張利萍,馮梓薇,徐少奇,,王志剛,孫寶茹,張 奎,李 季,魏雨泉
·農(nóng)業(yè)生物環(huán)境與能源工程·
曝氣量與輔料粒徑對(duì)餐廚廢棄物輔熱生物干化的影響
張利萍1,2,馮梓薇1,徐少奇1,3,王志剛3,孫寶茹1,張 奎1,2,李 季1,2,魏雨泉1,2※
(1. 中國(guó)農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,北京 100193;2. 中國(guó)農(nóng)業(yè)大學(xué)有機(jī)循環(huán)研究院(蘇州),蘇州 215100;3. 北京大北農(nóng)科技集團(tuán)股份有限公司大北農(nóng)養(yǎng)豬研究院,北京 102629)
為解決餐廚廢棄物生物干化處理周期長(zhǎng)、脫水效率低的問題,該研究分別設(shè)置3個(gè)不同曝氣量(0.4、0.6和0.8 L/(min·kg))和不同輔料粒徑(粗粒徑>15.0 mm、細(xì)粒徑<5.0 mm和混合粒徑5.0~15.0 mm)進(jìn)行析因試驗(yàn),探究其對(duì)餐廚廢棄物生物干化效果的影響。研究結(jié)果表明,相較于粒徑而言,曝氣量對(duì)于輔熱生物干化溫度變化和除水影響更大。0.6 L/(min·kg)曝氣下升溫速度較快,高溫期持續(xù)時(shí)間更長(zhǎng),有效積溫更高。除0.4 L/(min·kg)和細(xì)粒徑處理,其他處理輔熱生物干化過程高溫期均超過7 d;0.8 L/(min·kg)和細(xì)粒徑處理的除水效果最好,生物干化指數(shù)最高為4.0,最終含水率為17.0%,水分去除率為95.8%。能量和水分平衡計(jì)算表明:輔熱生物干化過程中,主要的除水方式為蒸發(fā)除水,占總除水量40%~80%;主要能量來源為生物產(chǎn)熱(63.0%~76.0%),能量損失主要有蒸發(fā)潛熱(26.0%~46.5%)和反應(yīng)器熱損失(28.3%~49.4%),0.8 L/(min·kg)和細(xì)粒徑處理的能量利用效率最高為65.1%。經(jīng)過16 d輔熱生物干化,除0.4 L/(min·kg)和細(xì)粒徑處理pH值與發(fā)芽指數(shù)不能滿足腐熟標(biāo)準(zhǔn),其他處理均能完全腐熟,可滿足有機(jī)肥標(biāo)準(zhǔn)。
廢棄物;曝氣量;輔熱生物干化;輔料粒徑;除水效率;能量利用效率
據(jù)統(tǒng)計(jì),中國(guó)餐廚廢棄物產(chǎn)生量大,2020年產(chǎn)量為12 000萬t左右[1-2]。2021年中國(guó)發(fā)布《“十四五”城鎮(zhèn)生活垃圾分類和處理設(shè)施發(fā)展規(guī)劃》政策后,餐廚廢棄物凈產(chǎn)生量將進(jìn)一步增加,但資源化利用率較低。餐廚廢棄物具有營(yíng)養(yǎng)物質(zhì)豐富,有機(jī)成分高的優(yōu)點(diǎn)[3],是中國(guó)的巨大可再生資源庫(kù),常通過好氧堆肥技術(shù)資源化處理。但是,餐廚廢棄物因其含水率較高[4],導(dǎo)致其不利于收集、運(yùn)輸以及后端的處理。餐廚廢棄物具有易腐爛變質(zhì)、散發(fā)臭味的特點(diǎn)[5],如不及時(shí)處理,將會(huì)對(duì)周邊環(huán)境造成重要污染。因此,餐廚廢棄物減量化、無害化和資源化的關(guān)鍵問題是快速降低含水率,資源化處理面臨巨大挑戰(zhàn)。
生物干化是由好氧堆肥技術(shù)衍生出來,在反應(yīng)器內(nèi)進(jìn)行物理生化反應(yīng)的新興預(yù)處理技術(shù),常用于對(duì)城市垃圾的干燥和部分穩(wěn)定化,產(chǎn)品可直接焚燒或者制作固體衍生燃料[6-7]。其原理是[8]:通過利用好氧微生物降解有機(jī)物釋放熱量,使水分汽化,同時(shí)強(qiáng)化通風(fēng),達(dá)到快速降低水分的目的。通常認(rèn)為除水主要有2個(gè)過程[9]:1)水分子從物料表面蒸發(fā),主要與輔料粒徑有關(guān);2)物料內(nèi)部形成濕度梯度,水蒸汽擴(kuò)散,主要與曝氣量有關(guān)。大量研究表明:曝氣量、堆體溫度和自由孔隙度[10-12]直接影響水分蒸發(fā)及去除過程。輔料粒徑大小影響比表面積,對(duì)水分汽化效率產(chǎn)生影響,同時(shí)直接影響堆體的自由孔隙度,對(duì)堆體升溫和積溫有重要影響[13-14]。通風(fēng)控制是生物干化過程的重要調(diào)控手段,提高曝氣量可以提高除水效率,降低堆體溫度。但是,根據(jù)空氣焓濕圖可知隨著溫度降低,空氣飽和濕度降低(空氣飽和攜水汽量降低),即限制除水效率的進(jìn)一步提高。Cai等[15]研究表明過度曝氣量可降低堆體溫度,污泥生物干化經(jīng)過20 d,增大曝氣量含水率從66.0%降至48.7%,除水效率較低。目前大部分研究針對(duì)曝氣量和輔料對(duì)生物干化含水率、有機(jī)質(zhì)及產(chǎn)品熱值的影響[16-18],缺乏曝氣量和輔料粒徑對(duì)水分蒸發(fā)汽化效率和積溫影響的系統(tǒng)性研究。Yuan等[19]研究水分損失規(guī)律表明:水分損失和溫度變化趨勢(shì)一致,高溫期(≥50 ℃)水分損失占水分總損失的89%以上,為進(jìn)一步提高除水效率提供了依據(jù)。范鑫祺等[20]研究表明輔熱策略促進(jìn)生物干化過程水分去除,但較少研究報(bào)道同時(shí)考慮曝氣量和輔料粒徑對(duì)輔熱生物干化過程溫度變化、有機(jī)物降解及水分損失規(guī)律的影響。輔熱生物干化必然增加能耗,但是市場(chǎng)推廣應(yīng)用中餐廚廢棄物處理有高效低耗的需求,因此提高能量利用率,降低能耗具有重要意義。
