苗淑瑩 楊軍 管文燕 張標(biāo) 何璐 樊智文
摘要:肝細(xì)胞癌(HCC)作為原發(fā)性肝癌最常見的類型,是一種具有侵襲性且致命的惡性腫瘤,其發(fā)生發(fā)展是一個(gè)多基因參與、多步驟、多階段的過程。環(huán)狀 RNA(circRNA)作為一類內(nèi)源性非編碼RNA,主要通過吸附微小RNA(miRNA)或者RNA結(jié)合蛋白(RBP)發(fā)揮“海綿作用”,進(jìn)而調(diào)控下游靶基因表達(dá)。本文全面介紹了circRNA在HCC信號轉(zhuǎn)導(dǎo)、免疫、代謝、耐藥、HBV相關(guān)HCC中的作用及意義,及其作為HCC的生物標(biāo)志物或治療靶點(diǎn)的潛在價(jià)值,為HCC的診斷和治療提供新思路。關(guān)鍵詞:RNA,? 環(huán)狀; 癌, 肝細(xì)胞; 診斷; 治療學(xué)基金項(xiàng)目:國家自然科學(xué)基金(81700554, 82170592)
Role of circular RNA in the development, progression, diagnosis, and treatment of hepatocellular carcinoma
MIAO Shuying, YANG Jun, GUAN Wenyan, ZHANG Biao, HE Lu, FAN Zhiwen. (Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China)
Corresponding author:FAN Zhiwen, fanzhiwenfff@126.com (ORCID:0000-0002-3465-4622)
Abstract:As the most common type of primary liver cancer, hepatocellular carcinoma (HCC) is an invasive and fatal malignant tumor, and its development and progression involve multiple genes, steps, and stages. Circular RNA (circRNA), as a class of endogenous non-coding RNAs, mainly acts as a sponge by absorbing microRNA or RNA-binding proteins to regulate the expression of downstream target genes. This article comprehensively introduces the role and significance of circRNA in signal transduction, immunity, metabolism, drug resistance, and hepatitis B virus-related HCC and its potential value as a biomarker or therapeutic target for HCC, so as to provide new ideas for the diagnosis and treatment of HCC.
Key words:RNA, Circular; Carcinoma, Hepatocellular;? Diagnosis;? Therapeutics
Research funding: The National Natural Science Foundation of China (81700554, 82170592)
