張舒陽(yáng) 畢研貞 劉守勝 柳盛 辛永寧
摘要:目的探討慢性乙型肝炎(CHB)患者與HBV相關(guān)慢加急性肝衰竭(HBV-ACLF)患者血漿外泌體microRNA(miRNA)表達(dá)譜差異,分析其功能及生物學(xué)過(guò)程,以期獲得可用于HBV-ACLF臨床診斷的參考依據(jù)。方法選取2021年10月—2022年6月青島市市立醫(yī)院感染科住院的6例CHB患者及青島市第六人民醫(yī)院血液凈化中心接受治療的6例HBV-ACLF患者。運(yùn)用Illumina高通量測(cè)序技術(shù)對(duì)這些患者的血漿外泌體miRNA進(jìn)行檢測(cè),篩選差異miRNA并進(jìn)行功能富集分析,分析其參與的生物學(xué)過(guò)程。檢測(cè)得到的外泌體差異miRNA以倍數(shù)上調(diào)>2倍或下調(diào)>2倍且P<0.05為標(biāo)準(zhǔn)篩選。計(jì)量資料兩組間比較采用Mann-Whitney U秩和檢驗(yàn)。計(jì)數(shù)資料兩組間比較采用χ2檢驗(yàn)。結(jié)果篩選差異miRNA共249種,與CHB組相比,HBV-ACLF組上調(diào)miRNA 126種,下調(diào)miRNA 123種。生物信息學(xué)分析結(jié)果顯示,這些差異表達(dá)miRNA主要參與了性腺發(fā)育、調(diào)控蛋白質(zhì)穩(wěn)定性、細(xì)胞對(duì)外界刺激反應(yīng)等生物學(xué)過(guò)程,并與乙型肝炎、蛋白多糖在癌癥中的作用、調(diào)節(jié)干細(xì)胞多能性、MAPK、Hippo、TNF、脂質(zhì)代謝等信號(hào)通路密切相關(guān)。結(jié)論通過(guò)Illumina高通量測(cè)序技術(shù)篩選出的差異miRNA可能作為HBV-ACLF早期診斷及預(yù)后判斷的生物標(biāo)志物。
關(guān)鍵詞:乙型肝炎, 慢性; 慢加急性肝功能衰竭; 外泌體; 微RNAs
基金項(xiàng)目:國(guó)家自然科學(xué)基金(82202416);北京肝膽相照公益基金會(huì)人工肝專項(xiàng)基金(RGGJJ-2021-030)
Differentially expressed microRNAs in plasma exosomes from patients with chronic hepatitis B or hepatitis B virus-related acute-on-chronic liver failure: A bioinformatics analysis
ZHANG ShuyangBI Yanzhen LIU Shousheng LIU Sheng XIN Yongning(1. Qingdao Clinical Medical College of Nanjing Medical University, Qingdao, Shandong 266011, China; 2. Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao, Shandong 266011, China; 3. Clinical Research Center, Qingdao Municipal Hospital, Qingdao, Shandong 266071, China; 4. Department of Blood Purification, Qingdao Sixth Peoples Hospital, Qingdao, Shandong 266033, China)
Corresponding authors:XIN Yongning, xinyongning@163.com (ORCID:0000-0002-3692-7655); LIU Sheng, lius123@163.com (ORCID:0000-0002-9485-0211)
Abstract:ObjectiveTo investigate the differences in plasma exosomal microRNA (miRNA) expression profile between patients with chronic hepatitis B (CHB) and those with hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF), as well as their functions and biological processes, and to provide a reference for the clinical diagnosis of HBV-ACLF. MethodsSix patients with CHB who were hospitalized in Department of Infectious Diseases, Qingdao Municipal Hospital, and six patients with HBV-ACLF who were treated in Blood Purification Center of Qingdao Sixth Peoples Hospital from October 2021 to June 2022 were enrolled. Illumina high-throughput sequencing was used to analyze the plasma exosomal miRNAs of these patients to obtain the differentially expressed miRNAs between the two groups. The differentially expressed miRNAs were screened, and a functional enrichment analysis was performed to identify the biological processes involving such miRNAs. The Mann-Whitney U rank sum test was used for comparison of continuous data between two groups, and the chi-square test was used for comparison of categorical data between groups. ResultsA total of 249 differentially expressed exosomal miRNAs were obtained according to the criteria of upregulation >2-fold or downregulation >2-fold, with P<0.05, and compared with the CHB group, there were 126 upregulated miRNAs and 123 downregulated miRNAs. The bioinformatics analysis showed that these differentially expressed miRNAs were mainly involved in the biological processes such as gonadal development, regulation of protein stability, and cellular response to external stimuli, and they were closely associated with the signaling pathways such as hepatitis B, the role of proteoglycans in cancer, regulation of stem cell pluripotency, MAPK, Hippo, TNF, and lipid metabolism. ConclusionThe differentially expressed miRNAs identified by Illumina high-throughput sequencing may be used as biomarkers for the early diagnosis and prognostic evaluation of HBV-ACLF.