因此,本文選擇3種不同粒徑的輔料和3種不同曝氣量的工藝參數(shù),進(jìn)行析因試驗(yàn)。明確輔料粒徑和曝氣量對(duì)餐廚廢棄物生物干化過程溫度變化和有機(jī)物降解的影響,水分損失與熱量流動(dòng)的相關(guān)關(guān)系及水分去除率的影響,為餐廚廢棄物輔熱生物干化技術(shù)提供理論基礎(chǔ)和數(shù)據(jù)支持。
試驗(yàn)所用餐廚廢棄物(Food Waste,F(xiàn)W)取自北京市海淀區(qū)中國(guó)農(nóng)業(yè)大學(xué)西校區(qū)餐廳垃圾點(diǎn)前一日收集的廢棄物,試驗(yàn)前進(jìn)行去雜質(zhì)和破碎等預(yù)處理;木屑購(gòu)自山東金湖興盛木業(yè)有限公司,形狀為薄片狀,取薄片狀長(zhǎng)或?qū)挒榱酱笮?,通過機(jī)械粉碎預(yù)處理改變粒徑,設(shè)置不同輔料粒徑:粗粒徑(>15.0 mm)、細(xì)粒徑(<5.0 mm)和混合粒徑(5.0~15 mm)。原材料的基礎(chǔ)理化性質(zhì)見表1。
表1 初始物料基本理化性質(zhì)
注:含水率、pH基于濕基;TOC、TN和揮發(fā)性固體含量基于干基計(jì)算。
Note: The moisture content and pH were calculated on wet basis; the Total Organic Carbon (TOC)、Total Nitrogen (TN) and Volatile Solids (VS) were dry basiscontent.
本試驗(yàn)在10 L密閉生物干化反應(yīng)器中進(jìn)行(如圖1所示),反應(yīng)器置于控溫箱中,通過控溫箱調(diào)控反應(yīng)器環(huán)境溫度達(dá)到輔熱效果。氣泵將空氣強(qiáng)制通入反應(yīng)器底部進(jìn)入堆體,過程中通過干燥劑和玻璃轉(zhuǎn)子流量計(jì),達(dá)到控制入口水分和曝氣量的目的。生物干化原料為85%餐廚和15%木屑,并根據(jù)物料總質(zhì)量(濕質(zhì)量)添加氧化鈣和碳酸鈣各1%調(diào)節(jié)物料初始pH值。試驗(yàn)考慮輔料粒徑和曝氣量?jī)梢蛩?,分別設(shè)置3水平:粗粒徑>15 mm、細(xì)粒徑<5 mm、混合粒徑 5~15 mm;0.4(AR0.4)/0.6(AR0.6)/0.8(AR0.8)L/(min·kg DM)(即每千克干物質(zhì)每分鐘曝入空氣0.4、0.6、0.8 L),共設(shè)置9個(gè)處理進(jìn)行試驗(yàn)。試驗(yàn)周期為16 d,翻堆頻率為每2天1次,各處理參數(shù)如表2所示。
1.3.1 取樣
生物干化過程中分別于0、2、4、6、8、10、12、14、16 d進(jìn)行充分均勻混合翻堆后取樣,每次取樣90 g,分2部分保存,一式3份:其中一部分在陰涼干燥處經(jīng)自然風(fēng)干一周至含水率不變后,粉粹過0.5 mm篩,用于測(cè)定總碳(Total Carbon,TC)、總氮(Total Nitrogen,TN)、揮發(fā)性固體含量(Volatile Solids,VS);另一部分鮮樣儲(chǔ)存在4 ℃冰箱中,用于測(cè)定含水率、pH值、電導(dǎo)率(Electric Conductivity,EC)、發(fā)芽指數(shù)(Germination Index,GI)等指標(biāo)。
圖1 小型密閉生物干化反應(yīng)器示意圖
表2 不同輔熱生物干化處理試驗(yàn)設(shè)計(jì)
試驗(yàn)期間,每日固定時(shí)間由溫度傳感器監(jiān)測(cè)堆體上中下3層溫度并記錄;通過玻璃轉(zhuǎn)子流量計(jì)監(jiān)測(cè)進(jìn)氣口通風(fēng)量;由硅膠收集出氣口水汽并稱取質(zhì)量。翻堆前稱取滲濾液質(zhì)量,同時(shí)翻堆前后要進(jìn)行稱罐質(zhì)量、物料質(zhì)量等操作。
1.3.2 各理化指標(biāo)
測(cè)定含水率、pH值、EC和GI依照農(nóng)業(yè)行業(yè)標(biāo)準(zhǔn)《NY525—2021有機(jī)肥》中的標(biāo)準(zhǔn)方法測(cè)定。
測(cè)定VS含量時(shí),將風(fēng)干樣粗磨過后,先在烘箱中于80 ℃烘2 h,均勻稱取1 g(1)樣品放入坩堝(0),在馬弗爐(APHA,1998)中于550 ℃燒至質(zhì)量恒定,待溫度降至室溫時(shí)稱取質(zhì)量(2)并記錄。根據(jù)如下公式計(jì)算:
總碳(TC)、總氮(TN)采用元素分析儀(vario MACRO cube元素分析儀,德國(guó))測(cè)定。
作圖使用Excel 2018完成,顯著性差異分析使用SAS8.1完成,理化指標(biāo)相關(guān)性分析使用SPSS20完成。
1.3.3 能量和水平衡計(jì)算
1)水分平衡