肝細(xì)胞癌(HCC)是肝癌最常見和最致命的組織學(xué)類型,是世界范圍內(nèi)癌癥相關(guān)死亡的第二大原因[1]。每年全世界HCC的發(fā)病率超過50萬,并且逐年上升。慢性HBV/HCV感染、酒精性損傷、非酒精性脂肪性肝病、黃曲霉毒素、肥胖、糖尿病和肝硬化被認(rèn)為是HCC的主要危險(xiǎn)因素[2]。原位肝移植和手術(shù)切除是目前治療肝癌最有效的方法,雖然索拉非尼和瑞戈非尼已被用于HCC的一線二線全身化療,但對其耐藥導(dǎo)致高病死率的擔(dān)憂日益增加。大多數(shù)HCC患者被確診時(shí)已為疾病晚期,錯(cuò)過了最好的治療時(shí)機(jī)。另一方面,HCC易擴(kuò)散轉(zhuǎn)移、術(shù)后易復(fù)發(fā),導(dǎo)致HCC患者術(shù)后5年的轉(zhuǎn)移或復(fù)發(fā)率仍然很高,生存期較短[3]。因此,需要更多可靠的生物標(biāo)志物用于HCC的診斷、治療和監(jiān)測。越來越多的研究發(fā)現(xiàn)環(huán)狀RNA (circular RNA,circRNA)在HCC的發(fā)生發(fā)展中發(fā)揮著重要的調(diào)控作用。
1circRNA概述
circRNA于1976年在類病毒顆粒上被首次發(fā)現(xiàn)[4]。其通過反式剪接使3端和5端以共價(jià)鍵相連接形成1個(gè)閉合環(huán)狀結(jié)構(gòu)。得益于其閉合的環(huán)狀結(jié)構(gòu),circRNA對核酸外切酶不敏感。已知的circRNA的功能機(jī)制可以大致分為四類: (1)作為miRNA海綿;(2)調(diào)控轉(zhuǎn)錄過程;(3)與RNA結(jié)合蛋白(RNA-binding proteins,RBP)相互作用;(4)參與肽或蛋白質(zhì)翻譯。circRNA具有豐富性、動態(tài)性、保守性、穩(wěn)定性,這些特性使circRNA在作為新型臨床診斷相關(guān)生物標(biāo)志物的開發(fā)應(yīng)用上具有明顯優(yōu)勢。新的證據(jù)表明,circRNA在HCC的發(fā)生和發(fā)展中發(fā)揮重要作用,并參與細(xì)胞增殖、腫瘤轉(zhuǎn)移、免疫逃逸、代謝和耐藥[5]。
2circRNA在HCC發(fā)生發(fā)展中的作用
2.1circRNA在信號轉(zhuǎn)導(dǎo)方面對HCC發(fā)生發(fā)展的影響HCC患者晚期表現(xiàn)之一是腫瘤細(xì)胞的侵襲和轉(zhuǎn)移,有侵襲和轉(zhuǎn)移的HCC患者預(yù)后不佳,circRNA表達(dá)失衡可能是HCC患者侵襲和轉(zhuǎn)移發(fā)生的原因之一。在HCC中,circASAP1 (hsa_circ_0085616)通過調(diào)控miR-326/miR-532-5p/MAPK1軸增強(qiáng)HCC細(xì)胞的增殖和侵襲能力,此外,通過調(diào)節(jié) miR-326/miR-532-5p-CSF-1通路介導(dǎo)腫瘤相關(guān)巨噬細(xì)胞浸潤[6]。Lin等[7]發(fā)現(xiàn)circGprc5a可以通過海綿化miR-1283激活Hippo信號通路關(guān)鍵下游蛋白YAP1/TEAD1,促進(jìn)HCC的進(jìn)展。circ_0061395通過調(diào)控miR-1182/SPOCK1通路,促進(jìn)HCC細(xì)胞的發(fā)展,為HCC提供了一種新的靶向治療方法[8]。Liu等[9]發(fā)現(xiàn)CircSTIL在HCC組織和細(xì)胞中表達(dá)上調(diào)。CircSTIL敲除通過調(diào)控miR-345-5p/AQP3通路減少細(xì)胞增殖、遷移和侵襲,抑制HCC進(jìn)展。與此類似,circEIF3I在HCC中是一種致癌circRNA,下調(diào)circEIF3I可以通過circEIF3I/miR-526b-5p/HGF/c-Met通路延緩HCC腫瘤生長[10]。circ_0011232通過miR-503-5p/AKT3軸促進(jìn)HCC進(jìn)展,可能為HCC提供一種新的治療策略[11]。circCBFB通過抑制miR-424-5p,使ATG14表達(dá)上調(diào),從而促進(jìn)HCC細(xì)胞增殖和自噬[12]。上述研究表明,致癌circRNA在HCC中通常上調(diào),主要通過充當(dāng)miRNA海綿促進(jìn)腫瘤細(xì)胞的增殖、遷移和侵襲等進(jìn)程。hsa_circ_0062682的上調(diào)促進(jìn)了HCC細(xì)胞增殖、遷移和侵襲,其功能通過與YBX1及其他RBP相互作用實(shí)現(xiàn)[13]。