劉楊秀, 胡彥霞
(華北電力大學(xué) 數(shù)理學(xué)院,北京 102206)
近幾十年來(lái),分?jǐn)?shù)階非線性偏微分方程的研究已滲透到許多科學(xué)領(lǐng)域中.由整數(shù)階微分方程推廣出的分?jǐn)?shù)階微分方程,在描述一些系統(tǒng)的動(dòng)力學(xué)行為中,更加能反映出系統(tǒng)的實(shí)際變化規(guī)律[1].眾所周知的分?jǐn)?shù)階非線性Schr?dinger 方程就是非常典型的一類非線性發(fā)展方程.很多分?jǐn)?shù)階非線性偏微分方程與深水波動(dòng)、潛水波動(dòng)現(xiàn)象有著緊密的聯(lián)系.如果知道這類方程的精確解,將有利于數(shù)值模擬進(jìn)行檢驗(yàn)以及定性分析.由此我們需要了解分?jǐn)?shù)階導(dǎo)數(shù)各種詳細(xì)的定義,比如R-L 分?jǐn)?shù)階導(dǎo)數(shù)、Caputo 分?jǐn)?shù)階導(dǎo)數(shù)等[2-4],同樣用來(lái)解決整數(shù)階非線性偏微分方程的方法,也可以應(yīng)用到分?jǐn)?shù)階非線性偏微分方程上.從現(xiàn)有文獻(xiàn)看,求解分?jǐn)?shù)階非線性偏微分方程的方法已有眾多,比如試探函數(shù)法[5]、Horita 法[6]、擴(kuò)展的直接代數(shù)法[7]、李群方法[8-9]、Jacobi 橢圓函數(shù)法[10]、擴(kuò)展的Jacobi 橢圓函數(shù)法[11]、廣義G′/G方法[12]、sine-Gordon 方法[13]、多項(xiàng)式完全判別系統(tǒng)法[14]以及其他求解方法[15-24].由于非線性分?jǐn)?shù)階偏微分方程的多樣性及復(fù)雜性和每一種求解方法的局限性,還未能有一種通用的普遍有效的求解方法.因此,運(yùn)用有效的方法去求非線性分?jǐn)?shù)階偏微分方程的精確解仍是一個(gè)需要不斷研究的課題之一.隨著MATLAB 等其他數(shù)學(xué)軟件的應(yīng)用和普及,借助計(jì)算機(jī)軟件可以幫助我們更方便地解決這一問(wèn)題.
本文主要考慮非線性光學(xué)領(lǐng)域中的帶參數(shù)時(shí)空分?jǐn)?shù)階Fokas-Lenells 方程[25]:
多項(xiàng)式完全判別系統(tǒng)法是一種求解此類問(wèn)題比較有效的方法,是將偏微分方程在行波變換下簡(jiǎn)化為常微分方程,再對(duì)常微分方程中的多項(xiàng)式進(jìn)行完整分類并求解相應(yīng)積分,從而得到原方程的精確解.對(duì)于分?jǐn)?shù)階偏微分方程,若其在行波變換下簡(jiǎn)化為u′(ξ)=G(u,θ1,θ2,···,θm)(θ1,θ2,···,θm為 相應(yīng)參數(shù),且G(u,θ1,θ2,···,θm)是關(guān)于u的多項(xiàng)式)的形式,就可以利用此方法進(jìn)行求解.關(guān)于此方法的介紹及應(yīng)用詳見(jiàn)文獻(xiàn)[37-41].
本文考慮方程(1)在一般情況下的解的問(wèn)題,利用多項(xiàng)式完全判別系統(tǒng)法,根據(jù)對(duì)方程(1)單行波解的完整分類,在不做任何參數(shù)限制的條件下,求得方程(1)在一般情況下的9 種精確解,包括有理函數(shù)解、周期解、孤波解、Jacobi 橢圓函數(shù)解和雙曲函數(shù)解等,繪制了精確解的相關(guān)圖像,由此分析了參數(shù)對(duì)解的結(jié)構(gòu)的影響.
