魏增,張寶紅,吳卓陽,何金文
室溫多向壓縮道次變形量對AZ80鎂合金力學(xué)性能影響
魏增,張寶紅,吳卓陽,何金文
(中北大學(xué) 材料科學(xué)與工程學(xué)院,太原 030051)
探明室溫塑性變形對AZ80塑性、硬度及最大應(yīng)力等力學(xué)性能的影響規(guī)律,為其成形工藝參數(shù)制定提供依據(jù)。對擠壓態(tài)AZ80鎂合金均勻化處理后,在室溫下控制道次變形量(0.05、0.075、0.1)及累積應(yīng)變進(jìn)行多向多道次壓縮變形;利用力學(xué)試驗(yàn)機(jī)和維氏硬度計(jì)分析道次變形量與累積應(yīng)變對其力學(xué)性能的影響。在室溫下,當(dāng)AZ80鎂合金單向壓縮的真應(yīng)變達(dá)到0.124時會發(fā)生開裂,通過小應(yīng)變多向多道次壓縮可以將累積應(yīng)變至少提高至3.6以上。在道次變形量為0.05、0.075和0.1時,累積應(yīng)變分別可達(dá)到7.5、6和3.7;在累積應(yīng)變?yōu)?.6時,隨著道次變形量的增加試樣硬度(HV)分別達(dá)到94、110和121,較未變形試樣硬度(70HV)分別提升了33%、57%和73%。AZ80鎂合金通過室溫多向多道次壓縮有利于改善材料塑性,提高力學(xué)性能。其塑性隨著道次變形量的減小而提高,硬度和最大應(yīng)力隨道次變形量和累積應(yīng)變的增加而升高,且道次變形量比累積應(yīng)變對硬度和最大應(yīng)力的影響更大。
晶粒細(xì)化;鎂合金;室溫;多向壓縮;擠壓態(tài);力學(xué)性能
鎂及鎂合金是最輕的金屬結(jié)構(gòu)材料,具有高的比強(qiáng)度和比剛度,是航空航天、汽車等領(lǐng)域節(jié)能減排的理想材料[1-2]。由于屬六方密排晶體結(jié)構(gòu),其具有的獨(dú)立滑移系較少,因而綜合力學(xué)性能很差,影響了鎂合金的廣泛應(yīng)用[3]。升溫或者晶粒細(xì)化可以開動原本剪切應(yīng)力閾值較高的柱面滑移系和錐面滑移系,以此來改善鎂合金的塑性,這也是加工、改性的最重要手段。為了提高鎂合金的塑性變形能力,研究人員采用了如等徑角擠壓(ECAE)[4-5]、累積疊扎(ARB)[6-7]、高壓扭轉(zhuǎn)變形(HPT)[8-9]等一系列大塑性變形(SPD)[10]方法,這些工藝是晶粒細(xì)化獲取高性能材料的有效方法,甚至可以使材料獲得超塑性[11-13]。
近年來,通過多向鍛造(MDF)改變加載方向來發(fā)揮鎂合金孿生的作用引起了研究者的廣泛關(guān)注。多向鍛造主要是通過變形引入[10-12]不同方向的孿生片層及后續(xù)的再結(jié)晶機(jī)制來細(xì)化晶粒、弱化織構(gòu),從而產(chǎn)生不同的強(qiáng)化效果[13-18]。然而,這些大塑性變形方法主要集中在高溫下變形,材料在加工過程中對于溫度的精確控制明顯降低了生產(chǎn)效率。室溫多向鍛造的最大優(yōu)點(diǎn)在于材料加工環(huán)境無需加熱,比熱成形不易產(chǎn)生氧化,操作方便,且在低溫下更容易通過產(chǎn)生大量孿晶分割細(xì)化晶粒。若此工藝能夠得到廣泛研究并應(yīng)用于生產(chǎn),則會進(jìn)一步降低成本。雖然目前已有部分關(guān)于鎂合金多向鍛造的研究,但都集中在350 ℃以上,在室溫狀態(tài)下的研究相對較少。Miura等[19-21]在室溫下通過0.1應(yīng)變對AZ80鎂合金進(jìn)行多向鍛造,獲得了晶粒細(xì)化、分布均勻的組織,屈服和抗拉強(qiáng)度得到顯著提升,得到了平均尺寸0.3 μm的超細(xì)晶。