陳嘉軍 林 祥 谷淑波 王威雁 張保軍 朱俊科 王 東,*
研究簡報
花后葉面噴施尿素對冬小麥氮素吸收利用和產(chǎn)量的影響
陳嘉軍1林 祥2谷淑波1王威雁2張保軍2朱俊科3王 東2,*
1山東農(nóng)業(yè)大學(xué) / 作物生物學(xué)國家重點實驗室, 山東泰安 271018;2西北農(nóng)林科技大學(xué)農(nóng)學(xué)院, 陜西楊凌 712100;3淄博禾豐種業(yè)科技股份有限公司, 山東臨淄 255000
小麥開花后葉面噴施氮肥能延緩衰老、提高產(chǎn)量, 但其對小麥氮素利用效率的影響鮮見報道。本研究以強筋冬小麥品種濟麥229為試驗材料, 采用兩因素隨機區(qū)組設(shè)計, 設(shè)置2個葉面噴施尿素的時期, 分別為開花后7 d (S)和21 d (T), 設(shè)置4個尿素溶液濃度(0、2%、6%和10%), 探索開花后葉面噴施尿素對冬小麥氮素吸收積累及籽粒產(chǎn)量和氮素利用效率的影響。結(jié)果表明, 小麥籽粒產(chǎn)量隨噴施尿素溶液濃度的提高呈先增加后降低的趨勢, 并在2%濃度水平下達到最高(比對照增產(chǎn)5.1%), 這主要得益于千粒重的增加(比對照提高3.3%)。開花后不同時間噴施2%濃度尿素溶液均促進了開花前營養(yǎng)器官貯藏氮素向籽粒中的再分配, 亦增加了開花后同化氮素輸入籽粒量, 平均增幅分別為8.8%和21.1%; 單位面積籽粒氮積累量及氮素收獲指數(shù)的增幅分別為10.9%和7.9%, 進而顯著提高了籽粒含氮量、蛋白質(zhì)含量及氮素利用效率。采用2%的尿素溶液葉面噴施, 將噴施時間由開花后7 d推遲至開花后21 d, 籽粒氮素積累量、籽粒產(chǎn)量和氮素利用效率的增幅更大。綜上所述, 開花后葉面噴施2%的尿素溶液可促進強筋冬小麥花后氮素的吸收及營養(yǎng)器官臨時貯存氮素向籽粒的再分配, 從而顯著提高籽粒蛋白質(zhì)含量和產(chǎn)量、增加籽粒產(chǎn)量、提高氮素利用效率。灌漿中后期噴施比灌漿前期噴施對籽粒蛋白質(zhì)含量和產(chǎn)量、籽粒產(chǎn)量和氮素利用效率提高的幅度更大。
冬小麥; 葉面噴肥; 尿素; 氮素利用效率; 籽粒產(chǎn)量
小麥對氮素的吸收存在階段性差異, 并且隨產(chǎn)量水平的提高, 小麥中后期的吸氮量和吸收比例顯著增加[1], 增加冬小麥中后期氮素吸收量有利于獲得較高的籽粒產(chǎn)量[2-3]。但開花期根部追施氮肥處理的籽粒產(chǎn)量和氮素利用效率與開花期未追施氮肥的處理無顯著差異[4-5], 說明在冬小麥生育后期根部施氮肥對籽粒產(chǎn)量和氮素利用效率的調(diào)控作用較小。
研究表明葉面噴肥是根部施肥的有效輔助手段, 灌漿后期葉面噴施氮肥可以提高玉米的根系活力, 進而提高生育后期玉米根系對土壤養(yǎng)分的吸收利用能力[6]。開花后葉面噴肥可及時補充小麥根系吸收養(yǎng)分的不足, 增進養(yǎng)分更多地向籽粒運輸[7-8], 且葉面噴施氮肥能夠延緩功能葉衰老, 延長籽粒灌漿高峰期[9], 進而提高作物的產(chǎn)量和品質(zhì)。前人關(guān)于葉面噴施氮肥對產(chǎn)量形成的影響研究較多, 但缺乏其對氮素利用效率調(diào)控的研究。本試驗分別在開花后7 d和開花后21 d, 設(shè)置不同的尿素溶液濃度水平, 探索開花后葉面噴施尿素對冬小麥氮素吸收積累及籽粒產(chǎn)量和氮素利用效率的影響, 以期為冬小麥高產(chǎn)高效生產(chǎn)提供理論依據(jù)和技術(shù)支持。
試驗于2019—2020和2020—2021年冬小麥生長季在山東省泰安市道朗鎮(zhèn)玄莊村(36°12′N, 116°54′E)試驗田進行, 試驗點屬于暖溫帶大陸性半濕潤季風(fēng)氣候區(qū), 年均氣溫為13.0~13.6℃, 年均降雨量為621.2~688.0 mm, 播種前0~20 cm土層土壤養(yǎng)分狀況如表1所示。兩年度冬小麥開花后氣溫及降水量如圖1所示。2020年度冬小麥開花期和成熟期分別為5月4日和6月12日; 2021年度冬小麥開花期和成熟期分別為5月6日和6月11日。
