李 斐 楊冬磊
1. 陜西國防工業(yè)職業(yè)技術(shù)學(xué)院, 陜西 西安 710300;
2. 中國石油塔里木油田公司油氣運(yùn)銷部, 新疆 庫爾勒 841000
天然氣丙烷回收是指將丙烷及以上重組分以液態(tài)的方式從天然氣中進(jìn)行回收的過程,通過凝液回收既可以提高外輸氣質(zhì)量,也可以提升油田經(jīng)濟(jì)效益。
通過查閱相關(guān)文獻(xiàn)發(fā)現(xiàn),DHX工藝能量?jī)?yōu)化常用的方法有正交實(shí)驗(yàn)法[1],多學(xué)科設(shè)計(jì)優(yōu)化法[2],灰色關(guān)聯(lián)分析法[3]常規(guī)、高級(jí)及經(jīng)濟(jì)分析法[4]。其中,高級(jí)及經(jīng)濟(jì)分析法克服了常規(guī)分析方法的不足,明確了不可逆性來源、損分類,同時(shí)計(jì)算了損的成本。
目前,國內(nèi)針對(duì)直接換熱(Direct Heat Exchange,DHX)工藝的研究主要集中在工藝結(jié)構(gòu)及運(yùn)行參數(shù)的優(yōu)化上。陳波等人[5]以丙烷回收率及系統(tǒng)能耗為目標(biāo)函數(shù),通過改變關(guān)鍵參數(shù),研究輕烴回收運(yùn)行模式的可行性;衛(wèi)浪等人[6]在對(duì)系統(tǒng)關(guān)鍵參數(shù)分析的基礎(chǔ)上,利用BP神經(jīng)網(wǎng)絡(luò)進(jìn)行多目標(biāo)優(yōu)化,為實(shí)際工藝流程設(shè)計(jì)提供理論依據(jù);肖樂等人[7]對(duì)凝液回收過程的制冷工藝進(jìn)行優(yōu)化,推薦采用丙烷制冷+膨脹機(jī)制冷+脫乙烷塔頂氣冷凝回流的制冷工藝,新工藝顯著提高了丙烷回收率;韓淑怡等人[8]研究了預(yù)冷溫度、膨脹機(jī)出口壓力對(duì)丙烷回收率及能耗的影響,采用單因素分析法優(yōu)化流程;張世堅(jiān)等人[9]通過增設(shè)脫乙烷塔頂回流罐,針對(duì)不同工藝條件對(duì)丙烷回收流程進(jìn)行改進(jìn),為實(shí)際運(yùn)行工況提供理論基礎(chǔ)。
本文針對(duì)某天然氣處理廠DHX工藝進(jìn)行凝液回收模擬,對(duì)各個(gè)設(shè)備及整個(gè)系統(tǒng)進(jìn)行常規(guī)、高級(jí)及經(jīng)濟(jì)分析,將損與經(jīng)濟(jì)成本聯(lián)系,為系統(tǒng)優(yōu)化改進(jìn)提供明確的方向。
表1 原料氣氣質(zhì)工況表Tab.1 Raw gas quality conditions
某天然氣處理廠DHX工藝丙烷回收流程見圖1。具體流程:干燥原料氣經(jīng)主冷箱LNG-101預(yù)冷到 -45.5 ℃ 進(jìn)入低溫分離器V-101進(jìn)行氣液分離,氣相經(jīng)膨脹機(jī)膨脹端 K-101 降壓至3 450 kPa后進(jìn)入DHX塔T-101底部,液相節(jié)流降壓經(jīng)LNG-101換熱至15 ℃后進(jìn)入脫乙烷塔 T-102 中部。T-101底部液相與原料氣換熱到-18 ℃進(jìn)入T-102頂部。T-102塔頂氣相與T-101塔頂氣相換熱冷凝到-33 ℃進(jìn)入回流罐V-102,V-102氣相經(jīng)過LNG-101再次降溫至-69 ℃進(jìn)入T-101頂部,與膨脹機(jī)氣相進(jìn)行逆流接觸,吸收原料氣中的重?zé)N,提高凝液回收率。T-102 塔底物流進(jìn)入脫丁烷塔T-103進(jìn)行液化石油氣及穩(wěn)定輕烴的分離。
圖1 某天然氣處理廠DHX工藝丙烷回收流程圖Fig.1 DHX propane recovery process of a natural gas processing plant
利用Aspen HYSYS軟件對(duì)DHX工藝進(jìn)行仿真模擬,物性方法選擇PR狀態(tài)方程,關(guān)鍵運(yùn)行參數(shù)取值分別為:壓縮機(jī)絕熱效率75%,膨脹機(jī)等熵效率85%,換熱器最小換熱溫差大于3.5 ℃,原料氣壓力5.9 MPa,溫度25 ℃,流量1 500×104m3/d,外輸壓力6.28 MPa,外輸干氣溫度35 ℃。
表2 某天然氣處理廠基本情況表Tab.2 Basic information of a natural gas processing plant
表3 集成過程分析參數(shù)表Tab.3 Integrated process analysis parameters
