• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    片狀碳載金屬納米顆粒復合物的制備及其氧還原電活性

    2023-02-27 03:29:26章巧麗王雅萍孫萬杰易清風
    無機化學學報 2023年2期
    關(guān)鍵詞:大學化學化工學院湘潭

    章巧麗 王雅萍 孫萬杰 易清風*,,2

    (1湖南科技大學化學化工學院,湘潭 411201)

    (2新能源儲存與轉(zhuǎn)換先進材料湖南省重點實驗室,湘潭 411201)

    0 Introduction

    As a non?renewable energy source,fossil fuels have been gradually depleted through continuous min?ing and utilization by human beings,and the use of fos?sil fuels has also brought many environmental prob?lems.These problems are always affecting the progress and development of our society,making the develop?ment of green and clean technology necessary[1?2].Oxygen reduction reaction(ORR)is a cathode reaction of fuel cells.The high binding energy of O2molecules leads to high overpotential and poor performance for the catalysts of ORR,which limits the energy conver?sion efficiency and greatly hinders the large?scale com?mercial application of fuel cells[3?5].Platinum and platinum?based materials are considered to be the best catalysts discovered so far due to their low overpoten?tial and kinetic improvement.However,platinum also has some disadvantages such as high price,scarcity,and poor stability[6?8].Therefore,the research and devel?opment of novel ORR catalysts with low prices,easy ac?quisition,and good stability have always been the focus of the research[9].

    Although carbon?based materials themselves do not have excellent ORR catalytic properties,they can act as excellent catalyst carriers because of their good electrical conductivity,mechanical stability,chemical stability,abundant resources,and low price[10].The modified carbon?based materials show efficient ORR activity in the cathode reaction of fuel cells and become the most promising catalyst materials.Metal nanoparticles can increase the active sites on the sur?face of carbon?based materials and promote the graphi?tization degree of carbon?based materials;Heteroatoms(such as N,P,B,S,etc.)doping can change the charge distribution and spin of the carbon conducting network and promote the adsorption of oxygen,thus improving the electrical conductivity and catalytic performance of the material[11?14].It was found that metal?loaded lamel?lar N?doped carbon nanocomposites could combine the advantages of metal nanoparticles and heteroatoms to improve the electroactivity and stability of the catalysts.Among them,the transition metal?nitrogen?carbon(M?N?C)moiety has abundant M?NXactive sites on carbon?based materials and has good electrocatalytic activity,stability,and tolerance in acidic and alkaline media[15?18].The highly electronegative nitrogen atoms can effectively regulate the electron distribution and charge density of the adjacent carbon atoms.Transition metal cobalt and iron are rich in resources and easy to be prepared.The combination of their nanoparticle and carbon?based materials can greatly improve the electro?activity of the formed catalysts,so they are widely used in the design and preparation of ORR catalysts[3?4].

    Considering that the current preparation process of the M?N?C catalysts is complicated and their ORR electroactivity in acidic media is generally weak,we synthesized the nitrogen?doped carbon nanosheet sup?ported metal nanoparticles(Co/C?N,Fe/C?N,and Fe?Co/C?N)by using an all?solid?state method through a simple high?temperature pyrolysis;Subsequently,based on the electroactivity test of ORR,a small amount of platinum was further deposited on the Co/C?N with good ORR electroactivity by thermal reduction method to obtain Co?Pt/C?N.The samples were charac?terized in detail and their ORR electrocatalytic proper?ties were tested in full pH ranges(acidic,neutral,and alkaline).

    1 Experimental

    1.1 Materials

    Dicyandiamide and Nafion solution(5%,Dupont)were purchased from Sinopharm Chemical Reagent Co.,Ltd.Sucrose was purchased from Tianjin Kemiou Chemical Reagent Co.,Ltd.Cobalt phthalocyanine,iron phthalocyanine,and acetylacetone platinum were purchased from Aladdin Chemical Reagent Co.,Ltd.Pt/C(40%,Johnson Matthey Corp.)was purchased from Shanghai Qunyi Energy Equipment Co.,Ltd.Anhy?drous ethanol was purchased from Hunan Huihong Reagent Co.,Ltd.Ultrapure water was made by ultra?pure water generator.

    1.2 Preparation of Co/C?N,Fe/C?N,and Fe?Co/C?N

    3 g dicyandiamide,0.4 g sucrose,and 0.1 g cobalt phthalocyanine(or 0.1 g iron phthalocyanine,or 0.05 g cobalt phthalocyanine+0.05 g iron phthalocyanine mixture)were mixed in a mortar.Next,the mixture was ground thoroughly with a small amount of ethanol in the mortar.The mixture was transferred to a beaker and dried in a vacuum oven at 60℃.Then it was ground again to form a powder,placed in a crucible,and transferred to a tubular furnace to be subjected to the pyrolysis treatment.Before heating,pure N2gas was passed through the furnace for 15 min to drain O2from the tubular furnace.In the N2atmosphere,it was heated to 550 ℃ at a heating rate of 4 ℃·min?1for 2 h and then heated to 800℃at the same heating rate for another 2 h.After cooling to room temperature,the black powder was collected and transferred to a mortar for grinding to obtain the sample Co/C?N.Other two samples Fe/C?N and Fe?Co/C?N were also prepared using the same steps as the Co/C?N when 0.1 g cobalt phthalocyanine was replaced with 0.1 g iron phthalocy?anine,or 0.05 g cobalt phthalocyanine+0.05 g iron phthalocyanine mixture,respectively.

