響對(duì)計(jì)算精度影響不大。

      圖1 雙軸數(shù)傳天線結(jié)構(gòu)示意圖Fig.1 Structure diagram of data transmission antenna

      圖2給出了雙軸數(shù)傳天線的坐標(biāo)系,XYZ定義為慣性坐標(biāo)系,x0y0z0為原點(diǎn)位于C點(diǎn)的固定坐標(biāo)系,xayaza為中間坐標(biāo)系,xbybzb為反射器坐標(biāo)系。定義α為X軸電機(jī)轉(zhuǎn)過的角位移,β為Y軸電機(jī)轉(zhuǎn)過的角位移。首先,Y軸電機(jī)和反射器繞x0軸轉(zhuǎn)動(dòng)α至中間坐標(biāo)系,然后,反射器繞ya軸轉(zhuǎn)動(dòng)β。坐標(biāo)系的變換關(guān)系為

      圖2 雙軸數(shù)傳天線坐標(biāo)系Fig.2 Coordinate system of data transmission antenna

      (9)

      式中:i0j0和k0為x0y0z0坐標(biāo)系的單位向量;iaja和ka為中間坐標(biāo)系xayaza的單位向量;ibjb和kb為xbybzb坐標(biāo)系的單位向量;R(x0,α)和R(ya,β)為坐標(biāo)轉(zhuǎn)換矩陣。當(dāng)天線反射器大角度轉(zhuǎn)動(dòng)后,天線構(gòu)型和力學(xué)特征均會(huì)發(fā)生較大變化,在后續(xù)推導(dǎo)中,將通過引入坐標(biāo)轉(zhuǎn)換矩陣進(jìn)行建模分析。

      將數(shù)傳天線分為4個(gè)子結(jié)構(gòu),子結(jié)構(gòu)1~子結(jié)構(gòu)4依次為反射器、Y軸步進(jìn)電機(jī)、X軸步進(jìn)電機(jī)和支撐臂。根據(jù)動(dòng)態(tài)子結(jié)構(gòu)方法,將子結(jié)構(gòu)的自由度劃分為內(nèi)部自由度和界面自由度。子結(jié)構(gòu)1在其局部坐標(biāo)系的動(dòng)力學(xué)方程為

      (10)

      (11)

      (12)

      根據(jù)固定界面模態(tài)綜合法,子結(jié)構(gòu)的假設(shè)模態(tài)集由主模態(tài)和約束模態(tài)構(gòu)成,子結(jié)構(gòu)1的主模態(tài)和約束模態(tài)的求解方法為

      (13)

      (14)

      式中,下標(biāo)l代表子結(jié)構(gòu)1保留的主模態(tài)階數(shù),將式(14)第一行展開可得

      (15)

      因此,子結(jié)構(gòu)1在其局部坐標(biāo)系的假設(shè)模態(tài)集為

      (16)

      子結(jié)構(gòu)2和子結(jié)構(gòu)3在自由界面下均為單自由度振動(dòng)系統(tǒng),僅存在一個(gè)扭轉(zhuǎn)自由度,根據(jù)式(8)可將步進(jìn)電機(jī)的動(dòng)力學(xué)方程寫為

      (17)

      (18)

      式中:上標(biāo)2和3分別為子結(jié)構(gòu)2和子結(jié)構(gòu)3,各物理量的含義為

      M2=J0+Jβ,M3=J0+Jα,C2=C3=C0,

      K2=K3=K0,F2=F3=Tex

      (19)

      根據(jù)式(13)~式(15)給出方法,可得子結(jié)構(gòu)2和子結(jié)構(gòu)3的假設(shè)模態(tài)集

      φ2=φ3=1

      (20)

      子結(jié)構(gòu)4同樣為柔性結(jié)構(gòu),其動(dòng)力學(xué)方程為

      (21)

      (22)

      (23)

      得到所有子結(jié)構(gòu)的假設(shè)模態(tài)集后,可將系統(tǒng)的質(zhì)量矩陣、阻尼矩陣、剛度矩陣、位移列向量、激勵(lì)列向量和模態(tài)矩陣定義為

      (25)

      對(duì)應(yīng)于模態(tài)矩陣φ的模態(tài)坐標(biāo)Xp可寫為

      (26)

      X=φXp

      (27)

      對(duì)系統(tǒng)的動(dòng)力學(xué)方程進(jìn)行第一次坐標(biāo)變換,可將耦合系統(tǒng)自由度較高的物理坐標(biāo)縮聚為自由度較低的混合坐標(biāo),即系統(tǒng)的動(dòng)力學(xué)方程為

      (28)

      其中,

      Mp=φTMφ,Cp=φTCφ,Kp=φTKφ,Fp=φTF

      (29)