首先對(duì)方程進(jìn)行行波變換,令
圖1 | Ω1(x,t)|2取 不同分?jǐn)?shù)階導(dǎo)數(shù)值時(shí)的三維圖,圖1(b)對(duì)應(yīng)的等高線圖,以及t =3 時(shí)| Ω1(x,t)|2關(guān) 于 x 的 截面圖:(a) α =1/2,β=1/3,|Ω1(x,t)|2的三維圖; (b) α =1/3,β=1/3,|Ω1(x,t)|2 的 三維圖; (c) 圖1(b)的等高線圖; (d) 當(dāng)t =3 時(shí)| Ω1(x,t)|2關(guān) 于x 的截面圖Fig. 1 The 3D graph of | Ω1(x,t)|2 with different values of the fractional derivative, the contour plot of fig.1(b) and the sectional view of | Ω1(x,t)|2 against x with t =3: (a) the graphic model of | Ω1(x,t)|2,α=1/2,β=1/3; (b) the graphic model of | Ω1(x,t)|2,α=1/3,β=1/3; (c) the contour plot of fig.1(b);(d) the sectional view of | Ω1(x,t)|2 against x when t=3
圖2 | Ω2(x,t)|2取 不同分?jǐn)?shù)階導(dǎo)數(shù)值時(shí)的三維圖,圖2(b)對(duì)應(yīng)的等高線圖,以及t =3 時(shí)| Ω2(x,t)|2關(guān) 于 x 的 截面圖:(a) α =1/2,β=1/3,|Ω2(x,t)|2的三維圖; (b) α =1/3,β=1/3,|Ω2(x,t)|2 的 三維圖; (c) 圖2(b)的等高線圖; (d) 當(dāng)t =3 時(shí)| Ω2(x,t)|2關(guān) 于x 的截面圖Fig. 2 The 3D graph of | Ω2(x,t)|2 with different values of the fractional derivative, the contour plot of fig.2(b) and the sectional view of | Ω2(x,t)|2 against x with t =3: (a) the graphic model of | Ω2(x,t)|2,α=1/2,β=1/3; (b) the graphic model of | Ω2(x,t)|2,α=1/3,β=1/3; (c) the contour plot of fig.2(b);(d) the sectional view of | Ω2(x,t)|2 against x when t=3
經(jīng)檢驗(yàn),此情況不成立,不予討論.
圖3 | Ω3(x,t)|2取 不同分?jǐn)?shù)階導(dǎo)數(shù)值時(shí)的三維圖,圖3(b)對(duì)應(yīng)的等高線圖,以及t =3 時(shí)| Ω3(x,t)|2關(guān) 于 x 的 截面圖:(a) α =1/2,β=1/3,|Ω3(x,t)|2的三維圖; (b) α =1/3,β=1/3,|Ω3(x,t)|2 的 三維圖; (c) 圖3(b)的等高線圖; (d) 當(dāng)t =3 時(shí)| Ω3(x,t)|2關(guān) 于x 的截面圖Fig. 3 The 3D graph of | Ω3(x,t)|2 with different values of the fractional derivative, the contour map of fig. 3(b) and the sectional view of | Ω3(x,t)|2 against x with t =3: (a) the graphic model of | Ω3(x,t)|2,α=1/2,β=1/3; (b) the graphic model of | Ω3(x,t)|2,α=1/3,β=1/3; (c) the contour plot of fig. 3(b);(d) the sectional view of | Ω3(x,t)|2 against x when t=3
圖4 | Ω4(x,t)|2取 不同分?jǐn)?shù)階導(dǎo)數(shù)值時(shí)的三維圖,圖4(b)對(duì)應(yīng)的等高線圖,以及t =3 時(shí)| Ω4(x,t)|2關(guān) 于 x 的 截面圖:(a) α =1/2,β=1/3,|Ω4(x,t)|2的三維圖; (b) α =1/3,β=1/3,|Ω4(x,t)|2 的 三維圖; (c) 圖4(b)的等高線圖; (d) 當(dāng)t =3 時(shí)| Ω4(x,t)|2關(guān) 于x 的截面圖Fig. 4 The 3D graph of | Ω4(x,t)|2 with different values of the fractional derivative, the contour plot of fig.4(b) and the sectional view of | Ω4(x,t)|2 against x with t =3: (a) the graphic model of | Ω4(x,t)|2,α=1/2,β=1/3; (b) the graphic model of | Ω4(x,t)|2,α=1/3,β=1/3; (c) the contour plot of fig.4(b);(d) the sectional view of | Ω4(x,t)|2 against x when t=3