    1.3 Preparation of Co?Pt/C?N

    50 mg Co/C?N and 10 mg acetylacetone platinum were mixed and fully ground with a small amount of ethanol.The mixture was then dried in a vacuum oven at 60℃.The solid obtained was transferred to a tubu?lar furnace and heated to 260 ℃ at a rate of 4 ℃·min?1in an N2atmosphere for 2 h.Co?Pt/C?N was obtained after cooling to room temperature.The preparation pro?cess is shown in Fig.1.

    Fig.1 Schematic diagram for preparation of the catalyst Co?Pt/C?N

    1.4 Characterization and testing

    The morphology and structure of the catalysts were characterized by scanning electron microscopy(SEM,FEI Inspect F50 SEM,10 kV)and transmission electron microscopy(TEM,JEOL JEM?2100,200 kV).The types and contents of elements in the samples were analyzed by energy dispersive spectroscopy(EDS,super?octane).The elemental composition and bonding state of the catalysts were analyzed by X?ray diffraction(XRD,Cu Kα radiation,λ=0.154 18 nm,40 kV,250 mA,2θ=10°?85°)and X?ray photoelectron spectrosco?py(XPS,Thermo Fisher,ESCALAB Xi+).

    The ORR performances of the catalysts were test?ed on AutoLab PGSTAT30/FRA electrochemical work?station in a three?electrode system using a rotating disk electrode(RDE).The working electrode was glassy car?bon(GC,0.071 cm2)electrode coated with a catalyst.The auxiliary and reference electrodes were Pt wire and Ag/AgCl(sat.KCl)electrodes respectively.All potentials in this work were against the Ag/AgCl elec?trode.The working electrode was fabricated by coating 20μL the ink dispersion of the sample catalyst on the GC surface.The ink was prepared by ultrasonically mixing a 3 mg sample,30μL Nafion solution,and 570μL anhydrous ethanol to form a uniform ink dispersion.As a comparison,the Pt/C working electrode was also prepared by coating 10μL Pt/C ink on GC.The cyclic voltammetry(CV)and linear sweep voltammetry(LSV)curves of the catalysts in acidic(0.1 mol·L?1HClO4),alkaline(0.1 mol·L?1KOH),and neutral(4 mol·L?1NH4Cl+1 mol·L?1KCl)solution were tested under satu?rated O2and N2.

    According to the Koutecky?Levich Formula 1[19],the number of ORR transferred electrons(n)was calcu?lated:

    where j,jk,and jdrespectively refer to the measured cur?rent density,dynamic current density,and limit diffu?sion current density;B is the slope of the Levich curve;ω is the rotating speed;and n value is reckoned accord?ing to Formula 2:

    where n was the number of transferred electrons,F refers to the Faraday constant(96 500 C·mol?1);cO2is the concentration of saturated O2in the electrolyte solu?tion at room temperature(1.2×10?6mol·cm?3);DO2is the diffusion coefficient of O2in water(1.93×10?5cm2·s?1);v is the kinematic viscosity of the solution at room temperature(0.01 cm2·s?1)[20].

    2 Results and discussion

    2.1 Morphology of catalyst

    The morphology of the catalysts was observed by SEM images.As shown in Fig.2a?2d,all samples pre?sented morphology characteristics of a large number of micron?sized sheet?like carbon structures,which were stacked together to form a thickness of tens of nanome?ters.During pyrolysis,carbon nanosheets with rich folds and distinct stratified structured were formed from dicyandiamide,exposing more active sites at the edge and thus further improving the performance of the sample[9,14].No obvious metal nanoparticles could be seen in the SEM images,which may be attributed to the fact that the metal nanoparticles are tightly wrapped by the graphitic carbon shell formed and they also present small sizes[21].

    Fig.2 SEM images of Co/C?N(a),Fe/C?N(b),Fe?Co/C?N(c),and Co?Pt/C?N(d);TEM images of Co/C?N(e?h);EDS mappings of C,N,O,Co,and Pt of Co?Pt/C?N(i?m)

    The 3D fine structure inside Co/C?N was further observed by TEM.TEM images(Fig.2e)show that Co/C?N revealed a sheet?like morphology similar to multi?layer graphene with many folds.In Fig.2f?2h,Co nanoparticles were evenly distributed on graphite car?bon nanosheets without obvious agglomeration[21?22].Fur?thermore,Fig.2g demonstrates that graphene layers were formed during pyrolysis with a lattice spacing of 0.355 nm,consistent with crystal planes of graphite(002)[23].As shown in Fig.2g,particles with a lattice spacing of 0.199 nm correspond to the face?centered cubic crystal plane of Co(111)[21],while the lattice dis?tance of 0.228 nm might correspond to the crystal plane of Co or Co3C(200).The increase of lattice spac?ing of Co nanoparticles might be caused by the combi?nation of C and N with Co.It could be seen from Fig.2h that the graphene layer formed has a 23?layer structure with a rich carbon layer and abundant active sites.Also,the sizes of Co nanoparticles fall into the range of ca.2?2.4 nm with high uniformity.Fig.2i?2m was the mapping image of C,N,O,Co,and Pt elements in cata?lyst Co?Pt/C?N.All elements were evenly dispersed on the catalyst,proving that Co and Pt were successfully loaded on N?doped carbon nanosheets.