Key words:Hepatitis B, Chronic; Acute-On-Chronic Liver Failure; Exosomes; MicroRNAs
Research funding:National Natural Science Foundation of China(82202416); Special Fund for Artificial Liver of Beijing Public Welfare Foundation(RGGJJ-2021-030)
據(jù)估計(jì),中國(guó)HBV感染者占總?cè)丝诘?%~6%,而感染者中有2 000萬(wàn)~3 000萬(wàn)例慢性乙型肝炎(CHB)患者[1]。亞太和非洲地區(qū)肝臟疾病的主要病因即為HBV感染,HBV相關(guān)慢加急性肝衰竭(HBV-ACLF)作為一種常見(jiàn)的復(fù)雜綜合征,因其高病死率、預(yù)后差的特點(diǎn)而備受關(guān)注,但HBV-ACLF臨床特征和發(fā)生發(fā)展機(jī)制尚不清楚[2],如能早期診斷便可使患者及時(shí)接受強(qiáng)化管理,從而降低發(fā)病率和病死率。有資料[3]顯示,外泌體中包含的miRNA在疾病狀態(tài)下的改變使其可作為多種疾病的生物標(biāo)志物,且在腫瘤、感染性疾病、自身免疫性疾病等方面已取得較大進(jìn)展,因此本研究探索CHB與HBV-ACLF患者血漿外泌體源性的miRNA表達(dá)譜差異,通過(guò)生物信息學(xué)分析差異表達(dá)miRNA的功能和生物學(xué)過(guò)程,以探尋可能作為HBV-ACLF早期診斷及表征預(yù)后的生物標(biāo)志物,并為進(jìn)一步研究發(fā)病機(jī)制提供參考依據(jù)。
1資料與方法
1.1研究對(duì)象選取2021年10月—2022年6月青島市市立醫(yī)院感染科住院的CHB患者6例及青島市第六人民醫(yī)院血液凈化中心接受治療的HBV-ACLF患者6例,診斷符合《慢性乙型肝炎防治指南(2019年版)》[4]及《肝衰竭診治指南(2018年版)》[5]。排除標(biāo)準(zhǔn):(1)未成年人及妊娠患者;(2)HBV以外其他病因所致的肝衰竭,如自身免疫性、酒精性、藥物性及其他不明原因;(3)合并其他類型肝炎病毒感染;(4)合并惡性腫瘤或活動(dòng)性消化道出血;(5)合并嚴(yán)重心、腦、腎臟疾病及其他系統(tǒng)性疾病。
1.2一般資料收集與標(biāo)本采集及保存收集患者住院期間臨床資料及肝病相關(guān)化驗(yàn)指標(biāo)。采集CHB組及HBV-ACLF組研究對(duì)象空腹靜脈血標(biāo)本8 mL,于4? ? ℃下3 000 r/min離心10 min,上層淡黃色透明液體則為血漿,收集后分裝到EP管中,于-80 ℃冰箱冷凍備用。
1.3血漿外泌體的提取、鑒定將500 μL血漿樣本-80 ℃取出,25 ℃水浴解凍,13 000×g、4 ℃離心10 min;按照1∶1的樣本體積加入Buffer XBP,樣本與Buffer XBP混合液轉(zhuǎn)移至 exoEasy spin column,500×g、4 ℃離心1 min,棄除底部廢液;加入3.5 mL的Buffer XWP到 exoEasy spin column中,5 000×g、4 ℃離心5 min,棄除底部廢液;轉(zhuǎn)移spin column到新的收集管中,加入200 μL Buffer XE,5 000×g、4 ℃離心5 min收集底部外泌體到1.5 mL離心管中,將提取到的外泌體沉淀分裝保存于-80 ℃冰箱。利用透射電鏡檢測(cè)外泌體的形態(tài)及大小,取外泌體樣本5 μL滴加在銅網(wǎng)上,室溫孵育并吸干多余液體后,于銅網(wǎng)上滴加一滴2%的乙酸雙氧鈾,室溫干燥后上機(jī)觀察。利用Western blot檢測(cè)外泌體表面蛋白標(biāo)志物CD63、CD81、TSG101的表達(dá)和內(nèi)質(zhì)網(wǎng)蛋白Calnexin的表達(dá)。利用納米顆粒示蹤分析(NTA)進(jìn)行外泌體粒子檢測(cè),測(cè)定外泌體粒徑大小。