E=m[(hi-h0)-T0(si-s0)]
(1)
ED=EF-EP
(2)
表4 設(shè)備損計(jì)算方程表Tab.4 Exergy loss calculation equation of equipment
表4 設(shè)備損計(jì)算方程表Tab.4 Exergy loss calculation equation of equipment
設(shè)備損方程LNG-101E㊣D,LNG-101?=E8-E9+E6-E10+E4-E11+E1-E2+E12-E14+E16-E17K-101E㊣D,K-101?=E3-E5-W㊣K-101?K-102E㊣D,K-102?=W㊣K-102?-E27+E9K-103E㊣D,K-103?=W㊣K-103?-E28+E27T-101E㊣D,T-101?=E5+E30-E7-E31T-102E㊣D,T-102?=E10+E11+E15+Q㊣red?(1-T0/T㊣red?)-E12-E13T-103E㊣D,T-103?=E18+E25+Q㊣red?(1-T0/T㊣red?)-E19-E20AC-101E㊣D,AC-101?=E28-E29+W㊣air?-E㊣air-out?+E㊣air-out?AC-102E㊣D,AC-102?=E19-E21+W㊣air?-E㊣air-out?+E㊣air-out?
DHX工藝中關(guān)鍵單體設(shè)備的設(shè)計(jì)參數(shù)值如下:LNG-101傳熱面積為80 m2,AC-101、AC-102傳熱面積均為200 m2,K-101、K-102、K-103功率均為250 kW,T-101體積為0.1 m3,T-102、T-103重量均為8 t。
CE=CE-ZK
(3)
C=C-ZK
(4)
CD,K=CED,K
(5)
IE=IB(QE/QB)M
(6)
表5 集成過程設(shè)備具體指標(biāo)表Tab.5 Specific specifications for integrated process equipment
考慮到材料、壓力、溫度等因素對(duì)設(shè)備投資成本的影響,將式(6)修改成式(7)的形式[20]。文獻(xiàn)報(bào)道中公開的設(shè)備價(jià)格往往跟年代相關(guān),利用成本指數(shù)可以將其轉(zhuǎn)換到一個(gè)相同的基礎(chǔ)上,根據(jù)2015年的報(bào)道可知化工廠經(jīng)濟(jì)成本指數(shù)為556.8,而2019年為603.1,式(8)顯示了經(jīng)濟(jì)成本從2015年到2019的轉(zhuǎn)換[21]。
資本回收系數(shù)利用式(9)進(jìn)行計(jì)算。綜合上述分析結(jié)果,設(shè)備K的單位投資成本計(jì)算公式見式(10)。
IR=IErMrPrT
(7)
(8)
(9)
ZKrPrT
(10)
表6 常規(guī)及經(jīng)濟(jì)分析結(jié)果表Tab.6 Results of conventional exergy and exergy economic analysis
表6 常規(guī)及經(jīng)濟(jì)分析結(jié)果表Tab.6 Results of conventional exergy and exergy economic analysis
設(shè)備燃料值/kW產(chǎn)品值/kW損/kW燃料成本/(美元·GJ-1)產(chǎn)品成本/(美元·GJ-1)損成本/(美元·GJ-1)投資成本/(美元·GJ-1)效率損率經(jīng)濟(jì)系數(shù)總成本/(美元·GJ-1)LNG-1014 768.203 109.731 658.47106.17165.34289.7453.3665.23%18.43%15.55%343.1K-1014 015.012 703.281 311.7312.4119.3158.598.5867.33%14.58%12.77%67.17K-1022 703.282 070.75632.5319.3629.4144.0730.8876.60%7.03%41.20%74.95K-10310 836.288 771.222 065.0619.3225.72143.6258.4980.94%22.95%28.94%202.11T-10135 052.9534 388.06664.8917.6117.9642.151.4398.10%7.39%3.28%43.58T-1026 574.635 372.121 202.5118.9523.8682.0212.9881.71%13.36%13.66%95.00T-1032 527.431 852.01675.4219.2826.3146.887.8473.28%7.51%14.33%54.72AC-1011 122.50556.34566.1620.3350.1441.4418.2649.56%6.29%30.59%59.70AC-102439.13217.68221.4625.9486.7020.6826.9449.57%2.46%56.58%47.62