    2.2 Composition analysis of catalysts

    XRD and EDS were used to analyze the types and contents of elements in the catalysts.According to the XRD patterns of the catalysts shown in Fig.3a,all the catalysts Co/C?N,Fe/C?N,Fe?Co/C?N,and Co?Pt/C?N displayed a well?defined diffraction peak at 2θ=26.6°,which is attributed to graphite C(002).The catalyst Co/C?N did not show an obvious Co diffraction peak,because the Co nanoparticles were tightly encapsulated by the graphite carbon shell and low metal content is present in the sample.According to the standard colori?metric card of Fe(PDF No.06?0696),the weak diffrac?tion peak of Fe/C?N at 2θ=44.37°corresponds to the standard peak of Fe at 2θ=44.67°,which could be attributed to the face?centered cubic crystal plane of Fe(110)[6].According to the standard cards of Fe(PDF No.06?0696)and Co(PDF No.15?0806),a weak peak of Fe?Co/C?N at 2θ=44.48°was between the standard peaks of Co(2θ=44.22°)and Fe(2θ=44.67°).The result indicates that Fe?Co alloy was formed during pyrolysis and could be attributed to crystal planes of Fe or Co face?centered cubic structure(111)[3].For Co?Pt/C?N,the diffraction peak at 2θ=39.42°corresponds to the standard peak of Pt at 2θ=39.76°according to the standard card of Pt(PDF No.04?0802),which could be attributed to Pt(111)plane.Fig.3b,3c shows the ele?mental composition and mass percentage of all cata?lysts,showing the characteristic peaks of C,N,O,Co,Fe,and Pt.The peaks at 0.78 and 6.92 keV are charac?teristic peaks of Co,and the peaks at 0.71 and 6.40 keV are characteristic peaks of Fe.The peak at 2.06 keV is the unique peak of Pt.Results indicate that vari?ous metal elements were successfully loaded onto the carbon nanosheets.

    Fig.3 XRD patterns of all catalysts(a);EDS spectra of all elements(b);Element content of all catalysts by EDS(c)

    The catalyst Co/C?N was further analyzed by XPS to understand its chemical composition and structure.As shown in Fig.4a,the XPS spectra of the Co/C?N cat?alyst show elemental energy peaks corresponding to C(78.16%),N(20.82%),and Co(1.02%).The XPS spec?tra of C1s(Fig.4b)were deconvoluted into four peaks at 284.7,285.9,287.3,and 288.9 eV corresponding to the characteristic peaks of C=C,C—O/C=N,O—C=O/C—N,and O—C=O respectively,confirming the successful combination of carbon and nitrogen.As can be seen from Fig.4c,there is the main peak of N1s at 398.3 eV,which is attributed to pyridine nitrogen.Peaks at 400.7 and 401.7 eV correspond to pyrrole nitrogen and graphite nitrogen respectively.Pyridine and graphite nitrogen could enhance ORR activity because the C atom near pyridine nitrogen and graph?ite nitrogen could be the active site of ORR.The con?tent of pyridine nitrogen determines the onset potential of ORR,and the content of graphite nitrogen plays a key role in the limiting current density of ORR[24?26].The nitrogen contents of pyridine,pyrrole,and graphite were 57.84%,22.35%,and 19.81%,respectively.The high content of pyridine nitrogen for Co/C?N indicates that the catalyst might have a high onset potential and outstanding electrocatalytic performance for ORR.Fig.4d shows that Co2p can be deconvoluted into three peaks at 778.2,779.8,and 781.3 eV,corresponding to Co,Co2+,and Co3+respectively.

    Fig.4 XPS full survey of Co/C?N(a)and corresponding high?resolution XPS spectra of C1s(b),N1s(c),and Co2p(d)

    2.3 Electrochemical testing of catalyst

    CV curves of all catalysts were measured in O2and N2saturated alkaline,acidic,and neutral solu?tions.In an alkaline solution,the CV curves of the sam?ples are shown in Fig.5a.Compared with the curves in the N2?saturated solution,all the catalysts in saturated O2showed obvious cathodic peaks,and the current den?sity increases significantly.As shown in Fig.5a,the cathodic peak potentials of Co/C?N,Fe/C?N,Fe?Co/C?N,Co?Pt/C?N,and Pt/C were located at?0.124,?0.180,?0.168,?0.112,and ?0.182 V respectively,indicating that the samples present better electrocata?lytic activity for ORR than Pt/C.In an acidic solution(Fig.5b),the CV curves of Co/C?N,Co?Pt/C?N,and Pt/C catalysts showed obvious oxygen reduction peaks.The peak potentials of Co/C?N,Co?Pt/C?N,and Pt/C catalysts were 0.252,0.608,and 0.642 V respectively,showing the significant improvement of the Co?Pt/C?N catalyst on ORR activity.However,Fe/C?N and Fe?Co/C?N showed weak electrocatalytic performances for ORR in an acidic medium.In a neutral solution(Fig.5c),the CV curves of all catalysts showed weak cathodic peaks under O2saturation,although the cur?rent density was higher than that under a nitrogen atmosphere.The cathodic peak potentials of the Co/C?N,Fe/C?N,Fe?Co/C?N,Co?Pt/C?N,and Pt/C were 0.150,0.235,0.194,0.152,and 0.230 V respectively,showing their efficient ORR activity in neutral medium.