試驗選用強筋冬小麥品種濟麥229為供試材料, 兩年度于開花后7 d (2020年5月11日和2021年5月13日)和21 d (2020年5月25日和2021年5月27日)噴施尿素, 分別用S和T表示, 并設(shè)置4個尿素溶液濃度, 即0、2%、6%和10%, 分別用N0、N2、N6和N10表示。各處理均以植物油(邁絲)為助劑, 每公頃噴施肥液750 kg。試驗小區(qū)面積為2 m×13 m=26 m2。每處理3次重復(fù)。各處理根部施用氮(N)、磷(P2O5)、鉀(K2O)肥的用量一致, 分別為240、120和120 kg hm–2, 使用的氮肥為尿素(含N 46%), 磷肥為重過磷酸鈣(含P2O544%)、鉀肥為氯化鉀(含K2O 60%)。根施氮肥的50%于播種期底施, 50%于拔節(jié)期追施, 磷、鉀肥全部底施。底肥于土壤耕作前均勻撒施, 拔節(jié)期追肥采用微噴帶灌溉水肥一體化設(shè)施[10], 在灌水的同時, 將所需要追施的尿素溶解成肥液注入輸水管, 通過小麥專用微噴帶使其隨灌溉水均勻噴灑進入麥田。其他管理措施同一般高產(chǎn)田。
表1 試驗地0~20 cm土層播種前土壤養(yǎng)分含量
圖1 冬小麥開花后日平均氣溫和日降雨量
2019—2020年度試驗于2019年10月6日播種, 次年6月12日收獲; 2020—2021年度試驗于2020年10月8日播種, 次年6月11日收獲。各試驗均在冬小麥三葉一心期定苗, 留苗密度為185×104株hm–2。
1.3.1 籽粒產(chǎn)量測定 成熟期每試驗小區(qū)隨機選取1 m2調(diào)查單位面積穗數(shù), 選取30穗調(diào)查穗粒數(shù), 收獲2 m2脫粒, 自然風(fēng)干到含水率12.5%時稱重, 調(diào)查千粒重, 并計算單位面積籽粒產(chǎn)量。每個處理3次重復(fù)。
1.3.2 氮素積累與轉(zhuǎn)運相關(guān)指標(biāo)的測定 開花期和成熟期, 每試驗小區(qū)隨機采集30個單莖, 并按器官分樣。開花期分為莖稈+葉鞘、葉片和穗, 成熟期分為莖稈+葉鞘、葉片、籽粒、穎殼+穗軸。將各器官樣品置于烘箱內(nèi), 經(jīng)105℃殺青30 min后, 于75℃條件下烘干至恒重后稱重。不同器官樣品用微型植物粉碎機粉碎, 過100目篩, 采用半微量凱氏定氮法測定各器官含氮量。各指標(biāo)相關(guān)計算公式如下:
氮素積累量=全氮含量×干物質(zhì)重;
花前營養(yǎng)器官貯藏氮素轉(zhuǎn)運量=開花期氮素積累量?成熟期氮素積累量;
花前營養(yǎng)器官貯藏氮素對籽粒的貢獻率=花前營養(yǎng)器官貯藏氮素轉(zhuǎn)運量/成熟期籽粒氮素積累量;
花后同化氮素在籽粒中的分配量=成熟期籽粒氮素積累量–花前營養(yǎng)器官貯藏氮素轉(zhuǎn)運量;
花后同化氮素對籽粒的貢獻率=花后同化氮素在籽粒中的分配量/成熟期籽粒氮素積累量;
供氮量=施氮量+播前0~1.00 m土層土壤無機態(tài)氮積累量;
氮素吸收效率=植株氮素積累量/供氮量;
氮素利用效率=籽粒產(chǎn)量/地上部氮素積累量;
氮素收獲指數(shù)=籽粒氮素積累量/地上部氮素積累量;
籽粒蛋白質(zhì)含量=籽粒全氮含量×5.7;
籽粒蛋白質(zhì)產(chǎn)量=籽粒蛋白質(zhì)含量×籽粒產(chǎn)量。
用Microsoft Office 2010記錄整理數(shù)據(jù), 用SPSS 22.0統(tǒng)計分析軟件進行方差分析, 檢驗顯著性(LSD法)。利用SigmaPlot 12.5軟件繪圖。
如表2所示, 葉面噴氮時間相同的條件下, 小麥成熟期莖稈+葉鞘、穗軸+穎殼、葉片氮素積累量均表現(xiàn)為N6、N10>N0>N2; 籽粒氮素積累量表現(xiàn)為N2>N6、N10>N0。開花后7 d噴施尿素, N2處理籽粒氮素積累量兩年度平均比N0處理高9.1%; 開花后21 d噴施尿素, N2處理籽粒中氮素積累量兩年度平均比N0處理高12.6%。說明籽粒灌漿前期和灌漿中后期葉面噴施2%濃度尿素溶液均能提高成熟期籽粒中氮素積累量, 且以花后21 d葉面噴氮處理的增幅更大。
表2 成熟期各器官氮素積累量
S: 開花后7 d; T: 開花后21 d; N0: 0濃度尿素溶液; N2: 2%濃度尿素溶液; N6: 6%濃度尿素溶液; N10: 10%濃度尿素溶液。數(shù)據(jù)后不同字母表示同一年度的不同處理之間差異顯著(< 0.05)。
S:7 days post anthesis; T: 21 days post anthesis; N0: 0 concentration urea solution; N2: 2% urea solution; N6: 6% concentration urea solution; N10: 10% concentration urea solution. Different lowercase letters followed the data indicate significant difference among treatments at each growing season at< 0.05.