1.4miRNA特異文庫(kù)構(gòu)建及測(cè)序分析應(yīng)用TRIzol試劑提取外泌體總RNA,由上海華盈生物醫(yī)藥科技有限公司進(jìn)行文庫(kù)構(gòu)建及測(cè)序分析。采用The QIAseq miRNA Library Kit試劑盒通過(guò)二代測(cè)序?qū)崿F(xiàn)穩(wěn)定的miRNA特異文庫(kù)構(gòu)建。通過(guò)Illumina高通量測(cè)序得到原始測(cè)序結(jié)果,使用軟件Cutadapt(version 2.7)、perl5(version 26)完成數(shù)據(jù)質(zhì)控,使用軟件bowtie(version 1.3.0)將數(shù)據(jù)比對(duì)到miRBase數(shù)據(jù)庫(kù),最終完成miRNA定量。采用R包edgeR對(duì)2組間miRNA信息進(jìn)行表達(dá)差異計(jì)算,以倍數(shù)上調(diào)>2倍或下調(diào)>2倍且P<0.05為標(biāo)準(zhǔn)篩選差異miRNA。
1.5生物信息學(xué)分析使用miRTarBase數(shù)據(jù)庫(kù)對(duì)差異表達(dá)的miRNA進(jìn)行靶基因預(yù)測(cè)注釋,通過(guò)Fisher精確檢驗(yàn),使用R包對(duì)得到的差異miRNA靶基因進(jìn)行GO富集分析及KEGG通路富集分析。
1.6統(tǒng)計(jì)學(xué)方法應(yīng)用SPSS 26.0軟件進(jìn)行統(tǒng)計(jì)學(xué)分析。計(jì)量資料以M(P25~P75)表示,兩組間比較采用Mann-Whitney U秩和檢驗(yàn)。計(jì)數(shù)資料兩組間比較采用χ2檢驗(yàn)。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2結(jié)果
2.1一般資料12例患者一般情況見(jiàn)表1。兩組患者間ALT、AST、TBil、DBil、PLT、PT、APTT比較差異均有統(tǒng)計(jì)學(xué)意義(P值均<0.05)。
2.2血漿外泌體分離鑒定及外泌體miRNA表達(dá)譜比較利用透射電鏡、Western blot、NTA多層面鑒定外泌體。透射電鏡下可見(jiàn)CHB與HBV-ACLF來(lái)源外泌體均為直徑約100 nm左右的囊泡(圖1)。Western blot可檢測(cè)到膜蛋白CD63、CD81及膜結(jié)合蛋白TSG101的目的蛋白條帶,而內(nèi)質(zhì)網(wǎng)蛋白Calnexin在外泌體樣本中呈現(xiàn)陰性結(jié)果,符合外泌體的蛋白特征。外泌體粒子測(cè)定結(jié)果提示CHB及HBV-ACLF兩組樣本外泌體粒徑峰值分別為127.1 nm及142.5 nm(圖2),進(jìn)一步提示提取物為外泌體。通過(guò)測(cè)序分析,確定miRNA差異表達(dá)譜,對(duì)得到的差異表達(dá)miRNA進(jìn)行可視化(圖3)。樣本間差異表達(dá)miRNA的信號(hào)比值進(jìn)行聚類(圖4),按照篩選標(biāo)準(zhǔn)共篩選出差異表達(dá)miRNA 249種,其中上調(diào)miRNA 126種,下調(diào)miRNA 123種。上調(diào)和下調(diào)最顯著的15種miRNA見(jiàn)表2。