    Fig.5 CV curves of all catalysts in alkaline(a),acidic(b),and neutral(c)solutions saturated with O2and N2at a scanning rate of 50 mV·s?1

    The ORR performances of the catalysts were fur?ther evaluated on a RDE.Fig.6a?6c show LSV and Koutecky?Levich curves of different catalysts in alka?line,acidic,and neutral solutions at 1 600 r·min?1,respectively.The ORR onset potential,half?wave potential,and limiting diffusion current density(jd)of the prepared catalysts and Pt/C are listed in Table 1.As the potential shifted to the negative direction,all catalysts exhibited a rapid increase of current density after the onset potential,followed by a well?defined cur?rent plateau.And Co/C?N reveals more positive onset and half?wave potentials and higher limiting diffusion current density than Fe/C?N and Fe?Co/C?N.This may be related to the abundant pyridine nitrogen of Co/C?N obtained from XPS analysis.On this basis,a small amount of platinum was loaded on Co/C?N to form the Co?Pt/C?N.According to Koutecky?Levich formula[19]and the illustration in Fig.6a?6c,the number of trans?ferred electrons for ORR could be calculated.As shown in Fig.6d?6f,the numbers of transferred elec?trons of all catalysts were between 3.7 and 4,showing a dominant four?electron transfer process of ORR on the prepared samples in full pH ranges(alkaline,acidic,and neutral)[27].The corresponding catalytic mechanism for ORR on the prepared catalysts is depicted in Fig.1.Compared with the two?electron transfer process,the four?electron transfer process can output a higher ener?gy density for fuel cells and metal?air batteries[7,20,28].Further,Fig.6b and Table 1 show that the onset poten?tial and half?wave potential values of the Co?Pt/C?N were greatly improved in an acidic medium,which is comparable to that of the Pt/C.The stability of the cata?lysts in a full pH range was also investigated by using successively sweeping cycle voltammetry.Fig.7 shows the 500 consecutive scanning CV profiles of the Co/C?N and Co?Pt/C?N catalysts in alkaline(Fig.7a),acidic(Fig.7b),and neutral(Fig.7c)media.It is seen from Fig.7 that whether in acidic,alkaline,or neutral media,no significant change in the CV profile for the two cata?lysts was observed after 500 times repeated cycles.A slight change in current density would be caused by a small change in oxygen gas concentration after consec?utive scans.Results reveal excellent stability of the prepared catalyst in different pH electrolytes.It is gen?erally considered that the ORR performance of the cat?alyst in an acidic medium is critical for its potential application to proton exchange membrane fuel cells(PEMFCs)[29?30].Unfortunately,the PEMFCs with non ?precious metal cathodic catalysts generally exhibit poor performance due to their commonly lower ORR electroactivity in the acidic medium[31?32].The prepared catalyst Co?Pt/C?N with low Pt loading reveals a prom?ising application to PEMFCs.

    Fig.6 LSV curves and Koutecky?Levich curves in alkaline(a),acidic(b),and neutral(c)solutions obtained for all catalysts at saturated O2at a scanning rate of 5 mV·s?1and 1 600 r·min?1;Number of transferred electrons in alkaline(d),acidic(e),and neutral(f)solutions of all catalysts at O2saturation

    Table 1 Onset potential,half?wave potential,and limiting diffusion current density of the catalysts at 1 600 r·min-1under alkaline,acidic,and neutral conditions

    Fig.7 CV curves of Co/C?N and Co?Pt/C?N in O2?saturated alkaline(a),acidic(b),and neutral(c)solutions at 50 mV·s?1for the first and 500th cycles

    3 Conclusions

    In summary,we proposed an all?solid?state synthe?sis method of highly efficient ORR electrocatalysts.Carbon nanosheets supported Co/Fe nanoparticles(Co/C?N,Fe/C?N,and Fe?Co/C?N)were first synthesized by a simple pyrolysis method.Then,a cobalt?platinum cat?alyst Co?Pt/C?N with low Pt loading was further synthe?sized by thermal reduction based on Co/C?N.The mor?phological structure of Co/C?N presents abundant car?bon nanosheet folds,obvious stratification,and uniform dispersion of metal nanoparticles.And it contains high pyridine nitrogen and lots of active groups such as Co?N.These lead to the excellent ORR electrocatalytic activity of the catalyst.The catalyst Co/C?N in alkaline and neutral solutions showed superior ORR electrocata?lytic activity to Pt/C.And the onset potential,half?wave potential,and limiting diffusion current density of the Co?Pt/C?N catalysts were significantly improved,and its ORR electrocatalytic activity was close to Pt/C in an acidic medium.

    Acknowledgments:Authors thank the financial support from the National Natural Science Foundation of China(Grant No.21875062)and the Innovation Training Program for College Students in Hunan Province(Grant No.S202210534022).