      引入式(12)給出的坐標(biāo)變換關(guān)系和界面位移協(xié)調(diào)條件

      I4=(0 0 0 1 0 0)T,I5=(0 0 0 1 0 0)T(30)

      式中,Rα和Rβ為子結(jié)構(gòu)1在A點(diǎn)坐標(biāo)的坐標(biāo)轉(zhuǎn)換矩陣,根據(jù)式(13)~式(16)的模態(tài)綜合過程可知,子結(jié)構(gòu)1的內(nèi)部節(jié)點(diǎn)物理坐標(biāo)在模態(tài)綜合后,將通過模態(tài)坐標(biāo)體現(xiàn),模態(tài)綜合前后是否對(duì)內(nèi)部節(jié)點(diǎn)坐標(biāo)變換不影響綜合后的系統(tǒng)動(dòng)力學(xué)方程,僅對(duì)界面節(jié)點(diǎn)A處的物理坐標(biāo)進(jìn)行坐標(biāo)變換即可反映反射器在大角度轉(zhuǎn)動(dòng)后系統(tǒng)結(jié)構(gòu)特征的變化,所以模型在反射器大角度轉(zhuǎn)動(dòng)后同樣適用。同時(shí),模態(tài)坐標(biāo)Xp中各坐標(biāo)并非完全獨(dú)立,引入變換矩陣S,將Xp中非獨(dú)立的坐標(biāo)消去,得到耦合系統(tǒng)獨(dú)立的模態(tài)坐標(biāo)Xq

      (31)

      則耦合系統(tǒng)以自由度較低的獨(dú)立模態(tài)坐標(biāo)表示的動(dòng)力學(xué)方程可寫為

      (32)

      其中,

      Mq=STMpS,Cq=STCpS,Kq=STKpS,Fq=STFp(33)

      式(32)具備l+m+8階自由度,各個(gè)坐標(biāo)相互獨(dú)立,并且XC,α和β具有明確的物理含義。便于結(jié)合控制方法,建立數(shù)傳天線的機(jī)電耦合模型,同時(shí)較低的自由度保證迭代計(jì)算效率,各個(gè)坐標(biāo)相互獨(dú)立便于分析耦合關(guān)系。為了方便動(dòng)力學(xué)模型與控制模型連接,將式(32)改寫成狀態(tài)空間形式,并用下標(biāo)s表示結(jié)構(gòu)

      (34)

      其中,

      (35)

      雙軸數(shù)傳天線的狀態(tài)空間方程的階數(shù)較低,提高了仿真效率,且狀態(tài)空間方程的形式易與雙軸電機(jī)的控制模型連接,進(jìn)行聯(lián)合仿真用以優(yōu)化控制方法和控制參數(shù)。

      2 微振動(dòng)模型

      雙軸數(shù)傳天線的步進(jìn)電機(jī)啟動(dòng)后,驅(qū)動(dòng)系統(tǒng)會(huì)給電機(jī)輸入脈沖激勵(lì)電流,使其行星齒輪在嚙合過程中產(chǎn)生激振。電流脈沖引起振動(dòng)的基頻f0為

      (36)

      (37)

      3 仿真與試驗(yàn)驗(yàn)證

      3.1 Simulink仿真模型

      首先,通過模態(tài)試驗(yàn)獲取數(shù)傳天線的低階模態(tài),表1給出了數(shù)傳天線的模態(tài)頻率和振型,結(jié)合模態(tài)試驗(yàn)結(jié)果建立數(shù)傳天線的有限元模型。分別提取柔性結(jié)構(gòu)反射器和支撐臂的質(zhì)量矩陣和剛度矩陣,由于數(shù)傳天線的微振動(dòng)主要集中在低頻段,子結(jié)構(gòu)1和子結(jié)構(gòu)4的僅保留前10階模態(tài)進(jìn)行模態(tài)綜合,表1最后一列給出了模態(tài)綜合后的系統(tǒng)頻率。再根據(jù)第一章給出方法得到耦合系統(tǒng)動(dòng)力學(xué)方程的狀態(tài)空間形式,使用MATLAB的Simulink模塊建立了數(shù)傳天線的仿真仿真模型,如圖3所示。表2給出了仿真過程中使用的參數(shù),阻尼系數(shù)根據(jù)天線材料及試驗(yàn)結(jié)果共同確定。

      表1 數(shù)傳天線模態(tài)Tab.1 Mode of data transmission antenna

      圖3 雙軸數(shù)傳天線仿真模型Fig.3 Simulation model of data transmission antenna

      表2 仿真參數(shù)Tab.2 Simulation parameters

      3.2 微振動(dòng)試驗(yàn)