宋廣勝等[22]分析了不同壓縮方式引入的孿晶,在室溫多向鍛造中對AZ31鎂合金各向異性和塑性的影響。蔣莉萍等[23]發(fā)現(xiàn),AZ31鎂合金在室溫多向鍛壓下累積應(yīng)變增加,在后續(xù)退火過程中再結(jié)晶數(shù)量增大。吳文昊等[24]研究發(fā)現(xiàn),ZK60鎂合金室溫多向鍛造過程的位錯是產(chǎn)生顯著加工硬化的原因。
AZ80鎂合金的強(qiáng)度高、耐蝕性較好,價格較低,冶煉工藝簡單,質(zhì)量容易控制且工業(yè)應(yīng)用廣泛。以AZ80為研究對象,通過對比不同道次變形量、累積應(yīng)變對鎂合金室溫多向壓縮時力學(xué)性能的影響,探究了更佳的加工工藝。
采用直徑為100 mm的擠壓態(tài)AZ80鎂合金棒料(化學(xué)成分Al、Zn、Mn、Si的質(zhì)量分?jǐn)?shù)分別為7.5%~ 8.5%、0.3%~0.7%、0.17%、0.1%,Mg為余量),預(yù)先進(jìn)行375 ℃、10 h均勻化處理,均勻化處理前后的微觀組織見圖1。由圖1可知,擠壓態(tài)AZ80鎂合金在原始晶粒的晶界上有大量的粗大第二相存在,不利于塑性變形;均勻化處理之后晶粒尺寸有所增加,但大多數(shù)第二相已溶入基體,有利于塑性變形的進(jìn)行。將均勻化處理后的鎂合金棒料通過線切割,沿其外圓加工出12 mm(ED)×11 mm(TD)×10 mm(RD)的試樣,如圖2所示。
實(shí)驗(yàn)在Instron3382萬能力學(xué)試驗(yàn)機(jī)上完成。選擇單向壓縮及道次變形量分別為0.05、0.075、0.1的4組試樣進(jìn)行試驗(yàn),為了避免線切割裂紋對壓縮過程產(chǎn)生影響,各個表面都用砂紙打磨光滑,然后在試驗(yàn)機(jī)上分別沿軸循環(huán)往復(fù)進(jìn)行室溫多向壓縮,壓縮速率為0.01 mm/s,電腦自動記錄下位移?載荷曲線,再利用Origin繪圖軟件轉(zhuǎn)換輸出真應(yīng)力?應(yīng)變曲線和真應(yīng)力與累積應(yīng)變的關(guān)系圖。采用光學(xué)顯微鏡觀察室溫多向壓縮的試樣,變形后試樣沿最終壓縮方向切割為2部分,剖面為觀察面。將剖面經(jīng)砂紙打磨后在型號MP?2A型拋光機(jī)進(jìn)行機(jī)械拋光。采用UHLVmh?002 型維式顯微硬度計(jì)對原始擠壓態(tài)試樣、室溫多向鍛造試樣進(jìn)行維氏硬度測試,加載載荷為200 N,加載后進(jìn)行12 s的保壓。在測試面分別選取10個點(diǎn)進(jìn)行測試,將測試值中的異常數(shù)值剔除之后計(jì)算平均值,得到每個試樣的硬度值。
圖1 均勻化處理前后AZ80鎂合金顯微組織
圖2 多向壓縮示意圖和試驗(yàn)試樣
不同道次變形量的AZ80鎂合金壓縮真應(yīng)力?應(yīng)變曲線見圖3,由于鎂合金的密排六方晶體結(jié)構(gòu),導(dǎo)致其在室溫時塑性極差。在單向壓縮試驗(yàn)時,試樣進(jìn)入屈服階段后孿生和基面滑移在后續(xù)塑性變形中占據(jù)主導(dǎo)地位。由圖3a可知,是典型拉伸孿晶產(chǎn)生的應(yīng)力?應(yīng)變曲線[25],試樣在屈服后應(yīng)力開始上升,變形至真應(yīng)變?yōu)?.124左右時發(fā)生開裂,此時的真應(yīng)力為369 MPa。道次變形量為0.05時不同變形道次的真實(shí)應(yīng)力?