如表3所示, 隨著噴施尿素溶液濃度水平提高, 開花后氮素同化量及對籽粒的貢獻率呈增高趨勢, 且不同處理間差異均達到顯著水平; 開花前營養(yǎng)器官貯藏氮素向籽粒轉(zhuǎn)運量呈先增高后降低的趨勢。葉面噴氮時間相同的條件下, N2處理氮素收獲指數(shù)、開花前營養(yǎng)器官貯藏氮素向籽粒轉(zhuǎn)運量顯著高于N0、N6和N10處理, 且N0處理與N6和N10處理無顯著差異。開花后7 d噴施尿素, N2處理開花前營養(yǎng)器官貯藏氮素向籽粒轉(zhuǎn)運量兩年度平均比N0處理高7.5%; 開花后21 d噴施尿素, N2處理開花前營養(yǎng)器官貯藏氮素向籽粒轉(zhuǎn)運量兩年度平均比N0處理高10.1%。說明開花后噴施2%濃度尿素溶液促進了開花前營養(yǎng)器官貯藏氮素向籽粒中的再分配及開花后氮素同化, 將噴施時間由開花后7 d推遲至開花后21 d, 小麥開花前營養(yǎng)器官貯藏氮素向籽粒轉(zhuǎn)運量的增幅更大。
2.3.1 開花后各營養(yǎng)器官氮素向籽粒中的轉(zhuǎn)運量 如圖2所示, 各營養(yǎng)器官的氮素轉(zhuǎn)運量隨尿素溶液濃度的提高呈先增高后降低的趨勢。葉面噴氮時間相同的條件下, N2處理莖稈+葉鞘、葉片和穗軸+穎殼氮素向籽粒轉(zhuǎn)運量顯著高于N0、N6和N10處理, 且N0處理與N6和N10處理無顯著差異。N2處理莖稈+葉鞘、葉片和穗軸+穎殼氮素向籽粒轉(zhuǎn)運量兩年度平均比N0處理分別高6.7%、2.8%和31.0%。說明開花后葉面噴施2%濃度尿素溶液增加了小麥各營養(yǎng)器官中氮素向籽粒的轉(zhuǎn)運量, 以穗軸+穎殼中的氮素向籽粒轉(zhuǎn)運量的增幅最大。
2.3.2 開花后各營養(yǎng)器官轉(zhuǎn)運氮素對籽粒的貢獻率
如圖3所示, 隨噴施尿素溶液濃度水平提高, 穗軸+穎殼氮素轉(zhuǎn)運量對籽粒的貢獻率呈先增高后降低的趨勢。葉面噴氮時間相同的條件下, N2處理穗軸+穎殼氮素轉(zhuǎn)運量對籽粒貢獻率顯著高于N0、N6和N10處理。說明開花后葉面噴施2%濃度尿素溶液提高了穗軸+穎殼氮素轉(zhuǎn)運量對籽粒的貢獻率。
表3 不同處理對開花后氮素同化與營養(yǎng)器官氮素再分配的影響
S: 開花后7 d; T: 開花后21 d; N0: 0濃度尿素溶液; N2: 2%濃度尿素溶液; N6: 6%濃度尿素溶液; N10: 10%濃度尿素溶液。數(shù)據(jù)后不同字母表示同一年度的不同處理之間差異顯著(< 0.05)。
S:7 days post anthesis; T: 21 days post anthesis; N0: 0 concentration urea solution; N2: 2% urea solution; N6: 6% concentration urea solution; N10: 10% concentration urea solution. Different lowercase letters followed the data indicate significant difference among the treatments at each growing season at< 0.05.