    猜你喜歡
    大學化學化工學院湘潭
    使固態(tài)化學反應(yīng)100%完成的方法
    國家開放大學石油和化工學院學習中心列表
    【鏈接】國家開放大學石油和化工學院學習中心(第四批)名單
    湘潭是個好地方
    湘潭紅色文化軟實力的提升研究
    活力(2019年21期)2019-04-01 12:16:10
    湘潭大學藝術(shù)學院作品選
    流行色(2017年12期)2017-10-26 03:08:22
    《化工學報》贊助單位
    化工學報(2016年3期)2016-03-14 08:37:00
    基于SCIE的大學化學學科文獻計量學研究——以河南大學為例
    信息技術(shù)在大學化學專業(yè)英語教學中的應(yīng)用
    亞太教育(2015年18期)2015-02-28 20:54:31
    湘潭高新區(qū)兩大特色產(chǎn)業(yè)園躋身“湖南隊”
    美女国产高潮福利片在线看| 中文字幕另类日韩欧美亚洲嫩草| 欧美黑人精品巨大| 免费在线观看完整版高清| 大陆偷拍与自拍| 欧美在线一区亚洲| 狂野欧美激情性xxxx| 午夜免费鲁丝| 日韩中文字幕欧美一区二区 | 欧美变态另类bdsm刘玥| 色94色欧美一区二区| 十八禁人妻一区二区| 色吧在线观看| av电影中文网址| 伊人久久大香线蕉亚洲五| 亚洲,欧美精品.| 肉色欧美久久久久久久蜜桃| e午夜精品久久久久久久| 久久久久久久精品精品| 久久久精品区二区三区| 精品人妻熟女毛片av久久网站| 亚洲av中文av极速乱| av又黄又爽大尺度在线免费看| 在线观看免费高清a一片| 韩国高清视频一区二区三区| 男女床上黄色一级片免费看| 波多野结衣一区麻豆| 国产片内射在线| 老司机影院成人| 人人妻,人人澡人人爽秒播 | av网站免费在线观看视频| 一级毛片 在线播放| 在线观看免费高清a一片| 美女视频免费永久观看网站| 在线天堂中文资源库| 十八禁人妻一区二区| 美女扒开内裤让男人捅视频| a级毛片黄视频| 午夜福利视频在线观看免费| 肉色欧美久久久久久久蜜桃| 狂野欧美激情性xxxx| 国产免费一区二区三区四区乱码| 国产日韩欧美亚洲二区| 国产伦人伦偷精品视频| 国产麻豆69| 久久精品久久精品一区二区三区| 亚洲国产欧美日韩在线播放| 啦啦啦 在线观看视频| 久久99精品国语久久久| 国产成人av激情在线播放| 777久久人妻少妇嫩草av网站| 波多野结衣av一区二区av| 亚洲国产日韩一区二区| 男人操女人黄网站| 卡戴珊不雅视频在线播放| 国产精品久久久久久精品古装| 99久久人妻综合| 亚洲精品国产区一区二| 国产精品.久久久| www.自偷自拍.com| 欧美中文综合在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 日本一区二区免费在线视频| 视频区图区小说| 丰满乱子伦码专区| 在线观看免费高清a一片| 国产片特级美女逼逼视频| av不卡在线播放| 国产精品嫩草影院av在线观看| 国产黄色视频一区二区在线观看| 麻豆乱淫一区二区| 丁香六月天网| 久久久久久久久久久免费av| 免费高清在线观看视频在线观看| 精品一区二区免费观看| 丰满乱子伦码专区| 男男h啪啪无遮挡| 日韩 亚洲 欧美在线| 久久精品国产a三级三级三级| 免费看不卡的av| 亚洲七黄色美女视频| 国产欧美日韩综合在线一区二区| 久久久精品国产亚洲av高清涩受| 久久热在线av| av女优亚洲男人天堂| 三上悠亚av全集在线观看| h视频一区二区三区| 欧美日韩综合久久久久久| 亚洲精品,欧美精品| e午夜精品久久久久久久| 国产激情久久老熟女| 亚洲,一卡二卡三卡| 97精品久久久久久久久久精品| 亚洲国产欧美日韩在线播放| 久久毛片免费看一区二区三区| 女人久久www免费人成看片| 满18在线观看网站| 日韩精品有码人妻一区| 国产精品三级大全| 亚洲色图综合在线观看| 精品久久久精品久久久| 最近手机中文字幕大全| 美女国产高潮福利片在线看| 久久久久久人人人人人| 亚洲精品国产区一区二| 国产欧美日韩综合在线一区二区| 国产精品秋霞免费鲁丝片| 日韩大片免费观看网站| 男女边吃奶边做爰视频| 久久国产亚洲av麻豆专区| 9色porny在线观看| 久久青草综合色| 亚洲国产欧美网| 国产黄色视频一区二区在线观看| 女的被弄到高潮叫床怎么办| 男人添女人高潮全过程视频| 精品人妻熟女毛片av久久网站| 精品免费久久久久久久清纯 | 国产日韩欧美亚洲二区| 国产片特级美女逼逼视频| 男人爽女人下面视频在线观看| 久久久精品区二区三区| 97在线人人人人妻| 久久亚洲国产成人精品v| 