SCD-circRNA2在HCC組織中表達(dá)上調(diào),其中RBP RBM3以SCD-circRNA2依賴的方式促進(jìn)HCC細(xì)胞增殖[14]。已有諸多研究表明,circRNA能夠起到抑制HCC進(jìn)展的作用。circPTTG1IP是HCC中的一種新型腫瘤抑制circRNA,低水平的circPTTG1IP通過miR-16-5p/RNF125/JAK1軸促進(jìn)HCC的發(fā)展[15]。在HCC中,circRNA DOCK1和SMAD2表達(dá)升高,miR-654-5p表達(dá)降低,干擾circRNA DOCK1可通過調(diào)控miR-654-5p/SMAD2軸抑制HCC細(xì)胞的增殖、侵襲和遷移[16]。在體內(nèi)外實(shí)驗(yàn)中,過表達(dá)circITCH可通過海綿化miR-184抑制細(xì)胞增殖、遷移、侵襲,促進(jìn)細(xì)胞凋亡,而敲低circITCH則相反[17]。circFGGY通過調(diào)控miR-545-3p/Smad7軸抑制細(xì)胞生長、侵襲和肝細(xì)胞上皮-間充質(zhì)轉(zhuǎn)化[18]。在不充分射頻消融后殘留HCC中,circ-BANP通過與let-7f-5p結(jié)合,抑制HCC細(xì)胞的增殖、遷移和上皮-間葉細(xì)胞轉(zhuǎn)化形成[19]。研究[20]表明,circDLC1可與RNA結(jié)合蛋白HuR結(jié)合,進(jìn)而減少HuR與MMP1 mRNA的相互作用,從而抑制MMP1的表達(dá),最終抑制HCC的進(jìn)展。致癌circRHOT1還通過將TIP60(也稱為KAT5)招募到NR2F6的啟動子并增強(qiáng)其轉(zhuǎn)錄,從而抑制HCC的增殖和轉(zhuǎn)移[21]。抑癌circRNA表達(dá)降低是肝癌的主要危險(xiǎn)因素,對腫瘤細(xì)胞的增殖、侵襲和轉(zhuǎn)移均有不利影響。表1列舉了部分在 HCC 中失調(diào)的circRNA的表達(dá)和功能。
2.2circRNA在免疫方面對HCC發(fā)生發(fā)展的影響在病毒感染過程中,circRNA表達(dá)譜發(fā)生變化,可調(diào)節(jié)免疫系統(tǒng)功能。例如,最近的一項(xiàng)研究[22]發(fā)現(xiàn),HCC細(xì)胞通過外泌體分泌circUHRF1。臨床生理表型顯示circUHRF1表達(dá)高的患者中腫瘤體積較大,血液中NK細(xì)胞比例較低,微血管浸潤較多。Kaplan-Meier生存分析顯示,circUHRF1高表達(dá)患者伴隨臨床預(yù)后不良。circUHRF1可以通過上調(diào)NK細(xì)胞TIM-3的表達(dá)來抑制NK細(xì)胞分泌IFN-γ和TNF-α。該研究顯示,腫瘤中血漿外泌體circUHRF1水平與NK細(xì)胞浸潤水平呈負(fù)相關(guān)。研究者甚至提出了circUHRF1可能促進(jìn)肝癌患者對程序性死亡受體1免疫治療產(chǎn)生耐藥的假設(shè),但是證據(jù)仍然不足。來自HCC細(xì)胞的外泌體circGSE1通過調(diào)控miR324-5p/TGFBR1/Smad3軸誘導(dǎo)Treg擴(kuò)增,從而促進(jìn)HCC的進(jìn)展[23]。據(jù)報(bào)道[24],hsa_circ_0003410在HCC中明顯上調(diào),通過調(diào)節(jié)miR-139-3p/CCL5軸增加M2/M1巨噬細(xì)胞比率,促進(jìn)HCC的進(jìn)展。下調(diào)hsa_circ_0074854通過與HuR相互作用和抑制外泌體介導(dǎo)的巨噬細(xì)胞M2極化,從而在體內(nèi)外抑制肝癌的遷移和侵襲[25]。上述研究證實(shí)了circRNA可以通過調(diào)節(jié)HCC患者的免疫系統(tǒng)來影響HCC的發(fā)展和預(yù)后,未來circRNA也許會成為理想的免疫治療靶點(diǎn)。