應(yīng)變曲線見圖3b,可以看出,在第46道次(累積應(yīng)變達(dá)到2.3)時試樣仍未開裂,相比于第1道次,真應(yīng)力由177 MPa提高到315 MPa。繼續(xù)壓縮至第148道次(累積應(yīng)變7.5),試樣仍未發(fā)生開裂,真應(yīng)力值達(dá)到了410 MPa,并已趨于平穩(wěn)。隨變形道次增加應(yīng)力迅速上升,在多向壓縮的過程中產(chǎn)生了加工硬化。當(dāng)?shù)来巫冃瘟吭黾又?.075和0.1時(圖3c—d),隨著變形道次增加,試樣的屈服應(yīng)力及真應(yīng)力上升幅度升高。當(dāng)?shù)来巫冃瘟繛?.075時,第46道次和第80道次的曲線趨于一致,最大真應(yīng)力相近。當(dāng)?shù)来巫冃瘟繛?.1時,試樣在第37道次(累積應(yīng)變3.7)時發(fā)生開裂。
AZ80在不同道次變形量下的累積變形極限見表1。由表1可知,相比于室溫單向壓縮,多向壓縮的累積應(yīng)變得到顯著提升。單向壓縮在道次應(yīng)變量為0.124時發(fā)生開裂,最大應(yīng)力為369 MPa;多向壓縮在道次變形量為0.1時累積應(yīng)變可達(dá)到3.7,試樣發(fā)生開裂時的最大應(yīng)力為489 MPa。隨著道次變形量減小,試樣可達(dá)到的累積應(yīng)變進(jìn)一步提高,當(dāng)?shù)来巫冃瘟繛?.075、0.05時累積應(yīng)變至少可分別達(dá)到6和7.5,且試樣未開裂,但材料的變形抗力有所下降。多向壓縮的特點(diǎn)在于不斷改變試樣變形的加載軸方向,因而可以有效地弱化織構(gòu)帶來的各向異性影響。在產(chǎn)生孿生初期的變形階段,通過較小的應(yīng)變量(≤0.1)不斷地改變壓縮方向(方向),進(jìn)行多向多道次循環(huán)壓縮便可累積相當(dāng)大的變形量。累積應(yīng)變?yōu)?.4時不同道次變形量的EBSD晶粒形貌見圖4。由圖4a可知,部分晶粒內(nèi)部已經(jīng)出現(xiàn)大量的透鏡狀拉伸孿晶,不同方向的孿晶彼此分割細(xì)化了原始晶粒。隨著道次變形量增大,大量晶粒內(nèi)部產(chǎn)生了更多的孿晶,孿晶間交割作用顯著增強(qiáng),對原始晶粒整體碎化效果更加明顯。在道次變形量較小時,孿晶的面積百分?jǐn)?shù)減少,表明位錯運(yùn)動不激烈,應(yīng)變硬化不明顯,從而保留了相對較高的塑性,可以實(shí)現(xiàn)更多道次的變形,且保持不開裂。
圖3 不同道次下真應(yīng)力?應(yīng)變曲線
表1 不同道次變形量室溫多向壓縮成形極限
Tab.1 Limit of multi-directional compression molding at room temperature with different pass deformation amounts
圖4 累積應(yīng)變?yōu)?.4時不同道次變形量的EBSD晶粒形貌