反應(yīng)器生物干化過程中,水分流動(dòng)方向與大小可以評(píng)估堆體水分散失途徑的貢獻(xiàn)度。考慮以反應(yīng)器作為系統(tǒng)邊界,全過程水分流動(dòng)分為輸入端和輸出端。水分輸入端主要包括:輸入堆體水分(swater-in)、輸入水蒸汽(aeration)、微生物降解產(chǎn)水(metabolic)(及過程加水)。水分輸出端主要包括:輸出堆體水分(swater-out)、滲濾液(water-out)、水蒸氣攜水輸出(evap)、翻堆除水(turnning)及過程水分損失(loss)。通過構(gòu)建生物干化過程中的水分平衡,明確出水分流動(dòng)方向與大小,從而探究不同參數(shù)工藝處理和物料脫水之間的作用規(guī)律和機(jī)制。水分平衡表達(dá)式為
swater-in-swater-out
=evap+turnning+water-out-aeration-metabolic(2)
2)能量平衡
該系統(tǒng)總的熱平衡公式見(3)。其中翻堆所造成的熱損失(turnning)是通過物料及其中的水分溫度降至室溫所耗散的熱量,其已經(jīng)被包含在堆體物料升溫顯熱中(water和solid)。輔助輸入熱量Q由系統(tǒng)能量平衡差值計(jì)算得到bio為微生物降解產(chǎn)生熱量;dryair為通風(fēng)帶走的熱量;cond為反應(yīng)器壁耗散熱量;evap為水分蒸發(fā)潛熱。
bio+Q=dryair+solid+water+evap+cond(3)
生物干化過程中,溫度是影響水分蒸發(fā)和干化效率的重要參數(shù)[21-22]。本次試驗(yàn)中各處理溫度變化如圖2a所示。除T4處理,其他各處理的溫度均符合典型堆肥的特征,經(jīng)歷了升溫期、高溫期(>55 ℃)和降溫期3個(gè)階段。生物干化初期,各處理溫度迅速升高,餐廚廢棄物中易降解有機(jī)物快速降解,同時(shí)適宜的輔熱策略利于微生物活性和蓄熱,堆體溫度最高至73.7 ℃(T2)。試驗(yàn)10 d后,各處理溫度呈下降趨勢(shì)。除T4處理外,其他處理溫度達(dá)55℃以上均超5 d,可殺滅病原菌等達(dá)到衛(wèi)生學(xué)指標(biāo)。
從圖中看出,AR0.6組升溫速度較快,在第2天均進(jìn)入高溫期,T2與T5處理峰值溫度,且顯著高于其他處理,其對(duì)應(yīng)值分別為68、73.7℃。而AR0.4和AR0.8組均在第4天進(jìn)入高溫期??赡苡捎谄貧饬枯^小,對(duì)微生物供氧不足或者AR過大使堆體與氣體之間存在對(duì)流冷卻作用,堆體溫度降低。AR0.4組在生物干化結(jié)束時(shí),除了細(xì)粒徑(T4)處理酸化,粗粒徑和混合粒徑(T1和T7)處理高溫期持續(xù)達(dá)9、8 d。T4處理可能由于處理容重較大,自由孔隙度低,同時(shí)曝氣量小,最終導(dǎo)致堆體中區(qū)域厭氧,有機(jī)酸積累而抑制微生物活性。AR0.6組快速進(jìn)入高溫期后,粗粒徑(T2)處理可利用有機(jī)物較少,最快進(jìn)入降溫期,高溫期持續(xù)6 d。而細(xì)粒徑和混合粒徑(T5和T8)處理高溫期持續(xù)時(shí)間分別為8、9 d,相較粗粒徑時(shí)間較長(zhǎng)。混合粒徑處理中高溫期持續(xù)時(shí)間較長(zhǎng),分別為8、9、7 d,AR0.6(T8)處理有更高的溫度峰值67.9 ℃。
有效積溫指堆體在發(fā)酵過程中溫度的積累,即某時(shí)刻堆體溫度與外界環(huán)境溫度的差異累積值,可以更好地反應(yīng)各處理之間溫度的差異[23](圖2b),各處理整個(gè)生物干化過程中積溫排序?yàn)門5>T8>T7>T1>T9>T3>T6>T2>T4,細(xì)粒徑和AR0.6(T5)處理積溫最高為209.0 ℃。AR0.6組有效積溫顯著高于AR0.4組,較AR0.4組高出26.2%;混合粒徑組有效積溫顯著高于細(xì)粒徑組,較細(xì)粒徑組高出26.4%。說明該系統(tǒng)下曝氣量為0.6 L/(min·kg)和混合粒徑條件更利于微生物活動(dòng)和蓄熱。
物料含水率是評(píng)價(jià)生物干化除水效果最直觀的指標(biāo)。各處理堆體含水率變化如圖2c所示,含水率呈不同程度下降趨勢(shì),最終含水率僅有T2(24.0%)、T3(23.2%)和T6(17.0%)處理低于30%,其中T6處理的除水效果最好,最終含水率最低為17.0%,水分去除率為95.8%。粗粒徑組和細(xì)粒徑組含水率平均降幅無顯著性差異,較混合粒徑組高57.6%;AR0.4組含水率平均降幅最低7.4%,AR0.6組是其5.8倍,AR0.8組是其8.4倍。說明隨著曝氣量增大,含水率降低越快,混合粒徑處理組含水率降幅較低,可能由于其適宜的孔隙度利于微生物活動(dòng)和蓄熱,但是比表面積較大不利于水分子從物料表面蒸發(fā)(即從液體到氣態(tài)的變化階段)到周圍的空氣中[24]。
輔熱生物干化過程中,各處理的水分去除速率呈現(xiàn)出先“上升-下降-上升-下降”的變化趨勢(shì)(圖2d),峰值均在第4或12天出現(xiàn),水分去除速率在14.3~45.7 g/(kg·d)之間。結(jié)果表明,輔熱生物干化過程高溫期和降溫期較高水平的水分去除速率,且在干化后期依然可以保持高的除水效果。各處理試驗(yàn)結(jié)束累計(jì)水分去除量為0.27、0.49、0.49、0.25、0.42、0.54、0.30、0.40、0.48 kg/kg。3個(gè)粒徑處理組平均累計(jì)水分去除量無顯著性差異,AR0.8處理組平均累計(jì)水分去除量最高,較AR0.4組高84.1%,T6處理累計(jì)水分去除量最高,為T4處理的2.2倍。與含水率下降規(guī)律相似。