2.3circRNA在代謝方面對HCC發(fā)生發(fā)展的影響近年來,circRNA與HCC代謝的相互作用引起了廣泛關(guān)注。通過circRNA調(diào)控HCC細(xì)胞的代謝,可促進(jìn)或抑制物質(zhì)代謝的某些關(guān)鍵酶,從而改變HCC的增殖、侵襲、分化和轉(zhuǎn)移等進(jìn)展過程。因此,在一定程度上,一些參與代謝調(diào)控的circRNA可以作為HCC的潛在生物標(biāo)志物。在缺氧條件下,circMAT2B通過海綿介導(dǎo)miR-338-3p上調(diào)PKM2的表達(dá),增強(qiáng)糖酵解,從而促進(jìn)HCC的進(jìn)展[26]。在氧化應(yīng)激條件下,circ-SPECC1通過miR-33a調(diào)控TGFβ2和自噬,促進(jìn)HCC發(fā)生[27]。同樣的,HCC細(xì)胞中circ_0091579部分通過miR-490-5p/CASC3軸促進(jìn)細(xì)胞增殖、遷移、侵襲和糖酵解[28]。circRPN2通過加速烯醇化酶1 (ENO1)降解和調(diào)控miR-183-5p/FOXO1軸抑制HCC有氧糖酵解和轉(zhuǎn)移,表明circRPN2可能是肝癌的治療靶點(diǎn)[29]。在HCC中,下調(diào)circ-CFH通過調(diào)控miR-377-3p/RNF38軸,可抑制細(xì)胞增殖、遷移、侵襲和糖酵解,從而抑制HCC的發(fā)展[30]。hsa_circ_0001806在HCC組織和細(xì)胞中表達(dá)上調(diào),過表達(dá)hsa_circ_0001806通過調(diào)控miR-125b/HK2軸促進(jìn)肝癌細(xì)胞增殖、遷移和糖酵解,抑制細(xì)胞凋亡[31]。
3circRNA與HCC耐藥
目前,多激酶抑制劑、單克隆抗體和免疫檢查點(diǎn)抑制劑是治療晚期HCC的主要分子靶向治療方法。然而,治療結(jié)果卻差強(qiáng)人意,主要問題是難以避免的耐藥。越來越多的證據(jù)表明,circRNA在HCC耐藥的發(fā)展中起關(guān)鍵作用。circ-001241在HCC組織和細(xì)胞中顯著上調(diào),通過調(diào)節(jié)miR-21-5p/TIMP3軸促進(jìn)肝癌索拉非尼耐藥[32]。circARNT2通過靶向miR-155-5p/PDK1軸抑制肝癌細(xì)胞對順鉑的敏感性[33]。hsa_circRNA_102049過表達(dá)可以通過海綿化hsa-miR-214-3p上調(diào)RELN基因的表達(dá),增加HepG2細(xì)胞和Huh-7細(xì)胞對索拉非尼的敏感性[34]。Lu等[35]研究發(fā)現(xiàn),在抗PD-1治療反應(yīng)不良和HCC術(shù)后預(yù)后不良的患者中circTMEM181表達(dá)升高。HCC細(xì)胞通過外泌體circTMEM181作用于巨噬細(xì)胞,從而增加其CD39的表達(dá)。這一過程與腫瘤細(xì)胞上的CD73協(xié)同激活eATP-腺苷通路,導(dǎo)致腫瘤環(huán)境中的腺苷升高,從而損害CD8+ T淋巴細(xì)胞功能,引起抗PD-1免疫治療的耐藥性。circUBE2D2的高表達(dá)與HCC患者的低生存率顯著相關(guān),體外實(shí)驗(yàn)[36]證明,circUBE2D2可通過miR-889-3p/LDHA軸加速HCC的糖酵解和索拉非尼的耐藥,這為HCC治療提供了一種新的方法。Weng等[37]研究通過RNA測序(RNA-seq) 在索拉非尼耐藥的HCC組織中鑒定出了一種新型circRNA,circFOXM1。在功能上,circFOXM1顯著抑制HCC的生長,調(diào)控索拉非尼耐藥。circFOXM1下調(diào)可能通過釋放更多的游離miR-1324和抑制MECP2的表達(dá)來調(diào)控索拉非尼耐藥。circFBXO11在HCC組織中顯著上調(diào),通過海綿化miR-605,從而靶向FOXO3蛋白,F(xiàn)OXO3靶向ABCB1的啟動子區(qū),促進(jìn)ABCB1的表達(dá)。總之,本研究揭示了circFBXO11/miR-605/FOXO3/ABCB1在HCC 中介導(dǎo)奧沙利鉑耐藥的機(jī)制[38]。上述研究闡明了circRNA在介導(dǎo)HCC耐藥中的作用,為晚期肝癌患者克服耐藥提供了新的見解。必須進(jìn)一步明確耐藥的機(jī)制,并探索circRNA在分子靶向藥物耐藥中的作用。
4HBV相關(guān)HCC