不同道次變形量在室溫多向壓縮下的真應(yīng)力和累積應(yīng)變關(guān)系曲線見圖5。由圖5可知,隨著累積應(yīng)變增加,合金在多向壓縮時的真應(yīng)力持續(xù)上升。在不同方向的壓縮道次應(yīng)力曲線呈現(xiàn)的趨勢,可以分為應(yīng)力隨累積應(yīng)變增加而急劇增大的Ⅰ階段(累積應(yīng)變0.05~0.6)、緩慢增加的Ⅱ階段(累積應(yīng)變0.65~1.5)和保持基本穩(wěn)定的Ⅲ 階段(累積應(yīng)變高于1.5)等3個階段。在道次變形量為0.05的第1次壓縮時,沿軸(ED方向)的真應(yīng)力達(dá)到了177 MPa,而在隨后的第2、第3道次沿和方向壓縮時,真應(yīng)力有所下降,分別為161、162 MPa,這是由于變形鎂合金試樣存在基面織構(gòu)(ED方向)產(chǎn)生的各向異性所致。當(dāng)變形進(jìn)行到第4至第6道次時,第4道次沿方向壓縮的真應(yīng)力達(dá)到224 MPa,相比第1道次提升明顯,增長了26%;在第5、第6道次壓縮時,真應(yīng)力仍然相差不大,低于第4道次(方向),但仍高于前三道次,分別為182、181 MPa。說明經(jīng)過6個道次、累積應(yīng)變0.3、道次變形量為0.05的多向壓縮后已經(jīng)產(chǎn)生了加工硬化,材料的強(qiáng)度得到明顯提升。從第10至第12道次(累積應(yīng)變0.6)開始,試樣進(jìn)入應(yīng)力緩慢上升的Ⅱ階段,沿3個方向壓縮時的真應(yīng)力相比第1至第3道次分別提升了51%、44%和53%,而且從此刻開始,方向的壓縮應(yīng)力高于方向,方向的應(yīng)力增加幅度最大,且逐漸靠近方向,直至應(yīng)力穩(wěn)定的Ⅲ 階段。在真應(yīng)力穩(wěn)定時,方向壓縮的真應(yīng)力分別為315、278、302 MPa,相比第1至第3道次分別提升了78%、73%和86%。鎂合金的真應(yīng)力增幅速率沿軸方向最大,沿軸方向最小。
當(dāng)?shù)来巫冃瘟吭黾又?.075時,第1輪變形第1道次至3道次的真應(yīng)力分別為269、263、260 MPa。其中,依然是沿方向應(yīng)力最大。在第4至第6道次時,沿方向壓縮的真應(yīng)力分別為310、292、305 MPa,在同樣的累積應(yīng)變(0.45)下,應(yīng)力相比于道次變形量0.05時提升幅度明顯。方向的真應(yīng)力提升幅度最大,曲線介于兩曲線方向之間。在進(jìn)入Ⅲ階段時(累積應(yīng)變高于2.925),變形后期的真應(yīng)力為425、393、415 MPa,比第1至第3道次分別提升了58%、49%、60%,方向的應(yīng)力提升幅度依然最大,方向最小。在Ⅲ階段同樣的累積應(yīng)變下,相比于道次變形量0.05,分別提升了35%、41%、37%。當(dāng)?shù)来巫冃瘟窟M(jìn)一步增大到0.1時,3個方向的真應(yīng)力相比于道次變形量0.05和0.075時繼續(xù)增大,可以觀察到,在一個完整的多向鍛造過程中(第1至第3道次),應(yīng)力分別為337、310、307 MPa,已經(jīng)高于道次變形量0.05的變形后期(累積應(yīng)變1.5~3.6)所達(dá)到的應(yīng)力穩(wěn)定狀態(tài)值;當(dāng)進(jìn)入Ⅲ階段時(累積應(yīng)變高于2.4),3個方向的真應(yīng)力分別為488、442、473 MPa,相比于第1至第3道次分別提升了45%、43%、54%。由圖5可知,3種不同道次變形量下隨著變形程度的增加,方向的應(yīng)力始終保持最大,方向在變形初期的應(yīng)力基本保持一致,但隨著累積應(yīng)變增加,沿方向壓縮的應(yīng)力增長速率最大,其應(yīng)力高于方向、低于方向。同時,在不同道次變形量下,3個階段的變化幅度并不相同,3個道次變形量下進(jìn)入應(yīng)力穩(wěn)定的Ⅲ階段,其累積應(yīng)變分別為1.5、2.925和2.4。隨著道次變形量增加,進(jìn)入應(yīng)力穩(wěn)定階段所需的累積應(yīng)變呈現(xiàn)先增加后減少的趨勢。