揮發(fā)性固體(VS)含量是可以反映堆體有機(jī)物多少的直觀指標(biāo)[25-26]。各處理VS含量如圖2e所示。隨著生物干化的進(jìn)行,各處理?yè)]發(fā)性固體含量均有不同程度的降幅,在2.7%~12.6%之間。整體上看(圖2f),各處理在高溫期VS降解速率比升溫期快,隨著干化進(jìn)程逐漸下降,最后在降溫期揮發(fā)性固體降解速率甚至為0。在干化前期,在0~2 d,降解速率最高為AR0.6(T2與T5)處理,分別為23.6、17.7 g/(kg·d),有機(jī)物快速降解產(chǎn)生大量熱量,溫度快速上升。在2~4 d,粗粒徑(T1與T3)處理降解速率較低分別為10.7、11.2 g/(kg·d),T5處理降解速率最高為26.0 g/(kg·d),為T1處理的2.4倍。各處理VS質(zhì)量降解率在23%~52%之間,分別為44.5%、52.2%、44.2%、23.4%、42.8%、39.8%、43.9%、43.3%、46.0%。細(xì)粒徑組平均降解率最低,粗粒徑組高出32.9%,混合粒徑高出25.6%。AR0.6組平均降解率最高,較AR0.4組提高23.7%,曝氣量為0.6 L/(min·kg)時(shí)更利于有機(jī)物降解,增大曝氣量不利于有機(jī)物降解。
各處理生物干化過程中,腐熟度指標(biāo)如圖3所示.各處理pH值先快速下降后小幅上升最后趨于穩(wěn)定至8左右。AR0.4和AR0.8處理組均在第4天降至pH最低值,AR0.6處理組在第2天降至pH最低值。這是由于前期輔熱條件促進(jìn)餐廚廢棄物中易降解物質(zhì)產(chǎn)生大量有機(jī)酸,AR0.6處理組相對(duì)AR0.4處理組更適宜微生物利用和降解有機(jī)物,與Sundberg等研究有相似結(jié)果[27],增加曝氣率會(huì)有更高的pH值和更穩(wěn)定的堆肥產(chǎn)品。除T4處理pH值下降后一直持續(xù)降至6,各處理pH值均上升并穩(wěn)定至8左右,滿足有機(jī)肥產(chǎn)品要求。低AR水平的細(xì)粒徑處理,即使調(diào)節(jié)初始至堿性,可能由于低曝氣率下,易造成堆體環(huán)境存在厭氧區(qū),持續(xù)產(chǎn)生有機(jī)酸,不適宜微生物生長(zhǎng)。其他所有處理在高溫期利用小分子有機(jī)酸和氨態(tài)氮的增加,使pH值增加[28]。
a. 溫度b. 有效積溫c. 含水率 a. Temperatureb. Effective accumulative temperature c. Moisture content
d. 水分去除速率e. VS含量f. VS降解速率 d. Water removal ratee. VS contentf. VS decomposition rate
a. pH值b. 電導(dǎo)率c. 發(fā)芽指數(shù) a. pH valueb. Electric conductivityc. Germination index
各處理最終EC均較初始高,滿足腐熟標(biāo)準(zhǔn)中EC<4 mS/cm。發(fā)芽指數(shù)(GI)被認(rèn)為是描述堆肥產(chǎn)品無害化最直接的生物學(xué)指標(biāo)[29-30],當(dāng)GI值大于70%時(shí),滿足NY525-2021有機(jī)肥腐熟標(biāo)準(zhǔn)。各處理最終發(fā)芽指數(shù)除T4處理,各處理最終GI均>70%,中等曝氣量AR0.6處理組GI較高,混合粒徑處理組GI較高??赡苁侵械绕貧饬肯挛⑸锘钚愿撸》肿佑袡C(jī)酸被分解利用,對(duì)植物生長(zhǎng)抑制作用消失。
各處理的水分平衡和生物干化指數(shù)如表3所示。16 d的生物干化期間,各處理中有機(jī)質(zhì)降解產(chǎn)水量在0.18~0.36 kg之間,不同曝氣量下產(chǎn)水量差異不顯著。蒸發(fā)除水的總量在水分去除量中占比在40%~80%之間,蒸發(fā)除水在水分去除量中占比越高,生物干化除水效果越好。隨著通風(fēng)速率的增加,蒸發(fā)帶走的水分呈現(xiàn)一定的上升趨勢(shì),在不同粒徑之間具有一定的差異性,AR0.8處理組占比均較高。翻堆除水量在0.32~0.78 kg之間,在水分去除量中占比在13.4%~37.2%之間。隨著曝氣量的增大翻堆除水量增大,但是除水效果更好的處理翻堆除水占比越低(T2、T6),除水效果更差的處理翻堆除水占比越高,因?yàn)榉殉3Ec堆體溫度和含水率有關(guān)。滲濾液除水占比均較低,T1處理產(chǎn)生較多滲濾液為0.33 kg,占水分去除量的17.8%,滲濾液在低曝氣量時(shí)產(chǎn)生量較大,同時(shí)粗粒徑持水能力較差滲濾液產(chǎn)生較多。產(chǎn)生的滲濾液可能形成二次污染,不產(chǎn)生滲濾液處理更符合處理廢棄物需求。
生物干化指數(shù)是水分去除量與有機(jī)物消耗量的比值,生物干化指數(shù)越大,表明生物干化效率越高。各處理的生物干化指數(shù)分別為2.27、2.96、3.31、3.25、3.03、4.02、2.50、3.00、3.31,其中粗粒徑處理組與AR0.8處理組(T2、T3、T6和T9)的生物干化指數(shù)較高,均大于3;T6處理生物干化指數(shù)最高4.02。以上處理的生物干化指數(shù)遠(yuǎn)高于向虹霖等[31]研究:在加熱條件下,廚余與園林垃圾干化的生物干化指數(shù)優(yōu)于不加熱條件,其為2.54。