圖5 | Ω5(x,t)|2取 不同分?jǐn)?shù)階導(dǎo)數(shù)值時(shí)的三維圖,圖5(b)對(duì)應(yīng)的等高線圖,以及t =3 時(shí)| Ω5(x,t)|2關(guān) 于 x 的 截面圖:(a) α =1/2,β=1/3,|Ω5(x,t)|2的三維圖; (b) α =1/3,β=1/3,|Ω5(x,t)|2 的 三維圖; (c) 圖5(b)的等高線圖; (d) 當(dāng)t =3 時(shí)| Ω5(x,t)|2關(guān) 于x 的截面圖Fig. 5 The 3D graph of | Ω5(x,t)|2 with different values of the fractional derivative, the contour plot of fig. 5(b) and the sectional view of | Ω5(x,t)|2 against x with t =3: (a) the graphic model of | Ω5(x,t)|2,α=1/2,β=1/3; (b) the graphic model of | Ω5(x,t)|2,α=1/3,β=1/3; (c) the contour plot of fig. 5(b);(d) the sectional view of | Ω5(x,t)|2 against x when t=3
圖6 | Ω6(x,t)|2取 不同分?jǐn)?shù)階導(dǎo)數(shù)值時(shí)的三維圖,圖6(b)對(duì)應(yīng)的等高線圖,以及t =3 時(shí)| Ω6(x,t)|2關(guān) 于 x 的 截面圖:(a) α =1/2,β=1/3,|Ω6(x,t)|2的三維圖; (b) α =1/3,β=1/3,|Ω6(x,t)|2 的 三維圖; (c) 圖6(b)的等高線圖;(d) 當(dāng)t =3 時(shí)| Ω6(x,t)|2關(guān) 于x 的截面圖Fig. 6 The 3D graph of | Ω6(x,t)|2 with different values of the fractional derivative, the contour plot of fig. 6(b) and the sectional view of | Ω6(x,t)|2 against x with t =3: (a) the graphic model of | Ω6(x,t)|2,α=1/2,β=1/3; (b) the graphic model of | Ω6(x,t)|2,α=1/3,β=1/3; (c) the contour plot of fig. 6(b);(d) the sectional view of | Ω6(x,t)|2 against x when t=3
圖7 | Ω7(x,t)|2取 不同分?jǐn)?shù)階導(dǎo)數(shù)值時(shí)的三維圖,圖7(b)對(duì)應(yīng)的等高線圖,以及t =3 時(shí)| Ω7(x,t)|2關(guān) 于 x 的 截面圖:(a) α =1/2,β=1/3,|Ω7(x,t)|2的三維圖; (b) α =1/3,β=1/3,|Ω7(x,t)|2 的 三維圖; (c) 圖7(b)的等高線圖; (d) 當(dāng)t =3 時(shí)| Ω7(x,t)|2關(guān) 于x 的截面圖Fig. 7 The 3D graph of | Ω7(x,t)|2 with different values of the fractional derivative, the contour plot of fig.7(b) and the sectional view of | Ω7(x,t)|2 against x with t =3: (a) the graphic model of | Ω7(x,t)|2,α=1/2,β=1/3; (b) the graphic model of | Ω7(x,t)|2,α=1/3,β=1/3; (c) the contour plot of fig.7(b); (d) the sectional view of | Ω7(x,t)|2 against x when t=3