圖2 不同處理對各器官氮素轉(zhuǎn)運量的影響
S: 開花后7 d; T: 開花后21 d; N0: 0濃度尿素溶液; N2: 2%濃度尿素溶液; N6: 6%濃度尿素溶液; N10: 10%濃度尿素溶液。誤差線為標(biāo)準(zhǔn)差。柱頂端不同小寫字母表示同一年度的不同處理之間差異顯著(< 0.05)。
S:7 days post anthesis; T: 21 days post anthesis; N0: 0 concentration urea solution; N2: 2% urea solution; N6: 6% concentration urea solution;N10: 10% concentration urea solution. The error line is the standard deviation. Different small letters at the top of the column indicate significant differences among treatments at each growing season at< 0.05.
圖3 各器官轉(zhuǎn)運氮素對籽粒的貢獻率
S: 開花后7 d; T: 開花后21 d;柱頂端不同小寫字母表示同一年度的不同處理之間差異顯著(< 0.05)。
ine is the standard deviation. Different small letters at the top of the column indicate significant differences among treatments at each growing season at< 0.05.
如表4所示, 葉面噴氮時間相同的條件下, N2處理千粒重、籽粒產(chǎn)量顯著高于N0、N6、N10處理。N2處理與N0處理相比, 在開花后7 d和21 d噴氮條件下, 兩年度平均籽粒產(chǎn)量分別提高3.9%和6.4%。說明開花后葉面噴施尿素濃度以2%最佳, 且開花后21 d噴施處理的增產(chǎn)效果優(yōu)于開花后7 d噴施的處理。
如表5所示, 葉面噴氮時間相同的條件下, N2處理籽粒蛋白質(zhì)含量和蛋白質(zhì)產(chǎn)量均顯著高于N0、N6、N10處理。與對照(N0)處理相比, 開花后7 d和21 d葉面噴施2%濃度尿素溶液(N2), 兩年度平均蛋白質(zhì)產(chǎn)量分別提高6.9%和9.7%。說明籽粒灌漿前期和灌漿中后期葉面噴施2%濃度尿素溶液均能提高籽粒蛋白質(zhì)含量和蛋白質(zhì)產(chǎn)量, 且以開花后21 d噴施對籽粒蛋白質(zhì)產(chǎn)量提高的幅度更大。
如表6所示, 葉面噴氮時間相同的條件下, N2處理氮素利用效率和氮肥偏生產(chǎn)力顯著高于N0、N6和N10處理, N2處理氮素吸收效率與N0處理無顯著差異, 但顯著高于N6和N10處理。與N0處理相比, 開花后7 d和21 d葉面噴施2%濃度尿素溶液(N2), 兩年度平均氮素利用效率分別提高0.4 kg kg–1和0.7 kg kg–1。說明灌漿中后期葉面噴氮比灌漿前期噴氮更有利于提高氮素利用效率。
表4 不同處理對冬小麥籽粒產(chǎn)量及其構(gòu)成因素的影響
S: 開花后7 d; T: 開花后21 d; N0: 0濃度尿素溶液; N2: 2%濃度尿素溶液; N6: 6%濃度尿素溶液; N10: 10%濃度尿素溶液。數(shù)據(jù)后不同字母表示同一年度的不同處理之間差異顯著(< 0.05)。
S: 7 days post anthesis; T: 21 days post anthesis; N0: 0 concentration urea solution; N2: 2% urea solution; N6: 6% concentration urea solution; N10: 10% concentration urea solution. Different lowercase letters followed the data indicate significant difference among treatments at each growing season at< 0.05.
表5 不同處理對冬小麥籽粒含氮量、蛋白質(zhì)含量及蛋白質(zhì)產(chǎn)量的影響
(續(xù)表5)
S: 開花后7 d; T: 開花后21 d; N0: 0濃度尿素溶液; N2: 2%濃度尿素溶液; N6: 6%濃度尿素溶液; N10: 10%濃度尿素溶液。數(shù)據(jù)后不同字母表示同一年度的不同處理之間差異顯著(< 0.05)。
S: 7 days post anthesis; T: 21 days post anthesis; N0: 0 concentration urea solution; N2: 2% urea solution; N6: 6% concentration urea solution; N10: 10% concentration urea solution. Different lowercase letters followed the data indicate significant difference among treatments at each growing season at< 0.05.
表6 不同處理對氮素利用效率、氮素吸收效率及氮肥偏生產(chǎn)力的影響
NUtE: 氮素利用效率; NUpE: 氮素吸收效率; PFPn: 氮肥偏生產(chǎn)力; S: 開花后7 d; T: 開花后21 d; N0: 0濃度尿素溶液; N2: 2%濃度尿素溶液; N6: 6%濃度尿素溶液; N10: 10%濃度尿素溶液。數(shù)據(jù)后不同字母表示同一年度的不同處理之間差異顯著(< 0.05)。
NUtE: nitrogen use efficiency; NUpE: nitrogen uptake efficiency; PFPn: nitrogen partial factor productivity; S: 7 days post anthesis; T: 21 days post anthesis; N0: 0 concentration urea solution; N2: 2% urea solution; N6: 6% concentration urea solution; N10: 10% concentration urea solution. Different lowercase letters followed the data indicate significant difference among treatments at each growing season at< 0.05.