      試驗(yàn)系統(tǒng)包含3個(gè)部分:待測設(shè)備、測試設(shè)備、零重力狀態(tài)模擬設(shè)備,如圖4所示。待測設(shè)備有數(shù)傳天線和天線控制設(shè)備。測試設(shè)備有微振動(dòng)測力臺(tái),單向力傳感器,加速度傳感器,力錘等。微振動(dòng)測力臺(tái)為一種高剛度的壓電式測力臺(tái),由北京航空航天大學(xué)研制,其測試原理和方法由Chen等的研究給出,用于測量耦合系統(tǒng)產(chǎn)生微振動(dòng)。單向力傳感器在氦氣球充氣時(shí),測量氦氣球給吊繩的拉力。加速度傳感器和力錘用于測試耦合系統(tǒng)的模態(tài)。

      圖4 微振動(dòng)試驗(yàn)Fig.4 Micro vibration experiment

      3.3 仿真與試驗(yàn)結(jié)果對(duì)比分析

      圖5給出了數(shù)傳天線X軸電機(jī)和Y軸電機(jī)分別轉(zhuǎn)動(dòng)時(shí)的微振動(dòng)的典型頻域曲線,表3和表4給出了上述頻域曲線峰值點(diǎn)的頻率和幅值。X軸電機(jī)100.0 Hz,144.4 Hz和Y軸電機(jī)144.4 Hz 3個(gè)頻點(diǎn)的微振動(dòng)幅值較小(小于0.01 Nm),試驗(yàn)時(shí)受環(huán)境噪聲影響較大,導(dǎo)致試驗(yàn)與仿真的偏差較大,忽略上述3個(gè)頻點(diǎn)微振動(dòng)的結(jié)果。其他峰值處微振動(dòng)的仿真和試驗(yàn)結(jié)果表明:頻率一致,幅值誤差不超過9.41%,所以雙軸數(shù)傳天線的微振動(dòng)模型能準(zhǔn)確預(yù)測耦合系統(tǒng)產(chǎn)生的微振動(dòng)。

      圖5 微振動(dòng)頻域曲線對(duì)比Fig.5 Comparison of frequency domain curves of micro vibration

      表3 X軸電機(jī)微振動(dòng)頻域峰值Tab.3 Micro vibration peak in frequency domain of X-axis motor

      表4 Y軸電機(jī)微振動(dòng)頻域峰值Tab.4 Micro vibration peak in frequency domain of Y-axis motor

      圖6和圖7給出了步進(jìn)電機(jī)不同轉(zhuǎn)速下的微振動(dòng)結(jié)果。當(dāng)X軸電機(jī)轉(zhuǎn)動(dòng)時(shí),不同轉(zhuǎn)速工況均出現(xiàn)了7.7 Hz,18.0 Hz,112.0 Hz和117.9 Hz的自然頻率,分別對(duì)應(yīng)結(jié)構(gòu)第一、三、六、七階模態(tài)頻率7.9 Hz,17.8 Hz,112.7 Hz和118.8 Hz,這些模態(tài)振型均在X軸電機(jī)轉(zhuǎn)動(dòng)方向存在分量。當(dāng)Y軸電機(jī)轉(zhuǎn)動(dòng)時(shí),不同轉(zhuǎn)速工況均出現(xiàn)了7.7 Hz,14.2 Hz,87.3 Hz和117.9 Hz的自然頻率,分別對(duì)應(yīng)結(jié)構(gòu)的第一、二、五、七階模態(tài)頻率7.9 Hz,12.2 Hz,89.9 Hz和118.8 Hz,這些模態(tài)振型均在Y軸電機(jī)轉(zhuǎn)動(dòng)方向存在分量。以上現(xiàn)象表明,步進(jìn)電機(jī)轉(zhuǎn)動(dòng)時(shí),耦合結(jié)構(gòu)在電機(jī)轉(zhuǎn)動(dòng)方向存在分量的模態(tài)頻率上產(chǎn)生微振動(dòng)。

      圖6 不同角速度的微振動(dòng)仿真結(jié)果Fig.6 Simulation results of micro vibration with different angular velocity

      圖7 不同角速度的微振動(dòng)試驗(yàn)結(jié)果Fig.7 Experimental results of micro vibration at different angular velocities

      同時(shí),不同轉(zhuǎn)速下在式(36)給出的電流脈沖基頻和倍頻出現(xiàn)了微振動(dòng)峰值,如:轉(zhuǎn)速0.01 °/s時(shí),在11.1 Hz基頻處和22.2 Hz,33.3 Hz等倍頻處出現(xiàn)了微振動(dòng)峰值。倍頻處出現(xiàn)的微振動(dòng)峰值是步進(jìn)電機(jī)減速機(jī)構(gòu)等傳動(dòng)裝置在行星齒輪嚙合過程中引起的。綜上,數(shù)傳天線的微振動(dòng)成因主要有:①步進(jìn)電機(jī)轉(zhuǎn)動(dòng)引起耦合結(jié)構(gòu)在具有轉(zhuǎn)動(dòng)方向分量的模態(tài)頻率附近發(fā)生結(jié)構(gòu)振動(dòng);②脈沖激勵(lì)電流產(chǎn)生的電磁激勵(lì);③行星齒輪在嚙合過程中,產(chǎn)生了脈沖激勵(lì)的倍頻激勵(lì)。