圖8 | Ω8(x,t)|2取 不同分?jǐn)?shù)階導(dǎo)數(shù)值時(shí)的三維圖,圖8(b)對(duì)應(yīng)的等高線圖,以及t =3 時(shí)| Ω8(x,t)|2關(guān) 于 x 的 截面圖:(a) α =1/2,β=1/3,|Ω8(x,t)|2的三維圖; (b) α =1/3,β=1/3,|Ω8(x,t)|2 的 三維圖; (c) 圖8(b)的等高線圖; (d) 當(dāng)t =3 時(shí)α =1/2,β=1/3,|Ω8(x,t)|2 關(guān) 于x 的截面圖Fig. 8 The 3D graph of | Ω8(x,t)|2 with different values of the fractional derivative, the contour plot of fig. 8(b) and the sectional view of | Ω8(x,t)|2 against x with t =3: (a) the graphic model of | Ω8(x,t)|2,α=1/2,β=1/3; (b) the graphic model of |Ω 8(x,t)|2,α=1/3,β=1/3; (c) the contour plot of fig. 8(b);(d) the sectional view of | Ω8(x,t)|2 against x when t=3
圖9 | Ω9(x,t)|2取 不同分?jǐn)?shù)階導(dǎo)數(shù)值時(shí)的三維圖,圖9(b)對(duì)應(yīng)的等高線圖,以及t =3 時(shí)| Ω9(x,t)|2關(guān) 于 x 的 截面圖:(a) α =1/2,β=1/3,|Ω9(x,t)|2的三維圖; (b) α =1/3,β=1/3,|Ω9(x,t)|2 的 三維圖; (c) 圖9(b)的等高線圖; (d) 當(dāng)t =3 時(shí)| Ω9(x,t)|2關(guān) 于x 的截面圖Fig. 9 The 3D graph of | Ω9(x,t)|2 with different values of the fractional derivative, the contour plot of fig.9(b) and the sectional view of | Ω9(x,t)|2 against x with t =3: (a) the graphic model of | Ω9(x,t)|2,α=1/2,β=1/3; (b) the graphic model of | Ω9(x,t)|2,α=1/3,β=1/3; (c) the contour plot of fig.9(b);(d) the sectional view of | Ω9(x,t)|2 against x when t=3
方程精確解的結(jié)構(gòu)反映了光學(xué)系統(tǒng)描述的波在介質(zhì)中傳播的特性.這里,我們主要討論分析分?jǐn)?shù)階參數(shù)α , β 的變化對(duì)解的結(jié)構(gòu)的影響.根據(jù)前面對(duì)方程(1)精確解的 |Ωi(x,t)|2的相關(guān)圖形的分析發(fā)現(xiàn),在圖1、3、5、7、9 中,當(dāng)其中一參數(shù) β不變,參數(shù)α 變化時(shí),對(duì)應(yīng)的方程的奇異解的結(jié)構(gòu)沒(méi)有發(fā)生本質(zhì)的變化,只有波峰會(huì)向左或向右偏移,或出現(xiàn)幾個(gè)零散的波峰.由于這些奇異解在波峰處有一個(gè)不連續(xù)的一階導(dǎo)數(shù),這反映出對(duì)應(yīng)的方程(1)描述的波傳播的特性.在圖2、8 中,當(dāng)參數(shù)α 變化時(shí),奇異周期解的結(jié)構(gòu)及奇異性、周期性也并未發(fā)生大的改變.在圖4 中,隨著 α的減小,扭波峰值會(huì)向右移動(dòng),但扭波仍然存在,其等高線分布僅在很小的時(shí)間范圍內(nèi)波動(dòng),但在t=0.1左 右出現(xiàn)新的走勢(shì).在圖6 中,隨著α 的變化,對(duì)應(yīng)的奇異解的結(jié)構(gòu)也沒(méi)有發(fā)生質(zhì)的變化,但從等高線密集程度來(lái)看,有幾條明顯的“山脈”,反映了此時(shí)方程(1)描述的波傳播的情況.
本文通過(guò)行波變換,將光學(xué)系統(tǒng)中帶參數(shù)時(shí)空分?jǐn)?shù)階Fokas-Lenells 方程轉(zhuǎn)換成常微分方程,然后利用多項(xiàng)式完全判別系統(tǒng)法對(duì)該方程進(jìn)行了單行波解的完整分類,在不對(duì)方程中的參數(shù)和n做任何限定的情況下,得到了方程在一般情況下的精確解,包括有理函數(shù)解、孤立波解、雙曲函數(shù)解、周期解、Jacobi 橢圓函數(shù)解等.在現(xiàn)有文獻(xiàn)中,還沒(méi)有見(jiàn)到對(duì)帶參數(shù)時(shí)空分?jǐn)?shù)階Fokas-Lenells 方程中的參數(shù)和n不做任何限定的情況下求的精確解的相關(guān)結(jié)論.這是本文與其他已有文獻(xiàn)不同的地方.為了更好地理解此模型的物理現(xiàn)象和研究光孤子的傳播特性,我們繪制了精確解的相關(guān)三維圖、等高線圖及截面圖,討論了分?jǐn)?shù)階參數(shù)對(duì)解的影響.隨著分?jǐn)?shù)階導(dǎo)數(shù)值的變化,比如 β 不變, α減小時(shí),方程的解的結(jié)構(gòu)并未發(fā)生質(zhì)的變化,這也反映出了此時(shí)光脈沖在介質(zhì)中的傳播特性.多項(xiàng)式完全判別系統(tǒng)法不僅可以用來(lái)求偏微分方程的精確解,也可以對(duì)方程進(jìn)行定性分析,這也將是我們此后工作的一部分.