氮素利用效率的高低取決于植株吸收氮素生產(chǎn)干物質(zhì)的能力以及營養(yǎng)器官中的氮素向籽粒轉(zhuǎn)運的能力[11-12]。增加植株地上部氮素積累量可提高氮素吸收效率, 提高成熟期氮素收獲指數(shù)可提高氮素利用效率[13-15]。有研究表明, 開花后葉面噴施尿素能增加冬小麥地上部植株氮素積累量, 從而維持較高的氮素吸收效率[16-17], 然而, 花后14 d葉面噴施12%濃度尿素溶液雖然顯著提高小麥植株及籽粒的氮素含量, 并不能提高氮素收獲指數(shù)和氮素利用效率[18]。本研究發(fā)現(xiàn)開花后7 d或21 d噴施6%和10%的尿素溶液, 未能提高冬小麥植株氮素收獲指數(shù), 這與前人結(jié)果類似。噴施2%的尿素溶液與噴施高濃度尿素溶液相比, 雖然在一定程度上減少了開花后氮素同化量, 但是顯著提高了莖稈+葉鞘、穗軸+穎殼、葉片中貯藏氮素向籽粒的再轉(zhuǎn)運量, 增加了氮素向籽粒的分配量和分配比例, 顯著提高了籽粒氮素積累量和氮素收獲指數(shù), 氮素利用效率明顯提高。說明適宜的尿素噴施濃度不僅有利于冬小麥氮素同化, 而且明顯促進花前營養(yǎng)器官貯藏氮素向籽粒中的再分配, 這是其調(diào)控冬小麥獲得高氮素利用效率的原因。有研究指出庫的容量是氮素再轉(zhuǎn)運和籽粒氮素積累的主要決定因素[19], 葉面噴氮顯著提高了冬小麥灌漿平均速率和粒重, 明顯增大了庫強度, 這可能是加速營養(yǎng)器官氮素向籽粒轉(zhuǎn)運的原因。亦有研究表明, 花期噴氮可顯著提高籽粒中谷氨酰胺合成酶和谷丙轉(zhuǎn)氨酶的活性, 從而引發(fā)更強的氮素代謝和籽粒對氮素的需求, 促進花前營養(yǎng)器官氮素再轉(zhuǎn)運[20]。本研究還發(fā)現(xiàn), 灌漿中后期噴施2%的尿素溶液比灌漿前期噴施更有利于氮素利用效率的提高, 表現(xiàn)為較大的增幅。這可能與籽粒灌漿期間空氣溫濕度較適宜, 后期噴氮延緩了植株衰老, 明顯提高了冬小麥光合同化和干物質(zhì)生產(chǎn)能力有關(guān)。
開花后葉面噴氮可顯著提高小麥千粒重和籽粒產(chǎn)量[18-21], 但也有研究認(rèn)為開花期或灌漿早期葉面噴氮對籽粒產(chǎn)量無提升效果, 僅提高籽粒蛋白質(zhì)含量[22]。本試驗在開花后7 d和21 d葉面噴施2%的尿素溶液均能顯著提高小麥粒重和籽粒產(chǎn)量, 而且花后21 d噴施與花后7 d噴施相比, 籽粒產(chǎn)量的增幅更大。這可能與冬小麥灌漿中后期噴氮有利于延長籽粒灌漿高峰持續(xù)時間有關(guān)。常規(guī)生產(chǎn)中報道的噴施尿素濃度一般為1.0%~1.5%[23-24]。有研究表明葉面噴施尿素溶液濃度在2.5%以下時, 小麥千粒重和籽粒產(chǎn)量隨葉面噴施尿素溶液濃度的提高而增加, 濃度過高反而會降低籽粒產(chǎn)量[9], 但也有噴施10%的高濃度尿素溶液可增產(chǎn)7.8%的研究報道[25]。本研究發(fā)現(xiàn), 開花后葉面噴施2%的尿素溶液能顯著提高千粒重和籽粒產(chǎn)量,繼續(xù)提高尿素溶液濃度至6%和10%, 麥芒和葉片梢部均出現(xiàn)燒傷現(xiàn)象, 籽粒產(chǎn)量不再增加, 反而呈降低趨勢, 這與噴施尿素濃度過高導(dǎo)致光合器官受損、籽粒灌漿高峰持續(xù)時間縮短有關(guān)[9]。
開花后葉面噴施尿素可顯著提高籽粒氮素含量、蛋白質(zhì)含量和蛋白質(zhì)產(chǎn)量[26-27]; 花后14 d噴氮處理的籽粒蛋白質(zhì)含量顯著高于花后7 d噴氮處理, 繼續(xù)推遲噴氮時間籽粒蛋白質(zhì)含量進一步提高[28]。本試驗結(jié)果也證明開花后噴施尿素溶液可顯著提高蛋白質(zhì)含量和蛋白質(zhì)產(chǎn)量, 但開花后21 d噴施與開花后7 d噴施相比, 籽粒蛋白質(zhì)含量無顯著差異, 僅增加了籽粒蛋白質(zhì)產(chǎn)量, 這可能與開花后21 d噴氮處理籽粒產(chǎn)量增幅較大, 籽粒中淀粉等碳基化合物與氮素同步積累有關(guān)[29]。有研究認(rèn)為開花后葉面噴施不同濃度的氮肥溶液對小麥籽粒蛋白質(zhì)含量提升的幅度是一致的[30-31], 但也有研究認(rèn)為籽粒蛋白質(zhì)含量隨噴施尿素溶液濃度的提高而提高[32]。本研究發(fā)現(xiàn), 在0~10%濃度范圍內(nèi), 籽粒蛋白質(zhì)含量隨噴施尿素溶液濃度的提高呈先增加后降低的趨勢, 在2%濃度水平下達到最高。上述結(jié)果說明開花后適時適量葉面噴施尿素溶液可以實現(xiàn)冬小麥籽粒產(chǎn)量、蛋白質(zhì)含量和蛋白質(zhì)產(chǎn)量的同步提高。
[1] 葉優(yōu)良, 黃玉芳, 劉春生, 曲日濤, 宋海燕, 崔振嶺. 氮素實時管理對冬小麥產(chǎn)量和氮素利用的影響. 作物學(xué)報, 2010, 36: 1578–1584.