多向壓縮不同道次變形量的硬度與累積應(yīng)變的關(guān)系曲線見圖6,固溶后未變形的初始試樣硬度為70HV,可以看出,經(jīng)過多向壓縮后試樣的硬度均得到了不同程度提升。當(dāng)?shù)来巫冃瘟繛?.05時,經(jīng)過6道次(累積應(yīng)變0.3)時試樣的硬度值達(dá)到80HV,與未變形試樣相比提升了14%,試樣產(chǎn)生了一定的加工硬化。隨著累積應(yīng)變增加,在累積應(yīng)變?yōu)?.2、2.4、3.6時硬度(HV)分別為86、90和94,較未變形試樣硬度持續(xù)增大,但硬化增幅逐漸下降。當(dāng)?shù)来巫冃瘟繛?.075、累積應(yīng)變0.45時,變形試樣的硬度已達(dá)到93HV,相比于未變形試樣提高了33%,并且與道次變形量0.05變形結(jié)束時的硬度持平。隨著累積應(yīng)變繼續(xù)增加至3.6時,硬度為110HV,較未變形試樣硬度提升了57%,同樣硬化增幅也明顯下降。當(dāng)?shù)来巫冃瘟窟M(jìn)一步增至0.1、累積應(yīng)變?yōu)?.6時,變形試樣的硬度為98HV,此時試樣的硬度已經(jīng)超過了道次變形量為0.05時最終變形后的硬度。當(dāng)累積應(yīng)變?yōu)?.6時,硬度達(dá)到121HV,較未變形試樣提升了73%。與道次變形量為0.05的硬度曲線相比,道次變形量為0.075和0.1的提升幅度更加明顯和相近。由圖6可知,在室溫多向壓縮時,隨著累積應(yīng)變增加試樣硬度也隨之提高。同時,隨著變形程度增加,相同累積應(yīng)變下的硬度增幅逐漸下降,增幅速率呈現(xiàn)先快后慢2個階段。道次變形量增加可以顯著提高試樣硬度,與累積應(yīng)變相比,道次變形量對試樣硬度的提升占主導(dǎo)地位。
圖5 不同道次變形量下的真應(yīng)力與累積應(yīng)變關(guān)系曲線
圖6 不同道次變形量的硬度與累積應(yīng)變曲線
1)在室溫下AZ80鎂合金單向壓縮真應(yīng)變達(dá)到0.124時發(fā)生開裂,而在多向壓縮過程中使用小道次變形量可以使累積應(yīng)變達(dá)到3.6以上。道次變形量越小,試樣可累積的應(yīng)變越大,塑性越好。
2)隨著道次變形量和累積應(yīng)變增大,在室溫多向多道次壓縮中、、等3個壓縮方向的真應(yīng)力不斷增大。AZ80鎂合金棒材的各向異性使沿、、等3個方向上壓縮的真應(yīng)力大小并不相同,存在一定差異。在整個變形過程中,沿初始壓縮方向軸(ED方向)的真應(yīng)力始終保持最大,沿軸方向的真應(yīng)力增幅最快。在相同累積應(yīng)變下,增加道次變形量可以顯著提高試樣的壓縮真應(yīng)力。道次變形量大小對真應(yīng)力的提升起主導(dǎo)作用。
3)室溫多向壓縮的道次變形量和累積應(yīng)變增加可以有效提高試樣硬度。隨著累積應(yīng)變增加,在不同道次變形量下,試樣硬度的上升速率均呈現(xiàn)先快后慢2個階段。道次變形量對試樣硬度的影響比累積變形量更大。
[1] Bettles C, Barnett M. Advances in wrought magnesium alloys: Fundamentals of processing, properties and applications[M]. Cambridge: Woodhead Publishing Limited, 2012: 1-5.