表3 各處理的水分平衡和生物干化指數(shù)
各處理均可進(jìn)行生物干化過程,有較高的生物干化效率。該輔熱小型反應(yīng)器系統(tǒng)下,如圖4為T6處理過程中水分流動(dòng)情況。最主要的水分輸入是原始物料中水質(zhì)量占比為93.0%,微生物降解產(chǎn)水占比非常低為7%,因此在一定條件下輸入水分中,微生物降解產(chǎn)水可忽略;最主要的水分輸出為蒸發(fā)除水輸出占70.4%,其次是翻堆除水占12.6%,過程其他損失除水占7.3%,堆體物料中水分占5.7%,與以往的研究結(jié)果得出的結(jié)論一致[32],蒸發(fā)除水是過程中水分去除的主要方式。
注:Mswater-in為輸入堆體水分、Mmetabolic為微生物降解產(chǎn)水、Mswater-out為輸出堆體水分、Mevap為水蒸氣攜水輸出、Mturnning為翻堆除水、Mloss為過程水分損失。
能量平衡可以反映生物干化過程中能量利用效率。各處理熱量平衡如表4所示?!苲為輔助輸入的熱量,在5 218~9 987 kJ范圍內(nèi),占輸入能量的24.0%~36.8%;∑bio的值在12 993~20 629 kJ范圍內(nèi),占輸入能量的63.0%~76.0%,有機(jī)質(zhì)降解量是影響生物降解產(chǎn)熱的主要因素。其中T6的總輸入能量最高為30 616 kJ。dryair為通風(fēng)帶走的熱量,約占總熱量消耗的1.0%~1.8%,與之前的研究結(jié)果類似[33-36]。其中AR0.6的通風(fēng)率下,通風(fēng)帶走的熱量占比最低,隨著通風(fēng)率增加,占比增高。通風(fēng)帶走的熱量主要受通風(fēng)量和堆體溫度與環(huán)境溫度差值的影響,但是在輔熱系統(tǒng)下,高溫期堆體溫度均較高,故高通風(fēng)率下帶走的熱量損失較高。water和solid為堆體升溫消耗的熱量,在3 290~8 653 kJ范圍內(nèi),占總熱量消耗的14.3%~38.1%。其中water消耗的熱量較高在2 798~7 474 kJ范圍內(nèi),占總熱量消耗的12.1%~32.8%。cond為反應(yīng)器壁散熱,占總熱量損失的28.3%~49.4%,其中T4處理熱量損失占比最低,由于反應(yīng)器壁散熱量受堆體溫度與環(huán)境溫度差值影響,堆體溫度較低則熱量損失較低。evap為水分蒸發(fā)潛熱,占總熱量消耗比最高,約為26.0%~46.5%,該部分反映了生物干化過程中的能量利用效率,占比越高,說明能量利用效率越高。其中隨著曝氣量增大,evap占總熱量消耗比越高,T6處理占比最高。因此,能量效率最高的為T6處理,其余處理差異不大,其原因在于通風(fēng)量越大,由通風(fēng)帶走的蒸發(fā)水量較大,從而水分蒸發(fā)耗熱高。此外,turnning為翻堆損失熱量,在1 505~4 240 kJ范圍內(nèi),通風(fēng)率大的處理翻堆熱量損失顯著低于其他處理的原因在于該處理的堆體溫度低,干化產(chǎn)品含水量低。
綜合分析餐廚廢棄物輔熱生物干化過程能量流動(dòng),圖5顯示了該系統(tǒng)過程的能量流動(dòng)平衡。最主要的能量來源是生化反應(yīng)熱(bio)占65.1%,輔熱輸入能量(h)占33.3%,生化反應(yīng)熱依然是主要的能量來源,輸入空氣經(jīng)脫水后干空氣輸入能量(dryairin)非常低占1%;最主要的能量輸出為水的汽化潛熱(evap)占48.0%、反應(yīng)器熱損失(z)占22.3%與堆體水升溫耗熱(vapourout)占17.5%,水的汽化潛熱與堆體水升溫耗熱為水分蒸發(fā)耗熱,該部分反映了生物干化過程中的能量利用效率,占比越高,說明能量利用效率越高。該系統(tǒng)裝置熱損失的降低,提高了能量利用效率。
表4 各處理熱量平衡
注:∑bio微生物降解產(chǎn)生熱量;∑Q外源加熱輸入熱量;∑dryair通風(fēng)帶走的熱量;∑soild堆體干物質(zhì)升溫消耗的熱量;∑water堆體水分升溫消耗的熱量;∑evap水分蒸發(fā)潛熱;∑cond反應(yīng)器壁耗散熱量;∑Turnning翻堆損失熱量,∑Total為熱量合計(jì),單位均為kJ,括號(hào)中為占比。
Note: ∑biobiologically generated heat; ∑Qthe heating device; ∑dryairoutput energies of the dry air; ∑soildoutput energies of the dry materials; ∑waterlossing energies of the water materials temperature rises; ∑evapthe latent heat of water evaporation; ∑condthe total heat loss throughout the process; ∑Turnningoutput energies of turning the pile, ∑Totalis the total energy, it’s all in kJ, percentage is in brackets.