參考文獻(xiàn)( References ) :
[1]W ANG B H, WANG Y Y, DAI C Q, et al. Dynamical characteristic of analytical fractional solitons for the space-time fractional Fokas-Lenells equation[J].Alexandria Engineering Journal, 2020, 59(6): 4699-4707.
[2]K ILBAS A, SRIVASTAVA H M, TRUJILLO J J.Theory and Applications of Fractional Differential Equations[M]. Amsterdam: Elsevier Science, 2006.
[3]M ILLER K S, ROSS B.An Introduction to the Fractional Calculus and Fractional Differential Equations[M].Wiley-Interscience,1993.
[4]A TANGANA A.Derivative With a New Parameter Theory, Methods and Applications[M]. Amsterdam: Elsevier Science, 2015.
[5]P ANDIR Y, EKIN A. Dynamics of combined soliton solutions of unstable nonlinear Schr?dinger equation with new version of the trial equation method[J].Chinese Journal of Physics, 2020, 67: 534-543.
[6]L IU XIAOYAN, ZHOU Q, BISWAS A, et al. The similarities and differences of different plane solitons controlled by (3 + 1)-dimensional coupled variable coefficient system[J].Journal of Advanced Research, 2020, 24:167-173.
[7]S AJID N, AKRAM G. Optical solitons with full nonlinearity for the conformable space-time fractional Fokas-Lenells equation[J].Optik, 2019, 196: 163131.
[8]H ASHEMI M S, BALEANU D.Lie Symmetry Analysis of Fractional Differential Equations[M]. New York:Chapman and Hall/CRC , 2020.
[9] 胡 彥鑫, 郭增鑫, 辛祥鵬. 一類Burgers-KdV方程的李群分析、李代數(shù)、對(duì)稱約化及精確解[J]. 聊城大學(xué)學(xué)報(bào)(自然科學(xué)版), 2021, 34(2): 8-13. (HU Yanxin, GUO Zengxin, XIN Xiangpeng. Lie group analysis, Lie algebra, symmetric reduction and exact solutions of a class of nonlinear evolution equations[J].Journal of Liaocheng University(Natural Science), 2021, 34(2): 8-13.(in Chinese))
[10]K ALBANI K, AL-GHAFRI K S, KRISHNAN E V, et al. Pure-cubic optical solitons by Jacobi’s elliptic function approach[J].Optik, 2021, 243: 167404.
[11]B ISWAS A, EKICI M, SONMEZOGLU A, et al. Highly dispersive optical solitons with non-local nonlinearity by extended Jacobi’s elliptic function expansion[J].Optik, 2019, 184: 277-286.
[12]M ANAFIAN J, AGHDAEI M F, JEDDI R S, et al. Application of the generalizedG'/G-expansion method for nonlinear PDEs to obtaining soliton wave solution[J].Optik, 2017, 135: 395-406.
[13]K ALLEL W, ALMUSAWA H, MIRHOSSEINI-ALIZAMINI S M, et al. Optical soliton solutions for the coupled conformable Fokas-Lenells equation with spatio-temporal dispersion[J].Results in Physics, 2021, 26: 104388.
[14] 胡 艷, 孫峪懷. 應(yīng)用多項(xiàng)式完全判別系統(tǒng)方法求解時(shí)空分?jǐn)?shù)階復(fù)Ginzburg-Landau方程[J]. 應(yīng)用數(shù)學(xué)和力學(xué), 2021,42(8): 874-880. (HU Yan, SUN Yuhuai. Solutions to space-time fractional complex Ginzburg-Landau equations with the complete discrimination system for polynomial method[J].Applied Mathematics and Mechanics, 2021,42(8): 874-880.(in Chinese))
[15]C AO Q, DAI C. Symmetric and anti-symmetric solitons of the fractional second-and third-order nonlinear Schr?dinger equation[J].Chinese Physics Letters, 2021, 38(9): 090501.