2.3差異miRNA靶基因GO富集分析篩選出的249種差異表達(dá)miRNA主要參與染色質(zhì)的共價(jià)修飾、分解代謝過(guò)程的正向調(diào)節(jié)、Ras蛋白信號(hào)轉(zhuǎn)導(dǎo)等重要的生物學(xué)過(guò)程,同時(shí)還與黏著斑、轉(zhuǎn)錄調(diào)節(jié)復(fù)合體、位單元前沿、核斑點(diǎn)、有被小泡、泛素連接酶復(fù)合體、早期內(nèi)體、液泡膜等細(xì)胞組成密切相關(guān),并具有DNA結(jié)合轉(zhuǎn)錄激活子活性、RNA聚合酶 Ⅱ 特異性、泛素蛋白連接酶結(jié)合、轉(zhuǎn)錄共調(diào)節(jié)因子活性、轉(zhuǎn)錄共激活因子活性、蛋白絲氨酸/蘇氨酸激酶活性等分子功能(圖5)。尤其是性腺發(fā)育、蛋白質(zhì)穩(wěn)定性的調(diào)節(jié)、細(xì)胞對(duì)外界刺激的反應(yīng)等生物學(xué)過(guò)程與HBV-ACLF肝臟病變的進(jìn)展密切相關(guān),而細(xì)胞基質(zhì)結(jié)、細(xì)胞器膜固有成分等細(xì)胞組成及分子功能的表達(dá)也共同參與肝細(xì)胞的損傷與再生。
2.4差異miRNA靶基因KEGG通路富集分析KEGG通路富集分析結(jié)果顯示這些靶基因涉及多種信號(hào)通路的調(diào)節(jié)(圖6),包括蛋白質(zhì)多糖在癌癥中的作用、調(diào)節(jié)干細(xì)胞多能性、MAPK、細(xì)胞衰老、Hippo、TNF、脂質(zhì)與動(dòng)脈粥樣硬化、乙型肝炎、內(nèi)吞作用、軸突導(dǎo)向等信號(hào)通路。尤其是乙型肝炎信號(hào)通路,表明這些靶基因可能通過(guò)影響細(xì)胞存活、脂質(zhì)代謝、T淋巴細(xì)胞凋亡、生長(zhǎng)因子及細(xì)胞因子等參與HBV-ACLF的發(fā)生發(fā)展(附錄A)。
3討論
近年來(lái),外泌體在細(xì)胞間信息傳遞中的作用得到了廣泛認(rèn)可。外泌體是大小為30~100 nm的雙層膜結(jié)構(gòu)的細(xì)胞外囊泡,廣泛存在于包括血液、尿液、唾液等各種人體體液中,人體大多數(shù)細(xì)胞都可以產(chǎn)生外泌體,并參與免疫調(diào)節(jié)、細(xì)胞分化遷移、細(xì)胞間信號(hào)傳導(dǎo)等不同的生理功能[6-8]。而它除了作為細(xì)胞間通信維持人體正常的生理功能外,在疾病狀態(tài)下外泌體所包含成分的改變也使其作為各種疾病的生物標(biāo)志物成為可能[6]。再加上外泌體具備作為生物標(biāo)志物的所有特點(diǎn)[3],因此目前已成為極大的研究熱點(diǎn)并取得了很大進(jìn)展。在所有外泌體包涵物中,蛋白質(zhì)和miRNA是目前被認(rèn)為最有潛力的生物標(biāo)志物,也是被研究最多的外泌體生物標(biāo)志物。有資料顯示,相對(duì)于蛋白質(zhì)來(lái)說(shuō),外泌體源性的miRNA特異性更強(qiáng)[7],對(duì)于疾病的病理狀態(tài)反應(yīng)更早且更為靈敏[8],更有潛力成為疾病的生物標(biāo)志物。因此在本研究中選擇探究外泌體源性的miRNA而非蛋白質(zhì),來(lái)尋找可能作為HBV-ACLF早期診斷和預(yù)后評(píng)估的生物標(biāo)志物。