[2] 陳振華. 變形鎂合金[M]. 北京: 化學(xué)工業(yè)出版社, 2005: 1-2.
CHEN Zhen-hua. Wrought Magnesium Alloy[M]. Beijing: Chemical Industry Press, 2005: 1-2.
[3] Mordike B L, Ebert T. Magnesium: Properties- Applications-Potential[J]. Materials Science and Engineering: A, 2001, 302(1): 37-45.
[4] Liu J, Hu H, Liu Y, et al. Mechanical Properties and Wear-Corrosion Resistance of A New Compound Extrusion Process for Magnesium Alloy AZ61[J]. Materials Testing, 2020, 62(4): 395-399.
[5] Xu B, Sun J, Yang Z, et al. Microstructure and Anisotropic Mechanical Behavior of The High-strength and Ductility AZ91 Mg Alloy Processed by Hot Extrusion and Multi-Pass RD-ECAP[J]. Materials Science and Engineering A, 2020, 780(4/7): 1-11.
[6] Abbasi M, Sajjadi S A. Mechanical Properties and Interface Evaluation of Al/AZ31 Multilayer Composites Produced by ARB at Different Rolling Temperatures[J]. Journal of Materials Engineering and Performance, 2018, 27(7): 3508-3520.
[7] WANG Tian-zi, ZHENG Hai-peng, WU Rui-zhi, et al. Preparation of Fine-Grained and High-Strength Mg-8Li- 3Al-1Zn Alloy by Accumulative Roll Bonding[J]. Advanced Engineering Materials, 2015, 18(2): 304-311.
[8] Silva C L P, Trist?o I C, SABBAGHIANRAD S, et al. Microstructure and Hardness Evolution in Magnesium Processed by HPT[J]. Materials Research, 2017, 20: 2-7.
[9] 丁春慧, 李萍, 丁永根, 等. 基于高壓扭轉(zhuǎn)工藝的Al?Zn?Mg?Cu合金強(qiáng)韌化機(jī)理研究[J]. 精密成形工程, 2018, 10(4): 126-131.
DING Chun-hui, LI Ping, DING Yong-gen, et al. Strengthening and Toughening Mechanism of Al-Zn-Mg- Cu Alloy Based on High Pressure Torsion[J]. Journal of Netshape Forming Engineering, 2018, 10(4): 126-131.
[10] Estrin Y, Vinogradov A. Extreme Grain Refinement By Severe Plastic Deformation: A Wealth of Challenging Science[J]. Acta Materialia, 2013, 61(3): 782-817.
[11] 劉滿平, 馬春江, 王渠東, 等. 工業(yè)態(tài) AZ31 鎂合金的超塑性變形行為[J]. 中國有色金屬學(xué)報(bào), 2002, 12(4): 797-801.
LIU Man-ping, MA Chun-jiang, Wang Qu-dong, et al. Superplastic Deformation Behavior of Commercial Magnesium Alloy AZ31[J]. The Chinese Journal of Nonferrous Metals, 2002, 12(4): 797-801.
[12] Harwani D, Badheka V, Patel V, et al. Developing Superplasticity in Magnesium Alloys With the Help of Friction Stir Processing and Its Variants–A Review[J]. Journal of Materials Research and Technology, 2021, 12(1): 2055-2075.