[16]D AI C Q, WANG Y Y, ZHANG J F. Managements of scalar and vector rogue waves in a partially nonlocal nonlinear medium with linear and harmonic potentials[J].Nonlinear Dynamics, 2020, 102: 179-391.
[17]F EI J, CAO W. Explicit soliton-cnoidal wave interaction solutions for the (2 + 1)-dimensional negative-order breaking soliton equation[J].Waves in Random and Complex Media, 2020, 30(1): 54-64.
[18]H AN H, LI H, DAI C. Wick-type stochastic multi-soliton and soliton molecule solutions in the framework of nonlinear Schr?dinger equation[J].Applied Mathematics Letters, 2021, 120: 107302.
[19]A RSHED S, RAZA N. Optical solitons perturbation of Fokas-Lenells equation with full nonlinearity and dual dispersion[J].Chinese Journal of Physics, 2020, 63: 314-324.
[20]Y OUNIS M, SEADAWY A R, BABER M Z, et al. Analytical optical soliton solutions of the Schr?dinger-Poisson dynamical system[J].Results in Physics, 2021, 27: 104369.
[21]F ANG Y, WU G Z, WANG Y Y, et al. Data-driven femtosecond optical soliton excitations and parameters discovery of the high-order NLSE using the PINN[J].Nonlinear Dynamics, 2021, 105: 603-616.
[22]R AGHURAMAN P J, BAGHYA SHREE S, MANI RAJAN M S. Soliton control with inhomogeneous dispersion under the influence of tunable external harmonic potential[J].Waves in Random and Complex Media, 2021,31(3): 474-485.
[23]D AI C Q, WANG Y Y. Coupled spatial periodic waves and solitons in the photovoltaic photorefractive crystals[J].Nonlinear Dynamics, 2020, 102: 1733-1741.
[24]A IN Q T, HE J H, N ANJUM, et al. The fractional complex transform: a novel approach to the time-fractional Schr?dinger equation[J].Fractals, 2021, 28(7): 2150002.
[25]S HEHATA M, REZAZADEH H, ZAHRAN E, et al. New optical soliton solutions of the perturbed Fokas-Lenells equation[J].Communications in Theoretical Physics, 2019, 71(11): 13-18.
[26]T RIKI H, WAZWAZ A M. Combined optical solitary waves of the Fokas-Lenells equation[J].Waves in Random and Complex Media, 2017, 27(4): 587-593.
[27]A LI KHALID K, OSMAN M S, ABDEL-ATY M. New optical solitary wave solutions of Fokas-Lenells equation in optical fiber via Sine-Gordon expansion method[J].Alexandria Engineering Journal, 2020, 59(3): 1191-1196.
[28]B ULUT H, ABDULKADIR SULAIMAN T, MEHMET BASKONUS H, et al. Optical solitons and other solutions to the conformable space-time fractional Fokas-Lenells equation[J].Optik, 2018, 172: 20-27.
[29]T RIKI H, ZHOU Q, LIU W, et al. Localized pulses in optical fibers governed by perturbed Fokas-Lenells equation[J].Physics Letters A, 2022, 421: 127782.
[30]B ISWAS A, YILDIRM Y, YASAR E, et al. Optical soliton solutions to Fokas-Lenells equation using some different methods[J].Optik, 2018, 173: 21-31.
[31]B ISWAS A, EKICI M, SONMEZOGLU A, et al. Optical solitons with differential group delay for coupled Fokas-Lenells equation by extended trial function scheme[J].Optik, 2018, 165: 102-110.
[32]Z HANG Y, YANG J W, CHOW K W, et al. Solitons, breathers and rogue waves for the coupled Fokas-Lenells system via Darboux transformation[J].Nonlinear Analysis:Real World Applications, 2017, 33: 237-252.
[33]Z HANG Q, ZHANG Y, YE R. Exact solutions of nonlocal Fokas-Lenells equation[J].Applied Mathematics Letters, 2019, 98: 336-343.
[34]Y AKUP Y, BISWAS A, DAKOVA A, et al. Cubic-quartic optical soliton perturbation with Fokas-Lenells equation by sine-Gordon equation approach[J].Results in Physics, 2021, 26: 104409.