HBV是導(dǎo)致肝癌的主要因素。circRNA已被證實(shí)與HBV誘導(dǎo)的肝癌密切相關(guān)。有研究[39]從50 327個(gè)circRNA中,鑒別出1 187個(gè)circRNA在 HBV相關(guān)HCC和HBV無癥狀攜帶者之間的表達(dá)存在顯著差異。其中circRNA1002在HCC血清和組織中均顯著下調(diào),提示circRNA1002可以作為HBV相關(guān)HCC的生物標(biāo)志物。在HCC組織和HBV轉(zhuǎn)染的肝癌細(xì)胞中,circBACH1和MAP3K2表達(dá)升高,而miR-200a-3p表達(dá)降低。circBACH1缺失或miR-200a3p過表達(dá)可抑制HBV轉(zhuǎn)染肝癌細(xì)胞中的HBV復(fù)制、增殖和轉(zhuǎn)移[40]。circ_0027089作為一種致癌基因,通過競爭性靶向miR-136-5p調(diào)控NACC1的表達(dá),促進(jìn)HBV相關(guān)HCC的發(fā)生發(fā)展[41]。circ-RNF13可能通過調(diào)控miR-424-5p/ TGIF2軸抑制HBV相關(guān)HCC惡性進(jìn)展和HBV感染[42]。HBV可以產(chǎn)生circRNA,但是其功能尚未明確。Zhu等[43]研究發(fā)現(xiàn)了一種由HBV產(chǎn)生的新型circRNA HBV_circ_1。生存分析顯示,HBV_circ_1陽性患者的生存率明顯低于HBV_circ_1陰性患者。并且,瞬時(shí)表達(dá)HBV_circ_1可以增強(qiáng)肝癌細(xì)胞增殖、遷移和侵襲能力,抑制細(xì)胞凋亡。此外,HBV_circ_1還與周期蛋白依賴性激酶1的相互作用,調(diào)節(jié)細(xì)胞增殖。血清外泌體hsa_circ_0028861在HCC中的表達(dá)低于慢性HBV和肝硬化,并且,hsa_circ_0028861聯(lián)合AFP鑒別HCC與慢性HBV和肝硬化的ROC曲線下面積(AUC)為0.86,具有更好的診斷能力[44]。上述數(shù)據(jù)不僅為了解HBV相關(guān)HCC的發(fā)生機(jī)制和進(jìn)展提供了新的線索,而且為治療藥物的開發(fā)提供了新的靶點(diǎn)。表2概括了circRNA在免疫、代謝、耐藥及HBV相關(guān)HCC中的生物學(xué)功能。
5生物標(biāo)志物
雖然HCC是原發(fā)性肝癌最常見的類型,但早期缺乏準(zhǔn)確的生物標(biāo)志物,導(dǎo)致HCC確診往往較晚。隨著分子生物標(biāo)志物研究的進(jìn)展和基因組學(xué)的發(fā)展,circRNA已作為一種新型的液體活檢生物標(biāo)志物被人們所認(rèn)識。circRNA可在組織、外泌體、血漿、血清、唾液、尿液、腦脊液和乳汁等樣本中檢測到,其表達(dá)譜表現(xiàn)為細(xì)胞特異性或階段特異性(表3)。
5.1診斷標(biāo)志物研究[45]表明,hsa_circ_0001821在HCC的血漿中表達(dá)上調(diào),AUC為0.692,提示血漿hsa_circ_0001821可能是一種新的HCC診斷標(biāo)志物。其他研究[46]表明,hsa_circ_0064286和hsa_circ_0000475在HCC患者中均顯著下調(diào),與ALP、ALT、AST、AFP、膽紅素水平呈負(fù)相關(guān)。circ_0064286的敏感度和特異度較高,分別為88.3%和96%,可能作為HCC診斷的潛在生物標(biāo)志物。一項(xiàng)研究[47]對血清/血漿circ RNA或circRNA聯(lián)合AFP檢測在HCC診斷中的準(zhǔn)確性進(jìn)行了薈萃分析,結(jié)果顯示,circRNA的敏感度為0.82(95%CI: 0.78~0.85),特異度為0.82(95%CI: 0.78~0.86)。AFP的敏感度為0.65(95%CI: 0.61~0.68),特異度為0.90(95%CI: 0.85~0.93)。circRNA的AUC為0.89(95%CI: 0.86~0.91),AFP的AUC為0.77(95%CI: 0.74~0.81)。