本研究利用CHB與HBV-ACLF患者的血液樣本,分離血漿外泌體,運(yùn)用Illumina 高通量測(cè)序進(jìn)行miRNA表達(dá)譜分析,共篩選出249種外泌體差異表達(dá)miRNA,其中126種差異miRNA表現(xiàn)為上調(diào),123種表現(xiàn)為下調(diào)。本研究結(jié)果提示CHB與HBV-ACLF患者血清中miRNA存在差異表達(dá),有潛力成為HBV-ACLF早期診斷及判斷預(yù)后的標(biāo)志物。相關(guān)研究提供了類似證據(jù),Chen等[9]采用全基因組芯片對(duì)一對(duì)同卵雙胞胎(1名ACLF患者和1名HBV無(wú)癥狀攜帶者)外周血單個(gè)核細(xì)胞的miRNA表達(dá)譜進(jìn)行比較,發(fā)現(xiàn)與HBV無(wú)癥狀攜帶者相比,ACLF患者h(yuǎn)sa-let-7a和hsa-miR-16的表達(dá)上調(diào)均>8倍,表明hsa-miR-16和hsa-let-7a可能促進(jìn)ACLF的發(fā)展。
在HBV-ACLF組表達(dá)上調(diào)的miRNA中,miR-122作為肝細(xì)胞基因網(wǎng)絡(luò)和通路的調(diào)節(jié)因子,在肝臟疾病的發(fā)生發(fā)展中發(fā)揮著重要作用[10-12]。例如肝細(xì)胞的分化[11]、調(diào)節(jié)膽固醇和脂肪酸代謝[12]等,已經(jīng)成為有潛力的肝損傷生物標(biāo)志物[13]。據(jù)研究[12]發(fā)現(xiàn),miR-122在肝細(xì)胞癌(HCC)患者中的表達(dá)降低,通過(guò)局部引起腫瘤抑制基因Pten的下調(diào),使得腫瘤起始細(xì)胞擴(kuò)大,導(dǎo)致HCC的進(jìn)展,并與HCC的不良預(yù)后和轉(zhuǎn)移潛力有關(guān),屬于肝臟特異性腫瘤抑制因子[14]。也有研究[15]發(fā)現(xiàn)肝臟特異性miR-122通過(guò)與HCV基因組RNA的5′端非編碼區(qū)直接相互作用,可促進(jìn)HCV的復(fù)制,這表明miR-122可能是抗病毒干預(yù)的重要靶點(diǎn)??梢?jiàn)miR-122參與控制多種生物過(guò)程,包括細(xì)胞分化、發(fā)育和凋亡,甚至影響病毒的復(fù)制等,涉及多種肝臟疾病的發(fā)生發(fā)展。在乙型肝炎方面,過(guò)表達(dá)的miR-122可下調(diào)MAP3K2信號(hào)通路對(duì)乙型肝炎表面抗原的遷移和分泌產(chǎn)生抑制作用[16],但Wen等[17]發(fā)現(xiàn)miR-122-3p的表達(dá)水平與HBV-ACLF患者肝臟炎癥的嚴(yán)重程度呈正相關(guān),其表達(dá)上調(diào)可能導(dǎo)致HBV特異性T淋巴細(xì)胞功能受損并加強(qiáng)病毒持久性損傷,這有助于預(yù)測(cè)HBV-ACLF的嚴(yán)重程度,本研究與之相符的是,相較于CHB組,hsa-miR-122b-3p在HBV-ACLF組血漿中表達(dá)上調(diào),但hsa-miR-122b-3p是否可以作為HBV-ACLF早期診斷的生物標(biāo)志物,尚需做進(jìn)一步的驗(yàn)證。Let-7是一個(gè)龐大而古老的miRNA家族,以犧牲再生為代價(jià)發(fā)揮腫瘤抑制作用,在腫瘤中表達(dá)下調(diào)[18-19]。另外有研究[20]表明,肝硬化患者血清中l(wèi)et-7a-5p水平降低,且與肝纖維化嚴(yán)重程度明顯相關(guān),其機(jī)制可能是通過(guò)肝星狀細(xì)胞中的TGF-β信號(hào)通路激活肝纖維化前過(guò)程。在肝衰竭方面,一項(xiàng)動(dòng)物研究[21]發(fā)現(xiàn),急性肝衰竭小鼠模型在加重至肝性腦病過(guò)程中由于TGF-β1信號(hào)通路的激活導(dǎo)致let-7f表達(dá)增加,并最終預(yù)后較差。這一發(fā)現(xiàn)與本研究中HBV-ACLF組血漿外泌體源性let-7b-3p呈高表達(dá)趨勢(shì)一致,但是目前未見(jiàn)let-7b-3p與HBV-ACLF相關(guān)的研究報(bào)道,對(duì)于let-7b-3p是否可以作為HBV-ACLF患者預(yù)后判斷的生物標(biāo)志物,仍需進(jìn)一步研究。