表7 高級(jí)分析結(jié)果表Tab.7 Advanced exergy analysis results
表7 高級(jí)分析結(jié)果表Tab.7 Advanced exergy analysis results
設(shè)備內(nèi)源損/kW外源損/kW產(chǎn)品值/kW不可避免損與產(chǎn)品比值不可避免損/kW可避免損/kW內(nèi)源產(chǎn)品損/kW不可避免內(nèi)源損/kW不可避免外源損/kW可避免內(nèi)源損/kW可避免外源損/kWLNG-1011 237.83420.643 109.720.308 6941.71718.762 266.01710.35231.36527.48191.28K-1011 250.2261.512 703.280.083 3225.271 086.462 576.59214.7110.561 035.5150.95K-102280.69351.842 070.750.047 899.04533.5918.8443.9455.09236.75296.75K-1031 373.39691.678 771.230.040 3353.831 711.235 832.22235.27118.561 138.12573.11T-101525.58139.3134 388.060.014 9512.77152.1227 136.53404.64108.13120.9431.18T-102860.66341.855 372.120.219 31 178.2024.303 844.97843.27334.9317.386.92T-103574.22101.201 852.010.310 7575.34100.091 574.00488.9786.3685.2514.84AC-101143.48422.68556.340.182 6101.58464.58140.9825.7475.84117.74346.84AC-102199.7221.74217.670.903 7196.7124.75196.31177.4119.3022.312.44
表8 組件損成本率表Tab.8 Exergy loss cost rate of components
表8 組件損成本率表Tab.8 Exergy loss cost rate of components
設(shè)備損成本/(美元·h-1)內(nèi)源成本/(美元·h-1)外源成本/(美元·h-1)不可避免成本/(美元·h-1)可避免成本/(美元·h-1)不可避免內(nèi)源成本/(美元·h-1)不可避免外源成本/(美元·h-1)可避免內(nèi)源成本/(美元·h-1)可避免外源成本/(美元·h-1)LNG-101289.74197.792.05153.92135.82105.9248.0091.7944.04K-10158.5955.842.7510.0648.539.590.4746.252.28K-10244.0719.5624.526.9037.173.063.8416.5020.68K-103143.6295.5248.1024.61119.0116.368.2579.1639.86T-10142.1533.328.8332.509.6425.656.857.671.98T-10282.0258.7123.3280.371.6657.5222.851.190.47T-10346.8839.857.0239.936.9533.945.995.921.03AC-10141.4410.5030.947.4434.001.885.558.6225.39AC-10220.6818.652.0318.372.3116.561.802.080.23
組件投資成本率見表9。由表9分析可知:大部分設(shè)備的不可避免內(nèi)源成本最高,這意味著不可避免的成本主要來源于設(shè)備自身;冷箱、壓縮機(jī)、透平膨脹機(jī)組、空冷器的投資成本率較高,關(guān)注這些設(shè)備能夠有效降低系統(tǒng)的投資成本;設(shè)備的內(nèi)源投資成本占總投資成本的65.40%,可避免的投資成本為總額的25.77%,表明在優(yōu)化工藝設(shè)備的投資成本方面非常困難。
