• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      高中數(shù)學(xué)中的常見不等式及其應(yīng)用

      2023-01-02 06:51:36廣東省中山紀(jì)念中學(xué)528454鄧啟龍
      關(guān)鍵詞:換元柯西證法

      廣東省中山紀(jì)念中學(xué)(528454) 鄧啟龍

      均值不等式,柯西不等式等一系列不等式,是證明不等式的重要依據(jù)和方法,是研究最值問題的強(qiáng)有力的工具,這些高中數(shù)學(xué)中的常見不等式在解題中具有廣泛的應(yīng)用.

      首先給出高中數(shù)學(xué)中的常見不等式.

      以上這些常見不等式和推論在證明不等式和求最值中具有廣泛的應(yīng)用.

      一、運(yùn)用常見不等式證明不等式

      二、構(gòu)造函數(shù)證明不等式

      三、換元后證明不等式和求最值

      注證法一通過整體換元后利用伯努利不等式來證明結(jié)論,思路非常巧妙.證法二根據(jù)題目的結(jié)構(gòu)特點(diǎn)進(jìn)行配湊,然后利用楊氏不等式證明結(jié)論,直接有效.

      3.已知a,b,c≥ 0,證明:a(a ?c)2+b(b ?c)2≥(a ?c)(b ?c)(a+b ?c).

      證明令x=a ?c,y=b ?c,則c≥0,c≥?x,c≥?y,且a=c+x,b=c+y.于是

      注若題目中出現(xiàn)兩個(gè)變量的差,可考慮將差值換元,簡化表達(dá)式.

      四、配湊和拆分

      注根據(jù)題目的結(jié)構(gòu)特點(diǎn)引入?yún)?shù),將1 拆成λ+1?λ,然后利用柯西不等式,并由系數(shù)的比例關(guān)系求出參數(shù),進(jìn)而解決問題.

      5.已知?ABC的三邊分別為a,b,c,2a+7b+11c=120,求?ABC的面積的最大值?

      解由海倫公式得?ABC的面積

      五、反證法

      六、配對(duì)

      猜你喜歡
      換元柯西證法
      一道高中數(shù)學(xué)聯(lián)賽預(yù)賽題的另證與推廣
      因式分解的整體思想及換元策略
      柯西積分判別法與比較原理的應(yīng)用
      一道數(shù)列不等式題的多種證法
      柯西不等式在解題中的應(yīng)用
      R.Steriner定理的三角證法
      柯西不等式的變形及應(yīng)用
      “換元”的巧妙之處
      柯西不等式的應(yīng)用
      三角換元與基本不等式的“爭鋒”
      山阴县| 泾川县| 庆云县| 云和县| 上饶县| 霍州市| 营口市| 龙南县| 翁源县| 宜都市| 新安县| 乳山市| 陕西省| 深水埗区| 温泉县| 天水市| 苗栗县| 兖州市| 页游| 五寨县| 梅河口市| 定州市| 克东县| 尼玛县| 鸡西市| 莱阳市| 育儿| 永吉县| 百色市| 台南县| 德清县| 灵武市| 犍为县| 昌乐县| 东台市| 车险| 双鸭山市| 宾川县| 岳池县| 西丰县| 灵丘县|