Ye Y L, Huang Y F, Liu C S, Qu R T, Song H Y, Cui Z L. Effect of in-season nitrogen management on grain yield and nitrogen use efficiency in wheat.,2010, 36: 1578–1584 (in Chinese with English abstract).
[2] 陳祥, 同延安, 亢歡虎, 俞建波, 王志輝, 楊江鋒. 氮肥后移對冬小麥產(chǎn)量、氮肥利用率及氮素吸收的影響. 植物營養(yǎng)與肥料學(xué)報, 2008, 14: 450–455.
Chen X, Tong Y A, Kang H H, Yu J B, Wang Z H, Yang J F. Effect of postponing N application on the yield, apparent N recovery and N absorption of winter wheat.,2008, 14: 450–455 (in Chinese with English abstract).
[3] Tian Z W, Liu X X, Gu S L, Yu J H, Zhang L, Zhang W W, Jiang D, Cao W X, Dai T B. Postponed and reduced basal nitrogen application improves nitrogen use efficiency and plant growth of winter wheat., 2018, 17: 52–65.
[4] 安學(xué)軍, 邢志華, 李保佳, 安浩軍, 張雪花, 何力劍, 徐海娜. 施氮方式對冬小麥品種保麥10號籽粒灌漿及產(chǎn)量的影響. 農(nóng)業(yè)科技通訊, 2012, (6): 32–34.
An X J, Xing Z H, Li B J, An H J, Zhang X H, He L J, Xu H N. Effects of nitrogen application on grain filling and yield of winter wheat variety Baomai 10., 2012, (6): 32–34 (in Chinese).
[5] 李紅梅. 減量分期施氮對小麥產(chǎn)量和氮素利用效率的影響. 山東農(nóng)業(yè)大學(xué)碩士學(xué)位論文, 山東泰安, 2018.
Li H M. Effect of Nitrogen Reduction and Application by Stages on Yield and Nitrogen Use Efficiency in Wheat. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2018 (in Chinese with English abstract).
[6] 徐國華, 沈其榮, 鄭文娟, 唐勝華, 史瑞和. 小麥和玉米中后期大量元素葉面施用的生物效應(yīng). 土壤學(xué)報, 1999, 36: 454–462.
Xu G H, Shen Q R, Zheng W J, Tang S H, Shi R H. Biological responses of wheat and corn to foliar feeding of macronutrient fertilizers during their middle and latter growing periods.,1999, 36: 454–462 (in Chinese with English abstract).
[7] 沈其榮, 徐國華. 小麥和玉米葉面標(biāo)記尿素態(tài)15N的吸收和運輸. 土壤學(xué)報, 2001, 38: 67–74.
Shen Q R, Xu G H. Foliar absorption and translocation of labelled urea15N corn and wheat.,2001, 38: 67–74 (in Chinese with English abstract).
[8] 左毅, 馬冬云, 王晨陽, 朱云集, 劉駿, 郭天財. 花后葉面噴施氮肥和鋅肥對小麥粒重及營養(yǎng)品質(zhì)的影響. 麥類作物學(xué)報, 2013, 33: 123–128.
Zuo Y, Ma D Y, Wang C Y, Zhu Y J, Liu J, Guo T C. Effects of spraying nitrogen and zinc fertilizers after flowering on grain weight and nutritional quality of winter wheat.,2013, 33: 123–128 (in Chinese with English abstract).