[13] Edalati K, Masuda T, Arita M, et al. Room- Temperature Superplasticity in an Ultrafine-Grained Magnesium Alloy[J]. Scientific Reports, 2017, 7(1): 1-9.
[14] Salishchev G A, Valiakhmetov O R, Galeyev R M. Formation of Submicrocrystalline Structure in The Titanium Alloy VT8 and Its Influence on Mechanical Properties[J]. Journal of Materials Science, 1993, 28(1): 2898-2902.
[15] 郭強(qiáng), 嚴(yán)紅革, 陳振華, 等. 多向鍛造工藝對AZ80鎂合金顯微組織和力學(xué)性能的影響[J]. 金屬學(xué)報(bào), 2006, 7(1): 739-744.
GUO Qiang, YAN Hong-ge, CHEN Zhen-hua,et al. Effect of Multiple Forging Process On Micro-Structure And Mechanical Properties[J]. Acta Metallurgica Sinica, 2006, 7(1): 739-744.
[16] Nie K B, Deng K K, Wang X J, et al. Multidirectional Forging of AZ91 Magnesium Alloy and Its Effects on Microstructures and Mechanical Properties[J]. Materials Science and Engineering: A, 2015, 624(1): 157-168.
[17] Salevati M A, Akbaripanah F, Mahmudi R. Microstructure, Texture, and Mechanical Properties of AM60 Magnesium Alloy Processed by Extrusion and Multidirectional Forging[J]. Journal of Materials Engineering and Performance, 2019, 28(5): 3021-3030.
[18] 尹雪雁, 于建民, 張治民. Mg?13Gd?4Y?0. 5Zr 鎂合金多向鍛造組織和性能研究[J]. 精密成形工程, 2014, 6(6): 68-71.
YIN Xue-yan, YU Jian-min, ZHANG Zhi-min. Microstructure and Performance of Mg-13Gd-4Y-0. 5Zr Magnesium Alloy under Multidirectional Forging[J]. Journal of Netshape Forming Engineering,2014, 6(6): 68-71.
[19] MIURA H, NAKAMURA W, KOBAYASHI M. Room- Temperature Multi-directional Forging of AZ80Mg Alloy to Induce Ultrafine Grained Structure and Specific Mechanical Properties. Procedia Engineering 2014, 81(1): 534-539.
[20] Miura H, YU G, Yang X. Multi-directional Forging of AZ61Mg Alloy Under Decreasing Temperature Conditions and Improvement of Its Mechanical Properties[J]. Materials Science and Engineering: A, 2011, 528( 22/23): 6981-6992.
[21] Miura H, Minami K, Kobayashi M, et al. Multi- Directional Forging and Warm Extrusion of AZ80Mg Alloys[J]. Materials Transactions, 2021,62(5): 610-619.
[22] 宋廣勝, 姜敬前, 徐勇, 張士宏. AZ31鎂合金板材變路徑壓縮對力學(xué)性能影響[J]. 中國有色金屬學(xué)報(bào), 2016, 26(12): 2469-2478.
SONG Guang-sheng, JIANG Jing-qian, XU Yong,et al. Influence of Variable Path Compression on Mechanical Properties of AZ31 Magnesium Alloy Sheet[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(12): 2469-2478.
[23] 蔣莉萍, 王軍, 肖振宇, 等. 室溫多向鍛壓AZ31鎂合金的靜態(tài)再結(jié)晶行為[J]. 中國有色金屬學(xué)報(bào), 2015, 25(11): 3051-3059.
JIANG Li-ping, WANG Jun, XIAO Zhen-yu, et al. Static Recrystallization Behavior of Multi-Directionally Forged AZ31 Magnesium Alloy At Room Temperature[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(11): 3051-3059.
[24] 吳文昊. 利用多向鍛造加工調(diào)控ZK60鎂合金組織和力學(xué)性能研究[D]. 重慶: 重慶大學(xué), 2014: 35-40.
WU Wen-hao. Make Use of Multiple Forging to Control the Microstructure and Mechanical Properties of ZK60 Alloy[D]. Chongqing University, 2014: 35-40.