[35]D IEU DONNE G, TIOFACK C G L, SEADAWY A, et al. Propagation of W-shaped, M-shaped and other exotic optical solitons in the perturbed Fokas-Lenells equation[J].The European Physical Journal Plus, 2020, 135:371.
[36]N ADIA M, GHAZALA A. Exact solitary wave solutions of the (1 + 1)-dimensional Fokas-Lenells equation[J].Optik, 2020, 208: 164459.
[37] 楊 翠紅, 朱思銘, 梁肇軍. 多項(xiàng)式代數(shù)方程根的完全分類及其應(yīng)用[J]. 中山大學(xué)學(xué)報(bào)(自然科學(xué)版), 2003, 42(1): 5-8.(YANG Cuihong, ZHU Siming, LIANG Zhaojun. Complete discrimination of the roots of polynomials and its applications[J].Acta Scientiarum Naturalium Universitatis Sunyatseni(Natural Science), 2003, 42(1): 5-8.(in Chinese))
[38] 夏 壁燦, 楊路. 多項(xiàng)式判別矩陣的若干性質(zhì)及其應(yīng)用[J]. 應(yīng)用數(shù)學(xué)學(xué)報(bào), 2003, 4: 652-663. (XIA Bican, YANG Lu.Some properties of the discrimination matrix of polynomials with applications[J].Acta Mathematicae Applicatae Sinica, 2003, 4: 652-663.(in Chinese))
[39] 楊 路, 張景中, 侯曉榮. 非線性代數(shù)方程組與定理機(jī)器證明[M]. 上海: 上??萍冀逃霭嫔? 1996. (YANG Lu,ZHANG Jingzhong, HOU Xiaorong.Machine Proof of Systems of Nonlinear Algebraic Equations and Theorems[M]. Shanghai: Shanghai Science and Technology Education Press, 1996. (in Chinese))
[40]L IU C. Applications of complete discrimination system for polynomial for classifications of traveling wave solutions to nonlinear differential equations[J].Computer Physics Communications, 2009, 181(2): 317-324.
[41] 辛 華. 帶有微擾項(xiàng)的Fokas-Lenells方程的包絡(luò)行波模式[J]. 數(shù)學(xué)的實(shí)踐與認(rèn)識(shí), 2021, 51(11): 324-328. (XIN Hua.The patterns of envelope traveling waves of Fokas-Lenells equation with perturbation term[J].Mathematics inPractice and Theory, 2021, 51(11): 324-328.(in Chinese))
[42]K HALIL R, HORANI A, YOUSEF A, et al. A new definition of fractional derivative[J].Journal of Computational and Applied Mathematics, 2014, 264: 65-70.
[43]L IU C. Counterexamples on Jumarie’s two basic fractional calculus formulae[J].Communications in Nonlinear Science and Numerical Simulation, 2015, 22(1/3): 92-94.
[44]L IU C. Counterexamples on Jumarie’s three basic fractional calculus formulae for non-differentiable continuous functions[J].Chaos,Solitons and Fractals, 2018, 109: 219-222.
[45]T ARASOV V E. No nonlocality, no fractional derivative[J].Communications in Nonlinear Science and Numerical Simulation, 2018, 62: 157-163.
[46]T ARASOV V E. No violation of the Leibniz rule, no fractional derivative[J].Communications in Nonlinear Science and Numerical Simulation, 2013, 18(11): 2945-2948.
[47]W ANG B H, WANG Y Y. Fractional white noise functional soliton solutions of a wick-type stochastic fractional NLSE[J].Applied Mathematics Letters, 2020, 110: 106583.
[48]Y U L J, WU G Z, WANG Y Y, et al. Traveling wave solutions constructed by Mittag-Leffler function of a (2 +1)-dimensional space-time fractional NLS equation[J].Results in Physics, 2020, 17: 103156.
[49]W ANG B H, LU P H, DAI C Q, et al. Vector optical soliton and periodic solutions of a coupled fractional nonlinear Schr?dinger equation[J].Results in Physics, 2020, 17: 103036.
[50]D AI C Q, WU G, LI H J, et al. Wick-type stochastic fractional solitons supported by quadratic-cubic nonlinearity[J].Fractals, 2021, 29(7): 2150192.
應(yīng)用數(shù)學(xué)和力學(xué)2022年11期