在HBV-ACLF組表達(dá)下調(diào)的miRNA中,miR-96與消化系統(tǒng)腫瘤及轉(zhuǎn)移瘤的發(fā)生發(fā)展關(guān)系密切[22-24]。一項(xiàng)動(dòng)物研究[23]表明,在二乙基亞硝胺誘導(dǎo)的大鼠HCC模型中,miR-96在HCC組顯著上調(diào),且研究[24]發(fā)現(xiàn)miR-96水平在肝臟原發(fā)性腫瘤到遠(yuǎn)處轉(zhuǎn)移的過(guò)程中升高,說(shuō)明miRNA-96可能在HCC的起始或進(jìn)展中起作用。但Shi等[25]研究發(fā)現(xiàn)miR-96參與了葡萄籽原花青素提取物對(duì)高脂飲食誘導(dǎo)的小鼠模型血脂異常的調(diào)節(jié)過(guò)程,可能通過(guò)mTOR和FOXO1信號(hào)通路促進(jìn)自噬通量以清除脂質(zhì)積累,幫助調(diào)控體內(nèi)血脂水平,減輕高脂飲食對(duì)肝臟的損傷,這對(duì)維持細(xì)胞穩(wěn)態(tài)、保持器官功能和循環(huán)至關(guān)重要。ACLF患者病程中確實(shí)存在血脂代謝異常[26],本研究首次在 HBV-ACLF 患者外泌體中檢測(cè)到miR-96-3p表達(dá)下調(diào),其表達(dá)下調(diào)是否影響血脂調(diào)控而進(jìn)一步加重肝損傷,從而參與HBV- ACLF發(fā)病過(guò)程,仍需要進(jìn)一步的實(shí)驗(yàn)驗(yàn)證。
綜上所述,本研究通過(guò)對(duì)CHB與HBV-ACLF患者血漿外泌體源性的miRNA表達(dá)譜比較分析,篩選出249種差異miRNA,利用生物信息學(xué)分析,發(fā)現(xiàn)這些差異miRNA主要參與性腺發(fā)育、蛋白質(zhì)穩(wěn)定性的調(diào)節(jié)、細(xì)胞對(duì)外界刺激的反應(yīng)等生物學(xué)過(guò)程,并與乙型肝炎、蛋白多糖在癌癥中的作用、調(diào)節(jié)干細(xì)胞多能性、MAPK、Hippo、TNF、脂質(zhì)代謝等信號(hào)通路密切相關(guān)。這為尋找HBV-ACLF早期診斷及表征預(yù)后的生物標(biāo)志物并進(jìn)一步探究發(fā)病機(jī)制提供了參考依據(jù)。
倫理學(xué)聲明:本研究方案于2021年9月9日經(jīng)由青島市市立醫(yī)院醫(yī)學(xué)倫理委員會(huì)審批,批號(hào):2021臨審字Y第017號(hào)。所有研究對(duì)象已簽署知情同意書(shū)。 利益沖突聲明:本文不存在任何利益沖突。作者貢獻(xiàn)聲明:張舒陽(yáng)負(fù)責(zé)查閱、歸納文獻(xiàn),資料分析,撰寫(xiě)論文;畢研貞、劉守勝負(fù)責(zé)修改論文;柳盛負(fù)責(zé)參與血液標(biāo)本收集;辛永寧負(fù)責(zé)擬定寫(xiě)作思路,指導(dǎo)撰寫(xiě)文章并最后定稿。
附錄A見(jiàn)二維碼
參考文獻(xiàn):
[1]TANG Y, LIANG H, ZENG G, et al. Advances in new antivirals for chronic hepatitis B[J]. Chin Med J (Engl), 2022, 135(5): 571-583. DOI: 10.1097/CM9.0000000000001994.