      同時(shí),當(dāng)步進(jìn)電機(jī)的轉(zhuǎn)速較低時(shí),耦合結(jié)構(gòu)在低頻段有較多的諧振頻率。若脈沖激勵(lì)電流產(chǎn)生的微振動(dòng)的基頻和倍頻接近耦合結(jié)構(gòu)的自然頻率時(shí),會(huì)出現(xiàn)微振動(dòng)幅值共同放大的耦合現(xiàn)象。隨著步進(jìn)電機(jī)的轉(zhuǎn)速提高,脈沖激勵(lì)電流引起的微振動(dòng)的基頻和倍頻隨之提高,在低頻段出現(xiàn)的諧振頻率減少,與結(jié)構(gòu)頻率耦合的幾率降低。然而隨著轉(zhuǎn)速的升高,耦合結(jié)構(gòu)的低頻微振動(dòng)幅值隨之提高。所以在天線設(shè)計(jì)階段和使用過程中,應(yīng)仔細(xì)考慮工作轉(zhuǎn)速、勵(lì)磁轉(zhuǎn)矩、負(fù)載轉(zhuǎn)矩、機(jī)械步距角等參數(shù)的影響,避免微振動(dòng)與結(jié)構(gòu)頻率發(fā)生耦合。

      4 結(jié) 論

      分析了在柔性邊界上步進(jìn)電機(jī)驅(qū)動(dòng)柔性負(fù)載的微振動(dòng)現(xiàn)象。通過簡化步進(jìn)電機(jī)電磁力矩和動(dòng)態(tài)子結(jié)構(gòu)方法給出了一種面向控制系統(tǒng)的雙軸數(shù)傳天線的動(dòng)力學(xué)方程,并給出了微振動(dòng)的解析表達(dá)。通過仿真和試驗(yàn)驗(yàn)證了模型能準(zhǔn)確預(yù)測耦合結(jié)構(gòu)產(chǎn)生的微振動(dòng),結(jié)果表明微振動(dòng)的主要成因?yàn)椴竭M(jìn)電機(jī)轉(zhuǎn)動(dòng)與柔性結(jié)構(gòu)耦合、電磁脈沖激勵(lì)、行星齒輪嚙合等。

      猜你喜歡
      數(shù)傳子結(jié)構(gòu)柔性
      一種柔性拋光打磨頭設(shè)計(jì)
      灌注式半柔性路面研究進(jìn)展(1)——半柔性混合料組成設(shè)計(jì)
      石油瀝青(2021年5期)2021-12-02 03:21:18
      完全對(duì)換網(wǎng)絡(luò)的結(jié)構(gòu)連通度和子結(jié)構(gòu)連通度
      基于數(shù)傳電臺(tái)的靶彈測控系統(tǒng)設(shè)計(jì)
      高校學(xué)生管理工作中柔性管理模式應(yīng)用探索
      嫦娥衛(wèi)星數(shù)傳副瓣信號(hào)的干涉測量研究與精度驗(yàn)證
      載人航天(2019年1期)2019-03-07 01:41:02
      鋼框架腹板雙角鋼連接梁柱子結(jié)構(gòu)抗倒塌性能分析
      高速數(shù)傳電纜散射參數(shù)的測試及半實(shí)物仿真的分析與研究
      電子器件(2015年5期)2015-12-29 08:43:30
      基于子結(jié)構(gòu)的柴油機(jī)曲軸有限元建模方法研究
      頻率偏置對(duì)Ka頻段圓極化頻率復(fù)用數(shù)傳鏈路的影響
      航天器工程(2014年5期)2014-03-11 16:35:56
      合水县| 肇源县| 柳河县| 三江| 永川市| 天全县| 银川市| 呼伦贝尔市| 时尚| 禹州市| 朝阳区| 蒙城县| 黄陵县| 渑池县| 繁昌县| 天门市| 阿鲁科尔沁旗| 龙胜| 额济纳旗| 华亭县| 桓台县| 阿城市| 彭山县| 扎囊县| 申扎县| 阿拉善盟| 兰西县| 怀集县| 河间市| 乡城县| 民乐县| 滕州市| 保靖县| 东港市| 中卫市| 北川| 阳泉市| 郯城县| 彭阳县| 会东县| 桑日县|