circRNA和AFP聯(lián)合檢測的敏感度為0.88(95%CI: 0.84~0.92),特異度為0.86(95%CI: 0.80~0.91),AUC為0.94(95%CI: 0.91~0.96)。Zhang等[48]也證明hsa_circ_0006091&AFP與hsa_circ_0006091&RGS12聯(lián)合診斷具有重要意義,可作為HCC診斷的分子標(biāo)志物。以上結(jié)果說明,血清/血漿circRNA是適合臨床診斷HCC的生物標(biāo)志物,circRNA與AFP的聯(lián)合檢測提高了HCC診斷的準(zhǔn)確性,circRNA可作為監(jiān)測HCC發(fā)生發(fā)展的生物標(biāo)志物。然而,目前還沒有一種方便可靠的血清circRNA生物標(biāo)志物。
5.2預(yù)后標(biāo)志物Chen等[49]發(fā)現(xiàn),無論在HCC腫瘤組織還是血清中,腫瘤組circ_0000437表達(dá)顯著上調(diào),且與TNM分型、分化程度、腫瘤大小、BCLC分期相關(guān)(P<0.05)。此外,較差的總生存期與circ_0000437的高表達(dá)相關(guān),circ_0000437在血清中診斷HCC的AUC為0.928 1,上述結(jié)果提示 circ_0000437可能作為HCC患者診斷和預(yù)后的一種新的生物標(biāo)志物。最近一項(xiàng)研究[50]表明,circMED27在HCC血清中顯著升高,與HCC患者不良臨床特征和不良預(yù)后相關(guān),并且促進(jìn)肝癌細(xì)胞對樂伐替尼的耐藥,提示circMED27可作為接受樂伐替尼治療的HCC患者的潛在治療靶點(diǎn),并可能作為預(yù)測樂伐替尼耐藥HCC的一種潛在的生物標(biāo)志物。除此之外,hsa_circ_0005986的高表達(dá)與生存改善相關(guān),是總體生存率和無進(jìn)展生存率的獨(dú)立預(yù)后因素[51]。此外,DHX9在HCC中表達(dá)顯著上調(diào),并抑制cSMARCA5的產(chǎn)生(hsa_circ_0001445)。DHX9是一種RNA解旋酶,可結(jié)合并抑制兩側(cè)反向互補(bǔ)序列的配對,從而阻止circRNA的產(chǎn)生。CSMARCA5通過SMARCA5/miR-17-3p/miR-181b-5p/TIMP3通路抑制HCC的生長。HCC組織中cSMARCA5的降低與腫瘤生長和轉(zhuǎn)移的增加有關(guān),使其成為腫瘤切除后患者的獨(dú)立預(yù)后指標(biāo)[52]。circRNA_101237在HCC患者的腫瘤組織和血清中表達(dá)上調(diào),且與circRNA_101237的表達(dá)與腫瘤大小、淋巴結(jié)轉(zhuǎn)移、遠(yuǎn)處轉(zhuǎn)移及TNM分期有關(guān)。單因素和多因素分析顯示,血清circRNA_101237水平是HCC患者生存預(yù)后的獨(dú)立預(yù)測因素[53]。
6小結(jié)
circRNA已經(jīng)成為腫瘤分子生物學(xué)領(lǐng)域研究的新熱點(diǎn),目前circRNA在HCC發(fā)展、診療方面的研究尚處于初步階段,仍存在許多問題。首先,通過RNA測序已在HCC中鑒定出了上千種circRNA,但只有少量circRNA功能被研究。如何從大量的候選circRNA 中挑選發(fā)揮關(guān)鍵作用且具有臨床價(jià)值的circRNA 是一項(xiàng)巨大的工程。其次,目前對于circRNA的研究主要集中于肝癌組織,對于外周血、外泌體、尿液和唾液等分泌的circRNA研究較少。對circRNA進(jìn)行多種類樣本的全方位研究,有利于提高對circRNA復(fù)雜的調(diào)控網(wǎng)絡(luò)的認(rèn)知。重視體液中circRNA的研究,有利于開發(fā)用于肝癌篩查和預(yù)后監(jiān)測的circRNA檢測試劑盒。綜上所述,篩選出發(fā)揮關(guān)鍵調(diào)控功能的circRNA,闡明其靶向分子和信號通路,將有助于發(fā)掘circRNA作為 HCC 治療靶點(diǎn)的巨大臨床價(jià)值。
利益沖突聲明:本文不存在任何利益沖突。作者貢獻(xiàn)聲明:苗淑瑩負(fù)責(zé)課題設(shè)計(jì),資料分析,撰寫論文;楊軍、管文燕、張標(biāo)、何璐參與修改論文;樊智文負(fù)責(zé)擬定寫作思路,修改論文并最后定稿。