[2]ARROYO V, MOREAU R, JALAN R. Acute-on-chronic liver failure[J]. N Engl J Med, 2020, 382(22): 2137-2145. DOI: 10.1056/NEJMra1914900.
[3]CONSOLE L, SCALISE M, INDIVERI C. Exosomes in inflammation and role as biomarkers[J]. Clin Chim Acta, 2019, 488: 165-171. DOI: 10.1016/j.cca.2018.11.009.
[4]Chinese Society of Infectious Diseases, Chinese Medical Association; Chinese Society of Hepatology, Chinese Medical Association. Guidelines for the prevention and treatment of chronic hepatitis B(version 2019) [J]. J Clin Hepatol, 2019, 35(12): 2648-2669. DOI: 10.3969/j.issn.1001-5256.2019.12.007.中華醫(yī)學(xué)會(huì)感染病學(xué)分會(huì), 中華醫(yī)學(xué)會(huì)肝病學(xué)分會(huì). 慢性乙型肝炎防治指南(2019年版)[J]. 臨床肝膽病雜志, 2019, 35(12): 2648-2669. DOI: 10.3969/j.issn.1001-5256.2019.12.007.
[5]Liver Failure and Artificial Liver Group, Chinese Society of Infectious Diseases, Chinese Medical Association; Severe Liver Disease and Artificial Liver Group, Chinese Society of Hepatology, Chinese Medical Association. Guideline for diagnosis and treatment of liver failure( 2018) [J]. J Clin Hepatol, 2019, 35(1): 38-44. DOI: 10. 3969/j. issn. 1001-5256. 2019. 01. 007.中華醫(yī)學(xué)會(huì)感染病學(xué)分會(huì)肝衰竭與人工肝學(xué)組, 中華醫(yī)學(xué)會(huì)肝病學(xué)分會(huì)重型肝病與人工肝學(xué)組. 肝衰竭診治指南(2018年版)[J]. 臨床肝膽病雜志, 2019, 35(1): 38-44. DOI: 10.3969/j.issn.1001-5256.2019.01.007.
[6]GURUNATHAN S, KANG MH, JEYARAJ M, et al. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes[J]. Cells, 2019, 8(4): 307. DOI:? 10.3390/cells8040307.
[7]MORI MA, LUDWIG RG, GARCIA-MARTIN R, et al. Extracellular miRNAs: from biomarkers to mediators of physiology and disease[J]. Cell Metab, 2019, 30(4): 656-673. DOI: 10.1016/j.cmet.2019.07.011.
[8]ZHANG J, LI S, LI L, et al. Exosome and exosomal microRNA: trafficking, sorting, and function[J]. Genomics Proteomics Bioinformatics, 2015, 13(1): 17-24. DOI: 10.1016/j.gpb.2015.02.001.
[9]CHEN W, YAN ZH, WANG YM, et al. Genome-wide microarray-based analysis of miRNAs expression in patients with acute-on-chronic liver failure[J]. Hepatobiliary Pancreat Dis Int, 2014, 13(1): 32-39. DOI: 10.1016/s1499-3872(14)60004-7.
[10]HU J, XU Y, HAO J, et al. MiR-122 in hepatic function and liver diseases[J]. Protein Cell, 2012, 3(5): 364-371. DOI: 10.1007/s13238-012-2036-3.
[11]TANIMIZU N, KOBAYASHI S, ICHINOHE N, et al. Downregulation of miR122 by grainyhead-like 2 restricts the hepatocytic differentiation potential of adult liver progenitor cells[J]. Development, 2014, 141(23): 4448-4456. DOI: 10.1242/dev.113654.
[12]TU WL, YOU LR, TSOU AP, et al. Pten haplodeficiency accelerates liver tumor growth in miR-122a-Null mice via expansion of periportal hepatocyte-like cells[J]. Am J Pathol, 2018, 188(11): 2688-2702. DOI: 10.1016/j.ajpath.2018.07.019.
[13]KRAUSKOPF J, CAIMENT F, CLAESSEN SM, et al. Application of high-throughput sequencing to circulating microRNAs reveals novel biomarkers for drug-induced liver injury[J]. Toxicol Sci, 2015, 143(2): 268-276. DOI: 10.1093/toxsci/kfu232.