表9 組件投資成本率表Tab.9 Component investment cost rate
表10 常規(guī)及高級(jí)分析性能指標(biāo)表Tab.10 General and advanced exergy analysis performance indicators
表10 常規(guī)及高級(jí)分析性能指標(biāo)表Tab.10 General and advanced exergy analysis performance indicators
設(shè)備效率損率經(jīng)濟(jì)系數(shù)總成本/(美元·GJ-1)修正后的效率值高級(jí)損率可避免內(nèi)源經(jīng)濟(jì)系數(shù)可避免內(nèi)源總成本/(美元·GJ-1)LNG-10165.23%18.43%15.55%343.181.21%2.93%11.23%102.89K-10167.33%14.58%12.77%67.1771.33%11.51%4.07%48.21K-10276.60%7.03%41.20%74.9579.51%2.63%11.96%18.74K-10380.94%22.95%28.94%202.1183.68%12.65%11.13%89.07T-10198.10%7.39%3.28%43.5899.56%1.34%3.77%7.97T-10281.71%13.36%13.66%95.0099.55%0.19%67.56%3.67T-10373.28%7.51%14.33%54.7294.87%0.95%23.13%7.70AC-10149.56%6.29%30.59%59.7054.49%1.31%12.58%9.86AC-10249.57%2.46%56.58%47.6289.79%0.25%75.73%8.58
調(diào)節(jié)流程預(yù)冷溫度和膨脹機(jī)出口壓力發(fā)現(xiàn)原料氣預(yù)冷溫度(物流②)及K-101出口壓力對(duì)LNG-101的換熱情況影響最大,故優(yōu)化預(yù)冷溫度及膨脹機(jī)出口壓力能極大地改善LNG-101的用能情況。
a)預(yù)冷溫度對(duì)損成本及總成本的影響a)Influence of pre-cooling temperature on exergy loss cost and total cost
b)預(yù)冷溫度對(duì)總壓縮功耗的影響b)Influence of pre-cooling temperature on total compression power consumption
膨脹機(jī)出口壓力變化對(duì)LNG-101的影響見圖3。當(dāng)出口壓力降低時(shí),總成本及損成本都呈下降趨勢(shì),設(shè)備投資成本增加。膨脹機(jī)出口壓力對(duì)系統(tǒng)壓縮功耗影響極大,壓力平均每減小0.1 MPa,壓縮功耗增加578.75 kW。當(dāng)壓力升高到3 550 kPa時(shí),雖然總成本增加了15.09美元/h,壓縮功耗卻減少了765 kW,綜合計(jì)算成本發(fā)現(xiàn),費(fèi)用減少了43.76美元/h;當(dāng)壓力減低到3 350 kPa時(shí),總成本減少了9.63美元/h,而壓縮機(jī)耗電費(fèi)用增加了42.31美元/h,總費(fèi)用增加了32.68美元/h。在膨脹機(jī)出口壓力對(duì)總成本及總壓縮功耗影響規(guī)律相同的條件下,總壓縮功耗更敏感。因此在保證整體收益最大,而非設(shè)備成本較小的情況下(丙烷回收率大于95%),膨脹機(jī)出口壓力宜保持在3 550 kPa左右。
綜合上述分析可知,改變膨脹機(jī)出口壓力能夠顯著影響LNG-101的用能情況。
a)膨脹機(jī)出口壓力對(duì)損成本及總成本的影響a)Influence of expander outlet pressure on exergy loss cost and total cost
b)膨脹機(jī)出口壓力對(duì)總壓縮功耗的影響b)Influence of expander outlet pressure on total compression power consumption
4)根據(jù)分析結(jié)果,采用不同策略對(duì)設(shè)備進(jìn)行優(yōu)化。T-102和AC-102推薦采用整體工藝的優(yōu)化策略,而對(duì)于大多數(shù)設(shè)備推薦采用優(yōu)化設(shè)備自身效率、采用高效設(shè)備以及改善其它設(shè)備效率的策略。