[9] 董瑞, 呂厚波, 張保軍, 張正茂, 陳魏濤, 劉芳亮. 葉面噴施氮肥對小麥SPAD值及產(chǎn)量的影響. 麥類作物學(xué)報, 2015, 35: 99–104.
Dong R, Lyu H B, Zhang B J, Zhang Z M, Chen W T, Liu F L. Effect of foliar application of nitrogen fertilizer on SPAD and yield of wheat., 2015, 35: 99–104 (in Chinese with English abstract).
[10] 王東, 苑進. 小麥玉米周年生產(chǎn)變量肥水一體化灌溉系統(tǒng): 中國專利號: 201410499375.7. 2014-09-25.
Wang D, Yuan J. Annual Production of Wheat and Maize Fertilizer Water Integrated Irrigation System. Chinese Patent: 201410499375.7 [2014-09-25] (in Chinese).
[11] Johnson V A, Dreier A F, Grabouski P H. Yield and protein responses to nitrogen fertilizer of two winter wheat varieties differing in inherent protein content of their grain., 1973, 65: 259–263.
[12] Tian Q L, He L H, Liao S, Li W, Deng F, Zhou W, Zhong X Y, Ren W J.rice restorer lines with large sink potential exhibit improved nutrient transportation to the panicle,which enhances both yield and nitrogen-use efficiency., 2021, 20: 19.
[13] Silva A D, Jaenisch B R, Ciampitti I A, Lollato R P. Wheat nitrogen, phosphorus, potassium, and sulfur uptake dynamics under different management practices., 2021, 113: 2752–2769.
[14] 楊磊, 夏炎, 韓自強, 王軍, 宋賀, 董召榮, 車釗. 氮素調(diào)控措施對小麥植株氮素同化過程和產(chǎn)量的影響. 麥類作物學(xué)報, 2019, 39: 1195–1201.
Yang L, Xia Y, Han Z Q, Wang J, Song H, Dong Z R, Che Z. Effects of nitrogen regulation on nitrogen assimilation and yield of wheat.,2019, 39: 1195–1201 (in Chinese with English abstract).
[15] Moll R H, Kamprath E J, Jackson W A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization., 1982, 74: 562–564.
[16] Kara B. Influence of late-season nitrogen application on grain yield, nitrogen use efficiency and protein content of wheat under Isparta ecological conditions., 2010, 15: 1–6.
[17] Woolfolk C W, Raun W R, Johnson G V, Thomason W E, Mullen R W, Wynn K J, Freeman K W. Influence of late-season foliar nitrogen applications on yield and grain nitrogen in winter wheat., 2002, 94: 429–434.
[18] Sarandón S J, Gianibelli M C. Effect of foliar urea spraying and nitrogen application at sowing upon dry matter and nitrogen distribution in wheat., 1990, 10: 183–189.
[19] Barbottin A, Lecomte C, Bouchard C, Jeuffroy M H. Nitrogen remobilization during grain filling in wheat: genotypic and environmental effects., 2005, 45: 1141–1150.
[20] 呂曉康. 花期不同形態(tài)氮素葉面噴施對冬小麥粒重和品質(zhì)形成的調(diào)控效應(yīng)及機理研究. 西北農(nóng)林科技大學(xué)博士學(xué)位論文, 陜西咸陽, 2021.
Lyu X K. Effects and Mechanism of Foliar Spraying of Different Nitrogen Forms on Grain Weight and Quality Formation of Winter Wheat. PhD Dissertation of Northwest A&F University, Xianyang, Shaanxi, China, 2021 (in Chinese with English abstract).
[21] Gholami A, Akhlaghi S, Shahsavani S, Farrokhi N. Effects of urea foliar application on grain yield and quality of winter wheat., 2011, 42: 719–727.
[22] Strong W M. Effect of late application of nitrogen on the yield and protein content of wheat., 1982, 22: 54–61.
[23] 郭偉, 李建偉. 花后外源碳氮供應(yīng)對小麥加工品質(zhì)的影響. 生態(tài)學(xué)雜志, 2016, 35: 11–16.
Guo W, Li J W. Effect of exogenous supply of nitrogen and carbon at post-anthesis of wheat on its end-use quality., 2016, 35: 11–16 (in Chinese with English abstract).
[24] 曹宏鑫, 趙鎖勞, 王世敬, 翟允褆. 基肥結(jié)合噴氮對冬小麥產(chǎn)量和品質(zhì)及植株氮素狀況的影響. 麥類作物學(xué)報, 2005, 25(5): 44–50.
Cao H X, Zhao S L, Wang S J, Zhai Y T. Effects of basal fertilizer combined with nitrogen injection on yield, quality and nitrogen status of winter wheat., 2005, 25(5): 44–50 (in Chinese with English abstract).