[25] 宋廣勝, 陳強(qiáng)強(qiáng), 徐勇,等. AZ31鎂合金壓縮過程中織構(gòu)對微觀變形機(jī)制的影響[J]. 稀有金屬材料與工程, 2016, 45(12):6-14.
SONG Guang-sheng, CHEN Qiang-qiang, XU Yong, et al. Effect of Texture on Micro deformation Mechanism of AZ31 Magnesium Alloy during Compression[J]. Rare Metal Materials and Engineering, 2016, 45(12): 6-14.
Effect of Deformation Amount of Multi-directional Compression Passes at Room Temperature on Mechanical Properties of AZ80 Magnesium Alloy
WEI Zeng, ZHANG Bao-hong, WU Zhuo-yang, HE Jin-wen
(School of Materials Science and Engineering, North University of China, Taiyuan 030051, China)
This work aims to explore the effect of plastic deformation at room temperature on the mechanical properties of AZ80, such as plasticity, hardness and maximum stress, so as to provide a basis for the formulation of its forming process parameters. After homogenization treatment of extruded AZ80 magnesium alloy, multi-directional and multi-pass compression deformation was carried out at room temperature by controlling the deformation amount (0.05, 0.075, 0.1) and the accumulated strain. The effect of pass deformation amount and accumulated strain on its mechanical properties was analyzed by mechanical testing machine and Vickers hardness tester. At room temperature, the AZ80 magnesium alloy was cracked when the true strain reached 0.124 in unidirectional compression, and the accumulated strain could be increased to at least 3.6 or more by multi-directional and multi-pass compression with small strain. When the deformation amount of the pass was 0.05, 0.075, and 0.1, the accumulated strain could reach 7.5, 6, and 3.7, respectively. When the accumulated strain was 3.6, the hardness of the sample reached 94HV, 110HV, and 121HV with the increase of the deformation amount of the pass, respectively, increasing by 33%, 57%, and 73% compared with the hardness (70HV) of undeformed sample. The multi-directional and multi-pass compression at room temperature is beneficial to improving the plasticity and the mechanical properties of the AZ80 magnesium alloy. The plasticity increases with the decrease of the pass deformation, the hardness and the maximum stress increase with the increase of the pass deformation and the accumulated strain, and the pass deformation has a greater effect on the hardness and the maximum stress than the accumulated strain.
grain-refinement; magnesium alloy; room temperature; multi-directional compression; extrusion; mechanical properties
10.3969/j.issn.1674-6457.2023.01.010
TG146.2+2
A
1674-6457(2023)01-0079-07
2022?05?31
2022-05-31
山西省留學(xué)回國人員科技活動項(xiàng)目(20120303ZX);太原市人才專項(xiàng)(120247?14)
Science and Technology Activity Project for Returned Overseas Chinese in Shanxi Province (20120303ZX); Taiyuan Talent Project (120247-14)
魏增(1996—),男,碩士生,主要研究方向?yàn)榻饘偎苄猿尚闻c改性技術(shù)。
WEI Zeng (1996-), Male, Postgraduate, Research focus: metal plastic forming and modification technology.
張寶紅(1971—),男,博士,教授,主要研究方向?yàn)榻饘偎苄猿尚闻c改性技術(shù)。
ZHANG Bao-hong (1971-), Male, Doctor, Professor, Research focus: metal plastic forming and modification technology.
魏增, 張寶紅, 吳卓陽, 等. 室溫多向壓縮道次變形量對AZ80鎂合金力學(xué)性能影響[J]. 精密成形工程, 2023, 15(1): 79-85.
WEI Zeng, ZHANG Bao-hong, WU Zhuo-yang, et al. Effect of Deformation Amount of Multi-directional Compression Passes at Room Temperature on Mechanical Properties of AZ80 Magnesium Alloy[J]. Journal of Netshape Forming Engineering, 2023, 15(1): 79-85.