久久久久久久久久久免费av| 天天躁夜夜躁狠狠久久av| 看非洲黑人一级黄片| av又黄又爽大尺度在线免费看| 午夜免费鲁丝| 99久国产av精品国产电影| 韩国精品一区二区三区| 纵有疾风起免费观看全集完整版| 久久综合国产亚洲精品| 亚洲精品一区蜜桃| 日韩人妻精品一区2区三区| 精品一区在线观看国产| 免费黄网站久久成人精品| 亚洲av电影在线进入| 最近最新中文字幕免费大全7| 国产精品久久久久成人av| 欧美97在线视频| 老鸭窝网址在线观看| 伦理电影免费视频| 国产精品国产三级国产专区5o| 亚洲精品一二三| av在线观看视频网站免费| 天堂8中文在线网| 丝袜在线中文字幕| 一级毛片黄色毛片免费观看视频| 国产亚洲午夜精品一区二区久久| 一级黄片播放器| 99re6热这里在线精品视频| 国产 一区精品| 国精品久久久久久国模美| 伊人久久大香线蕉亚洲五| 国产精品av久久久久免费| xxx大片免费视频| 少妇人妻精品综合一区二区| 性高湖久久久久久久久免费观看| 久久久久国产一级毛片高清牌| 日韩 亚洲 欧美在线| 中文字幕人妻丝袜一区二区 | 亚洲国产毛片av蜜桃av| 两性夫妻黄色片| 热re99久久国产66热| 精品亚洲乱码少妇综合久久| 老鸭窝网址在线观看| 精品一区二区三区av网在线观看 | 亚洲精品成人av观看孕妇| 只有这里有精品99| 日韩伦理黄色片| 国产激情久久老熟女| 久久综合国产亚洲精品| 欧美人与性动交α欧美软件| 亚洲国产欧美日韩在线播放| 亚洲精品久久成人aⅴ小说| 老汉色av国产亚洲站长工具| 一级片免费观看大全| 日韩不卡一区二区三区视频在线| √禁漫天堂资源中文www| 亚洲欧美一区二区三区久久| 建设人人有责人人尽责人人享有的| 国产日韩欧美在线精品| 人人妻人人爽人人添夜夜欢视频| 这个男人来自地球电影免费观看 | 女人被躁到高潮嗷嗷叫费观| 亚洲第一区二区三区不卡| 午夜久久久在线观看| 亚洲精品成人av观看孕妇| 国产成人午夜福利电影在线观看| 日本av免费视频播放| 色播在线永久视频| 赤兔流量卡办理| 欧美精品人与动牲交sv欧美| 亚洲 欧美一区二区三区| 亚洲伊人色综图| 亚洲欧美精品自产自拍| 久久综合国产亚洲精品| 国产成人系列免费观看| 91aial.com中文字幕在线观看| 卡戴珊不雅视频在线播放| 欧美av亚洲av综合av国产av | 999久久久国产精品视频| 精品酒店卫生间| 日韩大码丰满熟妇| 一级毛片我不卡| 国产精品国产av在线观看| av免费观看日本| 免费观看性生交大片5| 99热全是精品| 制服丝袜香蕉在线| 国产亚洲欧美精品永久| 亚洲精品第二区| 19禁男女啪啪无遮挡网站| 国产一区亚洲一区在线观看| 妹子高潮喷水视频| 午夜福利网站1000一区二区三区| 久久韩国三级中文字幕| 赤兔流量卡办理| 久久久精品国产亚洲av高清涩受| 国产精品一二三区在线看| 99国产精品免费福利视频| 免费高清在线观看视频在线观看| 乱人伦中国视频| 亚洲国产精品一区三区| 亚洲综合精品二区| 成年av动漫网址| 亚洲精品美女久久久久99蜜臀 | 十八禁高潮呻吟视频| 亚洲第一青青草原| 亚洲自偷自拍图片 自拍| 日韩制服丝袜自拍偷拍| 老汉色av国产亚洲站长工具| 亚洲av中文av极速乱| 国产精品免费大片| 女性被躁到高潮视频| videos熟女内射| 中文字幕人妻丝袜制服| 日韩大片免费观看网站| 欧美亚洲日本最大视频资源| 精品免费久久久久久久清纯 | 伊人亚洲综合成人网| 一级,二级,三级黄色视频| 国产精品人妻久久久影院| 曰老女人黄片| 熟女av电影| 又大又黄又爽视频免费| 丝袜美足系列| 麻豆精品久久久久久蜜桃| 欧美日本中文国产一区发布| bbb黄色大片| 国产在视频线精品| 美女中出高潮动态图| 国产黄色免费在线视频| 在线观看国产h片| 女人被躁到高潮嗷嗷叫费观| 久久国产精品大桥未久av| 女人精品久久久久毛片| 免费日韩欧美在线观看| 欧美黑人精品巨大| 亚洲精品视频女| 91老司机精品| 麻豆乱淫一区二区| 久久国产精品男人的天堂亚洲| 成人亚洲欧美一区二区av| 1024视频免费在线观看| e午夜精品久久久久久久| 国精品久久久久久国模美| 国产成人欧美| 午夜福利在线免费观看网站| 亚洲伊人久久精品综合| 中文字幕精品免费在线观看视频| 国产xxxxx性猛交| a级毛片在线看网站| 国产人伦9x9x在线观看| 啦啦啦啦在线视频资源| 精品酒店卫生间| e午夜精品久久久久久久| 亚洲四区av| 国产成人午夜福利电影在线观看| 亚洲精品,欧美精品| 婷婷色综合www| 九草在线视频观看| 男女国产视频网站| 国产精品麻豆人妻色哟哟久久| 午夜av观看不卡| 最近2019中文字幕mv第一页| 