[25] Varga B, Sve?njak Z. The effect of late-season urea spraying on grain yield and quality of winter wheat cultivars under low and high basal nitrogen fertilization., 2006, 96: 125–132.
[26] 趙廣才. 冬小麥籽粒發(fā)育中蛋白質(zhì)和氨基酸含量的變化及噴氮效應(yīng)的研究. 中國農(nóng)業(yè)科學(xué), 1989, 22(5): 10.
Zhao G C. Changes of protein and amino acid contents in winter wheat during grain development and effects of nitrogen spraying., 1989, 22(5): 10 (in Chinese with English abstract).
[27] Smith C J, Frency J R, Sherlock R R, Galbally I E. The fate of urea nitrogen applied in a foliar spray to wheat at heading., 1991, 28: 129–138.
[28] Sarandón S J, Gianibelli M C. Effect of foliar sprayings of urea during or after anthesis on dry matter and nitrogen accumulation in the grain of two wheat cultivars ofL., 1992, 31: 79–84.
[29] Acreche M M, Slafer G A. Variation of grain nitrogen content in relation with grain yield in old and modern Spanish wheats grown under a wide range of agronomic conditions in a Mediterranean region., 2009, 147: 657–667.
[30] Blandino M, Visioli G, Marando S, Marti A, Reyneri A. Impact of late-season N fertilization strategies on the gluten content and composition of high protein wheat grown under humid mediterranean conditions.,2020, 94: 102995.
[31] Rossmann A, Buchner P, Savill G P, Hawkesford M J, Scherf K A, Mühling K H. Foliar N application at anthesis alters grain protein composition and enhances baking quality in winter wheat only under a low N fertiliser regimen., 2019, 109: 125909.
[32] Bly A G, Woodard H J. Foliar nitrogen application timing influence on grain yield and protein concentration of hard red winter and spring wheat., 2003, 95: 335–338.
Effects of foliar spraying of urea post anthesis on nitrogen uptake and utilization and yield in winter wheat
CHEN Jia-Jun1, LIN Xiang2, GU Shu-Bo1, WANG Wei-Yan2, ZHANG Bao-Jun2, ZHU Jun-Ke3, and WANG Dong2,*
1Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China;2College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China;3Zibo Hefeng Seed Technology Co., Ltd., Linzi 255000, Shandong, China
Foliar spraying of nitrogen fertilizer can delay senescence and increase yield of wheat post anthesis, but few studies of its effect on nitrogen use efficiency of wheat is known. In this study, Jimai 229, a strong gluten winter wheat variety, was used as experimental material, and a two-factor random block design was used to set two periods of urea spraying on leaves, namely 7 d (S) and 21 d (T) post anthesis. Setting 4 urea solution concentrations (0, 2%, 6%, and 10%) was to explore the effects of foliar urea spraying post anthesis on nitrogen absorption and accumulation, grain yield, and nitrogen use efficiency in winter wheat. The results showed that grain yield of wheat increased first and then decreased with the increase of spraying urea solution concentration, and reached the highest at 2% concentration (5.1% higher than the control), mainly due to the increase of 1000-grain weight (3.3% higher than the control). Spraying 2% urea solution at different times post anthesis promoted the redistribution of pre-flowering storage nitrogen to grains, and increased the amount of post-flowering assimilation nitrogen to grains by 8.8% and 21.1%, respectively. Grain nitrogen accumulation per unit area and nitrogen harvest index increased by 10.9% and 7.9%, respectively, resulting in significantly increasing the grain nitrogen content, protein content, and nitrogen use efficiency. When 2% urea solution was applied foliar spraying, and the spraying time was delayed from 7 days post anthesis to 21 days post anthesis, the increase of grain nitrogen accumulation, grain yield and nitrogen use efficiency was greater. In conclusion, spraying 2% urea solution on leaves post anthesis can promote the absorption of nitrogen and the redistribution of temporary storage nitrogen in vegetative organs to grains post anthesis, thus significantly improving grain protein content and yield, grain yield, and nitrogen use efficiency. Grain protein content and yield, grain yield and nitrogen use efficiency were increased more by spraying at the middle and late filling stages than at the early filling stage.
winter wheat; foliar spray; urea; nitrogen use efficiency; grain yield
10.3724/SP.J.1006.2023.11116
本研究由山東省重點研發(fā)計劃項目(LJNY202010)和陜西省重點研發(fā)計劃項目(2021ZDLNY01-05)資助。
This study was supported by the Key Research & Development Program Project of Shandong Province (LJNY202010) and the Key Research & Development Program Project of Shaanxi Province (2021ZDLNY01-05).
通信作者(Corresponding author):王東, E-mail: wangd@nwafu.edu.cn
E-mail: 1107289168@qq.com
2021-12-28;
2022-05-05;
2022-05-10.
URL: https://kns.cnki.net/kcms/detail/11.1809.S.20220510.1326.004.html
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).