注:qh為外源加熱輸入能量;Hdryairin為干空氣輸入能量;Hswaterin為物料水分輸入能量;Hsin為物料干物質(zhì)輸入能量;Hsout為物料干物質(zhì)輸出能量;Hswaterout為物料水分輸出能量;Hdryairout為干空氣輸出能量;Hvapourout為物料水分升溫耗熱量;qz為反應(yīng)器熱損失。
1)除T4處理外,其他各處理均達(dá)腐熟要求。相較于粒徑而言,曝氣量對(duì)于生物干化溫度和除水影響更大。中等曝氣量0.6 L/(min·kg)條件下,升溫速度較快,第二天可達(dá)峰值溫度。0.6 L/(min·kg)和細(xì)粒徑處理有效積溫最高,達(dá)209.0 ℃。
2)以生物干化指數(shù)評(píng)價(jià)生物干化除水效果,細(xì)粒徑和0.8 L/(min·kg)曝氣量處理的生物干化指數(shù)達(dá)到4.02,除水效果最好,其水分去除率達(dá)到了95.8%。
3)能量和水分平衡計(jì)算表明,輔熱生物干化過程中,主要的除水方式為蒸發(fā)除水,占總除水量40%~80%;主要的能量來源為生物產(chǎn)熱(63.0%~73.0%)與加熱,而能量輸出主要有蒸發(fā)潛熱(26.0%~46.5%)和反應(yīng)器熱損失(28.3%~49.4%)。最優(yōu)處理(細(xì)粒徑和0.8 L/(min·kg))的能量流動(dòng)中,蒸發(fā)潛熱占比為48%,能量利用效率最高為65%。
4)經(jīng)過16 d生物干化,除T4處理pH值與發(fā)芽指數(shù)不能滿足腐熟標(biāo)準(zhǔn),其他處理均能完全腐熟,滿足有機(jī)肥標(biāo)準(zhǔn)。
[1] 王敏,方文敏,洪霄偉. 餐廚垃圾處理行業(yè)環(huán)境分析及技術(shù)研究進(jìn)展[C]. 南京:中國(guó)環(huán)境科學(xué)學(xué)會(huì)科學(xué)技術(shù)年會(huì)論文集(第二卷),2020.
[2] 易志剛. 餐廚垃圾收運(yùn)與資源化利用研究進(jìn)展[J]. 中國(guó)資源綜合利用,2021,39(12):116-119.
Yi Zhigang. Research Progress on the Collection, Transportation and Resource Utilization of Kitchen Waste[J]. China Resources Comprehensive Utilization, 2021, 39(12): 116-119. (in Chinese with English abstract)
[3] 劉子旭,彭晶. 餐廚垃圾特性及處理技術(shù)研究[J]. 環(huán)境科學(xué)與管理,2015,40(7):102-104.
Liu Zixu, Peng Jing. Characteristics and Treatment Technologies of Food Residue[J]. Environmental Science and Management, 2015, 40(7): 102-104. (in Chinese with English abstract)
[4] Mohammed M, Ozbay I, Durmusoglu E. Bio-drying of green waste with high moisture content[J]. Process Safety & Environmental Protection, 2017, 111: 420-427.
[5] 汪群慧,王锘涵,馬曉宇,等. 餐廚垃圾乳酸發(fā)酵技術(shù)的研究進(jìn)展[J]. 環(huán)境工程學(xué)報(bào),2021,15(10):3176-3188.
Wang Qunhui, Wang Nuohan, Ma Xiaoyu, et al. Research advances for lactic acid fermentation of food waste[J]. Chinese Journal of Environmental Engineering, 2021, 15(10): 3176-3188. (in Chinese with English abstract)
[6] Zhang D, Luo W, Li Y, et al. Performance of co-composting sewage sludge and organic fraction of municipal solid waste at different proportions[J]. Bioresource Technology, 2017, 250: 853-859.
[7] 楊國(guó)棟,顏楓,王鵬舉,等. 生活垃圾處理的低碳化研究進(jìn)展[J]. 環(huán)境工程學(xué)報(bào),2022,16(3):714-722.
Yang Guodong, Yan Feng, Wang Pengju, et al. Research progress on low carbonization of municipal solid waste treatment[J]. Chinese Journal of Environmental Engineering, 2022, 16(3): 714-722. (in Chinese with English abstract)
[8] Jewell W J, Cummings R J. Apple pomace energy and solids recovery[J]. Journal of Food Ence, 2010, 49(2): 407-410.
[9] Hall C W. Reviews on drying: 1982-2006[J]. Drying Technology, 2007, 25(3): 19-28.