大话2 男鬼变身卡| 卡戴珊不雅视频在线播放| 熟女av电影| 国产男女内射视频| 美女午夜性视频免费| 国产国语露脸激情在线看| 久热爱精品视频在线9| 欧美日韩一区二区视频在线观看视频在线| 亚洲国产欧美网| 91精品三级在线观看| 国产激情久久老熟女| 人人妻,人人澡人人爽秒播 | 国产97色在线日韩免费| 男人舔女人的私密视频| 亚洲人成电影观看| 少妇 在线观看| 国产伦人伦偷精品视频| 精品国产国语对白av| 亚洲久久久国产精品| 激情五月婷婷亚洲| 另类亚洲欧美激情| 亚洲欧洲日产国产| 国产日韩欧美在线精品| 亚洲免费av在线视频| 男人舔女人的私密视频| 久久久久精品久久久久真实原创| 亚洲精品在线美女| 亚洲精品久久久久久婷婷小说| 成年人午夜在线观看视频| 看十八女毛片水多多多| av国产精品久久久久影院| 国产精品久久久人人做人人爽| 精品午夜福利在线看| 精品亚洲成国产av| 人人妻人人澡人人看| 国产精品一二三区在线看| 欧美在线一区亚洲| 色婷婷久久久亚洲欧美| 欧美日韩亚洲综合一区二区三区_| 美女福利国产在线| 久久鲁丝午夜福利片| 成人影院久久| 成人午夜精彩视频在线观看| 激情五月婷婷亚洲| 人妻 亚洲 视频| 精品午夜福利在线看| 国产日韩欧美亚洲二区| 色吧在线观看| 国产深夜福利视频在线观看| 日韩 亚洲 欧美在线| 伊人久久国产一区二区| 亚洲精华国产精华液的使用体验| 91aial.com中文字幕在线观看| 中国国产av一级| 国产成人精品在线电影| 国产福利在线免费观看视频| 成年美女黄网站色视频大全免费| 久久久国产一区二区| 久久热在线av| 黄色怎么调成土黄色| 精品第一国产精品| 久久国产亚洲av麻豆专区| 国产 精品1| 天天躁夜夜躁狠狠躁躁| 丝袜喷水一区| 欧美日本中文国产一区发布| av在线观看视频网站免费| 亚洲国产中文字幕在线视频| 亚洲婷婷狠狠爱综合网| 婷婷成人精品国产| 免费看不卡的av| 亚洲国产欧美一区二区综合| 国产精品女同一区二区软件| 老司机影院成人| 91成人精品电影| 美女高潮到喷水免费观看| 久久国产精品大桥未久av| 丝袜美腿诱惑在线| 久久影院123| 自线自在国产av| 母亲3免费完整高清在线观看| av国产精品久久久久影院| 精品一区二区三卡| 亚洲精品日韩在线中文字幕| 女性被躁到高潮视频| 在线天堂中文资源库| 中文精品一卡2卡3卡4更新| 免费黄频网站在线观看国产| 美女主播在线视频| 国产精品99久久99久久久不卡 | 狂野欧美激情性xxxx| 久久久久久免费高清国产稀缺| 亚洲精品美女久久久久99蜜臀 | 一二三四中文在线观看免费高清| 在线观看一区二区三区激情| 欧美日韩一级在线毛片| 丝袜在线中文字幕| 亚洲av日韩在线播放| 综合色丁香网| 国产毛片在线视频| 亚洲国产中文字幕在线视频| 老熟女久久久| 日本vs欧美在线观看视频| 欧美成人午夜精品| 国产一卡二卡三卡精品 | www日本在线高清视频| 亚洲精品美女久久久久99蜜臀 | 精品午夜福利在线看| av在线老鸭窝| 欧美精品一区二区免费开放| 亚洲国产欧美网| 免费看不卡的av| 国产成人免费观看mmmm| 欧美日韩亚洲高清精品| 91国产中文字幕| 国产老妇伦熟女老妇高清| 国产免费福利视频在线观看| 国产成人a∨麻豆精品| 日日啪夜夜爽| 777米奇影视久久| 欧美亚洲日本最大视频资源| 99香蕉大伊视频| 国产精品久久久久久精品电影小说| 久久鲁丝午夜福利片| 亚洲 欧美一区二区三区| 国产av一区二区精品久久| av福利片在线| 自线自在国产av| 最新的欧美精品一区二区| 精品少妇一区二区三区视频日本电影 | 97精品久久久久久久久久精品| 中文字幕另类日韩欧美亚洲嫩草| 黄色毛片三级朝国网站| 美女脱内裤让男人舔精品视频| 久久综合国产亚洲精品| 国产av一区二区精品久久| 久久午夜综合久久蜜桃| 成年动漫av网址| 最黄视频免费看| 久久久久久人妻| 在线观看免费日韩欧美大片| 大片免费播放器 马上看| 久久久国产精品麻豆| 久久综合国产亚洲精品| 久久久久久久久久久免费av| 人人妻人人添人人爽欧美一区卜| 精品国产一区二区三区四区第35| 一本—道久久a久久精品蜜桃钙片| 国产免费一区二区三区四区乱码| 亚洲国产日韩一区二区| 久久久久人妻精品一区果冻| 午夜福利,免费看| av网站在线播放免费| 悠悠久久av| 日韩不卡一区二区三区视频在线| 亚洲国产成人一精品久久久| 一级毛片 在线播放| 中文字幕制服av| 18在线观看网站| 免费看av在线观看网站| 国产精品国产三级专区第一集| 婷婷色综合www| 亚洲一码二码三码区别大吗| 一级毛片我不卡| 男女床上黄色一级片免费看| 午夜福利视频精品| 岛国毛片在线播放| 日韩欧美精品免费久久| 国产一区二区三区综合在线观看| 王馨瑶露胸无遮挡在线观看| 久久国产精品大桥未久av| 校园人妻丝袜中文字幕| 叶爱在线成人免费视频播放| av国产久精品久网站免费入址| 男女免费视频国产| av电影中文网址| 高清黄色对白视频在线免费看| 又黄又粗又硬又大视频| 亚洲av电影在线进入| 国产老妇伦熟女老妇高清| 亚洲成色77777| 少妇的丰满在线观看| 精品一品国产午夜福利视频| 精品午夜福利在线看| 九九爱精品视频在线观看| 日韩大片免费观看网站| 日日啪夜夜爽| 熟女少妇亚洲综合色aaa.