[14]BAI S, NASSER MW, WANG B, et al. MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib[J]. J Biol Chem, 2009, 284(46): 32015-32027. DOI: 10.1074/jbc.M109.016774.
[15]JOPLING CL, YI M, LANCASTER AM, et al. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA[J]. Science, 2005, 309(5740): 1577-1581. DOI: 10.1126/science.1113329.
[16]CHEN S, YANG L, PAN A, et al. Inhibitory effect on the hepatitis B cells through the regulation of miR-122-MAP3K2 signal pathway[J]. An Acad Bras Cienc, 2019, 91(2): e20180941. DOI: 10.1590/0001-3765201920180941.
[17]WEN Y, PENG SF, FU L, et al. Serum levels of miRNA in patients with hepatitis B virus-associated acute-on-chronic liver failure[J]. Hepatobiliary Pancreat Dis Int, 2018, 17(2): 126-132. DOI: 10.1016/j.hbpd.2018.03.004.
[18]WU L, NGUYEN LH, ZHOU K, et al. Precise let-7 expression levels balance organ regeneration against tumor suppression[J]. Elife, 2015, 4: e09431. DOI: 10.7554/eLife.09431.
[19]MCDANIEL K, HUANG L, SATO K, et al. The let-7/Lin28 axis regulates activation of hepatic stellate cells in alcoholic liver injury[J]. J Biol Chem, 2017, 292(27): 11336-11347. DOI: 10.1074/jbc.M116.773291.
[20]MATSUURA K, AIZAWA N, ENOMOTO H, et al. Circulating let-7 levels in serum correlate with the severity of hepatic fibrosis in chronic hepatitis C[J]. Open Forum Infect Dis, 2018, 5(11): ofy268. DOI: 10.1093/ofid/ofy268.
[21]SANDHU GK, MCMILLIN M, FRAMPTON G, et al. Let-7f-dependent suppression of neuronal IGF1 by aberrant TGFβ1 signaling contributes to the neurological decline observed during acute liver failure[J]. J Gastroenterology, 2017, 152(5): S1066. DOI: 10.1016/s0016-5085(17)33601-6.
[22]YANG S, CHEN Z, FAN D, et al. Retracted Article: MiR-182-5p and miR-96-5p increased hepatocellular carcinoma cell mobility, proliferation and cisplatin resistance partially by targeting RND3[J]. RSC Adv, 2018, 8(61): 34973-34983. DOI: 10.1039/c8ra07055e.
[23]CHANDEL R, DAS A, CHAWLA YK, et al. Mo1477 Progression of hepatocellular carcinoma is associated with the up regulation of rno-miR-96/182/183 cluster in liver of wistar rats[J]. J Gastroenterology, 2016, 150(4): S1125. DOI: 10.1016/s0016-5085(16)33799-4
[24]MANDAL R, HARDIN H, BAUS R, et al. Analysis of miR-96 and miR-133a expression in gastrointestinal neuroendocrine neoplasms[J]. Endocr Pathol, 2017, 28(4): 345-350. DOI: 10.1007/s12022-017-9504-5.
[25]SHI Y, JIA M, XU L, et al. miR-96 and autophagy are involved in the beneficial effect of grape seed proanthocyanidins against high-fat-diet-induced dyslipidemia in mice[J]. Phytother Res, 2019, 33(4): 1222-1232. DOI: 10.1002/ptr.6318.
[26]BAJAJ JS, REDDY KR, O'LEARY JG, et al. Serum levels of metabolites produced by intestinal microbes and lipid moieties independently associated with acute-on-chronic liver failure and death in patients with cirrhosis[J]. Gastroenterology, 2020, 159(5): 1715-1730. e12. DOI: 10.1053/j.gastro.2020.07.019.
收稿日期:2022-12-07;錄用日期:2023-01-17
本文編輯:林姣
引證本文:ZHANG SY, BI YZ, LIU SS, et al. Differentially expressed microRNAs in plasma exosomes from patients with chronic hepatitis B or hepatitis B virus-related acute-on-chronic liver failure: A bioinformatics analysis[J]. J Clin Hepatol, 2023, 39(8): 1848-1856.