[10] Zhou H B, Chen T B, Gao D, et al. Simulation of water removal process and optimization of aeration strategy in sewage sludge composting[J]. Bioresource Technology, 2014, 171: 452-460.
[11] Yu S H, Clark O G, Leonard J J. Influence of free air space on microbial kinetics in passively aerated compost[J]. Bioresource Technology, 2009, 100(2): 782-790.
[12] Jing Y, Yun L, Zhang H, et al. Effects of adding bulking agents on the biodrying of kitchen waste and the odor emissions produced[J]. Journal of Environmental Science, 2018, 67(5): 344-355.
[13] 王海候,何胥,陶玥玥,等. 添加不同粒徑炭基輔料改善豬糞好氧堆肥質(zhì)量的效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(9):224-232.
Wang Haihou, He Xu, Tao Yueyue, et al. Improving pig manure aerobic composting quality by using carbonaceous amendment with different particle sizes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(9): 224-232. (in Chinese with English abstract)
[14] 牛明芬,王昊,龐小平,等. 玉米秸稈的粒徑與投加量對(duì)豬糞好氧堆肥的影響[J]. 環(huán)境科學(xué)與技術(shù),2010,33(S2):159-161.
Niu Mingfen, Wang Hao, Pang Xiaoping, et al. Corn straw size and dosing quantity of pig of influence[J]. Environmental Science & Technology, 2010, 33(S2): 159-161. (in Chinese with English abstract)
[15] Cai L, Chen T B, Gao D, et al. Influence of forced air volume on water evaporation during sewage sludge bio-drying[J]. Water Research, 2013, 47(13): 4767-4773.
[16] Velis C A, Longhurst P J, Drew G H, et al. Biodrying for mechanical-biological treatment of wastes: a review of process science and engineering[J]. Bioresource Technology, 2009, 100(11): 2747-2761.
[17] Jing Y, Zhang D, Yun L, et al. Effects of adding bulking agents on biostabilization and drying of municipal solid waste[J]. Waste Management, 2017, 62(1): 52-60.
[18] Zhao S Q, Huang W X, Yin R, et al. The effect of bio-drying pretreatment on heating values of municipal solid waste[J]. Advanced Materials Research, 2014, 1010: 537-546.
[19] Yuan J, Zhang D F, Li Y, et al. Effect of external carbon sources on biodrying of kitchen waste[J]. China Environmental Science, 2017, 37(2): 628-635.
[20] 范鑫祺,陳睿,李琬婷,等. 不同輔熱策略對(duì)餐廚垃圾快速生物干化的影響[J]. 科學(xué)技術(shù)與工程,2021,21(36):15688-15694.
Fan Xinqi, Chen Rui, Li Wanting, et al. Influence of different thermal assist strategies on the rapid bio-drying of food waste[J]. Science Technology and Engineering, 2021, 21( 36): 15688-15694. (in Chinese with English abstract)
[21] Cai L, Gao D, Chen T B, et al. Moisture variation associated with water input and evaporation during sewage sludge bio-drying[J]. Bioresource Technology, 2012, 117: 13-19.
[22] 郭松林,陳同斌,高定,等. 城市污泥生物干化的研究進(jìn)展與展望[J]. 中國(guó)給水排水,2010,26(15):102-105.
Guo Songlin, Chen Tongbin, Gao Ding, et al. Research progress and propect of sewages sludge biodrying[J]. China Water & Wastewater, 2010, 26(15): 102-105. (in Chinese with English abstract)
[23] Yuan J, Zhang D F, Li Y, et al. Effects of the aeration pattern, aeration rate, and turning frequency on municipal solid waste biodrying performance[J]. Journal of Environmental Management, 2018, 218(15): 416-424.
[24] Perazzini H, Freire F B, Fábio B F, et al. Thermal treatment of solid wastes using drying technologies: A review[J]. Drying Technology, 2016, 34(1): 39-52.
[25] Wang Y Y, Zheng S W, Gao D, et al. The organic degradation and potential microbial function in a 15-day sewage sludge biodrying[J]. Compost Science & Utilization, 2020, 28(1): 49-57.
[26] Li Q, Zhi S, Yu X, et al. Biodegradation of volatile solids and water mass balance of bio-drying sewage sludge after electro-dewatering pretreatment[J]. Waste Management, 2019, 91: 9-19.
[27] Sundberg C, Smars S, Jonsson H. Low pH as an inhibiting factor in the transition from mesophilic to thermophilic phase in composting[J]. Bioresource Technology, 2004, 95(2): 145-150.
[28] Jumnoodoo V, Mohee R. Evaluation of FTIR spectroscopy as a maturity index for herbicide-contaminated composts[J]. International Journal of Environment and Waste Management, 2012, 9(2): 89-99.
[29] Yang F, Li G X, Yang Q Y, et al. Effect of bulking agents on maturity and gaseous emissions during kitchen waste composting[J]. Chemosphere, 2013, 93(7): 1393-1399.
[30] 魏自民,席北斗,趙越,等. 城市生活垃圾外源微生物堆肥對(duì)有機(jī)酸變化及堆肥腐熟度的影響[J]. 環(huán)境科學(xué),2006,27(2):376-380.
Wei Zimin, Xi Beidou, Zhao Yue, et al. Inoculating microbes on municipal solid wastes composting affects organic acids and maturity[J]. Environmental Science, 2006, 27(2): 376-380. (in Chinese with English abstract)
[31] 向虹霖,蔣建國(guó),高語晨,等. 外加熱源對(duì)典型有機(jī)廢棄物生物干化的影響[J]. 中國(guó)給水排水,2021,37(5):71-78.