| 国产亚洲av片在线观看秒播厂| 免费高清在线观看视频在线观看| 最近的中文字幕免费完整| 国产av精品麻豆| 高清av免费在线| 免费在线观看完整版高清| 制服人妻中文乱码| 久久久国产精品麻豆| 啦啦啦在线免费观看视频4| 男女无遮挡免费网站观看| 黄片播放在线免费| 久久毛片免费看一区二区三区| 成人影院久久| 日韩制服丝袜自拍偷拍| 久久精品国产亚洲av高清一级| 2018国产大陆天天弄谢| 九色亚洲精品在线播放| 国产成人一区二区在线| 一区二区av电影网| 色婷婷久久久亚洲欧美| 人妻一区二区av| 亚洲精品乱久久久久久| 中文字幕精品免费在线观看视频| 夫妻性生交免费视频一级片| 国产男女内射视频| 婷婷色av中文字幕| 热99久久久久精品小说推荐| 亚洲av欧美aⅴ国产| 国产一区亚洲一区在线观看| 天堂俺去俺来也www色官网| 最近中文字幕2019免费版| 成人漫画全彩无遮挡| 免费高清在线观看日韩| 97人妻天天添夜夜摸| 母亲3免费完整高清在线观看| 人人妻人人添人人爽欧美一区卜| 国产av码专区亚洲av| 99久久99久久久精品蜜桃| 伊人亚洲综合成人网| 亚洲国产精品成人久久小说| 日本av免费视频播放| 美女视频免费永久观看网站| 免费观看a级毛片全部| 无遮挡黄片免费观看| 亚洲免费av在线视频| 女的被弄到高潮叫床怎么办| 欧美日韩一级在线毛片| 午夜福利影视在线免费观看| 精品亚洲成a人片在线观看| 哪个播放器可以免费观看大片| 日韩中文字幕欧美一区二区 | 欧美亚洲 丝袜 人妻 在线| 老司机在亚洲福利影院| 日本午夜av视频| 国产亚洲av片在线观看秒播厂| 国产一区二区在线观看av| avwww免费| 日日爽夜夜爽网站| 亚洲中文av在线| 国产精品熟女久久久久浪| 人体艺术视频欧美日本| 亚洲三区欧美一区| 人人妻人人澡人人看| 97在线人人人人妻| 久久影院123| 国产午夜精品一二区理论片| 国产av国产精品国产| 国产伦理片在线播放av一区| 大片免费播放器 马上看| 黄色一级大片看看| 国产老妇伦熟女老妇高清| 香蕉丝袜av| 韩国高清视频一区二区三区| 一级,二级,三级黄色视频| 侵犯人妻中文字幕一二三四区| 亚洲国产av影院在线观看| 亚洲精品一区蜜桃| 久久久久精品国产欧美久久久 | av网站在线播放免费| 午夜福利影视在线免费观看| 久久久精品区二区三区| 亚洲av成人不卡在线观看播放网 | 亚洲精品美女久久av网站| 国产一区二区 视频在线| 青春草视频在线免费观看| 欧美日韩亚洲国产一区二区在线观看 | 少妇人妻久久综合中文| 欧美精品亚洲一区二区| 国产精品成人在线| 久久久久久久大尺度免费视频| 欧美亚洲 丝袜 人妻 在线| 蜜桃国产av成人99| 电影成人av| 一区二区三区激情视频| 黄频高清免费视频| 亚洲精品国产av成人精品| 亚洲,欧美,日韩| 一区二区av电影网| 精品亚洲成国产av| 国产欧美日韩综合在线一区二区| 久久人人97超碰香蕉20202| av免费观看日本| 九九爱精品视频在线观看| 亚洲av中文av极速乱| 超碰97精品在线观看| 男女免费视频国产| 久久久久精品国产欧美久久久 | 夫妻性生交免费视频一级片| av网站在线播放免费| 久久久欧美国产精品| 18禁裸乳无遮挡动漫免费视频| 国产在线一区二区三区精| 大码成人一级视频| 日日啪夜夜爽| 91老司机精品| 纵有疾风起免费观看全集完整版| 麻豆精品久久久久久蜜桃| 国产成人精品无人区| 亚洲美女搞黄在线观看| 精品久久久久久电影网| 亚洲男人天堂网一区| 欧美日韩视频高清一区二区三区二| 男女之事视频高清在线观看 | 成人影院久久| 免费在线观看完整版高清| 超碰成人久久| 一级,二级,三级黄色视频| 在线观看人妻少妇| 国产亚洲午夜精品一区二区久久| 亚洲成色77777| 亚洲自偷自拍图片 自拍| 肉色欧美久久久久久久蜜桃| 蜜桃国产av成人99| 午夜老司机福利片| 国产成人一区二区在线| 亚洲色图综合在线观看| 午夜日本视频在线| 建设人人有责人人尽责人人享有的| 少妇的丰满在线观看| 日韩欧美一区视频在线观看|