Xiang Honglin, Jiang Jianguo, Gao Yuchen, et al. Effect of additional heating source on bio-drying of typical organic wastes[J]. China Water & Wastewater, 2021, 37(5): 71-78. (in Chinese with English abstract)
[32] Zhao L, Gu W M, He P J, et al. Effect of air-flow rate and turning frequency on bio-drying of dewatered sludge[J]. Water Research, 2010, 44(20): 6144-6152.
[33] Ma J, Zhang L, Li A M, et al. Energy-efficient co-biodrying of dewatered sludge and food waste: Synergistic enhancement and variables investigation[J]. Waste Management, 2016, 56: 411-422.
[34] Ma J, Mu L, Zhang Z K, et al. Influence of thermal assistance on the biodegradation of organics during food waste bio-drying: Microbial stimulation and energy assessment[J]. Chemosphere, 2021, 272: 129875.
[35] Xin L Q, Li X R, Bi F, et al. Accelerating food waste composting course with biodrying and maturity process: A pilot study[J]. ACS Sustainable Chemistry and Engineering, 2021, 9(1): 224-235
[36] 袁京,張地方,李赟,等. 外加碳源對(duì)廚余垃圾生物干化效果的影響[J]. 中國(guó)環(huán)境科學(xué),2017,37(2):628-635.
Yuan Jing, Zhang Difang, Li Yun, et al. Effect of external carbon sources on biodrying of kitchen waste[J]. China Environmental Science, 2017, 37(2): 628-635. (in Chinese with English abstract)
Effects of aeration rate and particle size of bulking agents on the thermally assisted bio-drying of kitchen waste
Zhang Liping1,2, Feng Ziwei1, Xu Shaoqi1,3, Wang Zhigang3, Sun Baoru1, Zhang Kui1,2, Li Ji1,2, Wei Yuquan1,2※
(1.,,100193,; 2.,,215100,; 3..,,,102629,)
Much more Kitchen Wastes (KW) have been generated and collected separately, as the proposals for the practice of waste separation in China. Among them, bio drying is an emerging technique to remove water from biodegradable wastes. However, the KW bio drying is also confined to the application in practice, due to the long treatment cycle, low temperature and dehydration efficiency. In this study, a thermally assisted bio-drying system was established and developed to fully meet the market demand for better performance and high efficiency of water removal. The air-flow rate and bulking agent were the most important factor for the traditional bio drying process. But there were few reports about the sole and synergetic effect on the thermally assisted bio-drying process. Therefore, a comparison was then made to clarify the influence of aeration volume and particle size on the auxiliary heat biological drying, particularly for the low consumption of energy efficiency and high bio drying efficiency. Three aerations (0.4, 0.6, and 0.8 L/(min·kg)) and different particle sizes of auxiliary material (coarse particle size > 15.0 mm, fine particle size < 5.0 mm, and mixed particle size 5.0-15.0 mm) were set for the factorial experiments, in order to explore the biological drying efficiency for the kitchen wastes. Some bio drying parameters were determined to assess the bio drying performance. The flow balance of energy and water in the system was calculated to further assess the water removal and energy utilization rate. The results show that the aeration rate posed a greater effect on the bio drying temperature and water removal, compared with the particle size. A better performance was achieved, particularly for the higher heating rate and the longer duration at the high-temperature stage, and the higher effective accumulated temperature under the 0.6 L/(min·kg) aeration. The high-temperature stage of auxiliary heat bio drying was more than seven days, except for the treatment with the 0.4 L/(min·kg) and fine particle size. The treatment of 0.8 L/(min·kg) and fine particle size performed the best for the water removal. Specifically, the highest bio drying index was 4.0, the final water content was 17.0%, and the water removal rate was 95.8%. The energy and water balance show that evaporation was the main way of water removal in the bio-drying process, accounting for 40%-80% of the total water removal. The main input energy was the heat production of biomass (63.0%-73.0%), whereas, the main output energy was the latent heat of evaporation (26.0%-46.5%) and reactor heat loss (28.3%-49.4%). The highest energy utilization efficiency was achieved in the treatment with the 0.8 L/(min·kg) and fine particle size, up to 65.1%. The latent heat of evaporation accounted for 48% of the output energy in the treatment with the 0.8 L/(min·kg) and fine particle size. However, the pH value and germination index in the treatment with the 0.4 L/(min·kg) and fine particle size failed to meet the compost safety and maturity standards after 16 days of bio drying by auxiliary heat. Therefore, the fine particle size of bulking agents with a higher aeration rate (≥0.6 L/(min·kg)) can be expected for the bio drying process with the auxiliary heat for KW for better bio drying and energy utilization efficiency.
wastes; aeration rate; the thermally assisted bio-drying; particle size of bulking agents; efficiency of water removal; energy utilization efficiency
10.11975/j.issn.1002-6819.2022.16.028
X712
A
1002-6819(2022)-16-0252-08
張利萍,馮梓薇,徐少奇,等. 曝氣量與輔料粒徑對(duì)餐廚廢棄物輔熱生物干化的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(16):252-259.doi:10.11975/j.issn.1002-6819.2022.16.028 http://www.tcsae.org
Zhang Liping, Feng Ziwei, Xu Shaoqi, et al. Effects of aeration rate and particle size of bulking agents on the thermally assisted bio-drying of kitchen waste[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(16): 252-259. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.16.028 http://www.tcsae.org
2022-06-02
2022-08-01
生物堆肥調(diào)控根際微生物組抑病的機(jī)理研究(32071552);國(guó)家自然科學(xué)基金(31800378)
張利萍,研究方向?yàn)樯鷳B(tài)工程與有機(jī)廢棄物資源化處理。Email:2544077320@qq.com
魏雨泉,副教授,博士,研究方向?yàn)樯鷳B(tài)工程與有機(jī)廢棄物資源化處理。Email:weiyq2019@cau.edu.cn