參考文獻(xiàn):
[1]ZENG C, ZHANG L, LUO C, et al. A stratification model of hepatocellular carcinoma based on expression profiles of cells in the tumor microenvironment[J]. BMC Cancer, 2022, 22(1): 613. DOI: 10.1186/s12885-022-09647-5.
[2]CAI P, ZHENG H, SHE J, et al. Molecular mechanism of aflatoxin-induced hepatocellular carcinoma derived from a bioinformatics analysis[J]. Toxins (Basel), 2020, 12(3): 203. DOI: 10.3390/toxins12030203.
[3]KHASHKHASHI MOGHADAM S, BAKHSHINEJAD B, KHALAFIZADEH A, et al. Non-coding RNA-associated competitive endogenous RNA regulatory networks: Novel diagnostic and therapeutic opportunities for hepatocellular carcinoma[J]. J Cell Mol Med, 2022, 26(2): 287-305. DOI: 10.1111/jcmm.17126.
[4]SANGER HL, KLOTZ G, RIESNER D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J]. Proc Natl Acad Sci U S A, 1976, 73(11): 3852-3856. DOI: 10.1073/pnas.73.11.3852.
[5]LOUIS C, LECLERC D, COULOUARN C. Emerging roles of circular RNAs in liver cancer[J]. JHEP Rep, 2022, 4(2): 100413. DOI: 10.1016/j.jhepr.2021.100413.
[6]HU ZQ, ZHOU SL, LI J, et al. Circular RNA sequencing identifies CircASAP1 as a key regulator in hepatocellular carcinoma metastasis[J]. Hepatology, 2020, 72(3): 906-922. DOI: 10.1002/hep.31068.
[7]LIN Y, HUANG G, JIN H, et al. Circular RNA Gprc5a promotes HCC progression by activating YAP1/TEAD1 signalling pathway by sponging miR-1283[J]. Onco Targets Ther, 2020, 13: 4509-4521. DOI: 10.2147/OTT.S240261.
[8]WU W, ZHOU Z, CHEN C, et al. Circ_0061395 functions as an oncogenic gene in hepatocellular carcinoma by acting as a miR-1182 sponge[J]. Cell Cycle, 2022, 21(20): 2192-2205. DOI: 10.1080/15384101.2022.2092177.
[9]LIU J, HE X, ZOU Y, et al. Circular RNA circ-STIL contributes to cell growth and metastasis in hepatocellular carcinoma via regulating miR-345-5p/AQP3 axis[J]. Dig Dis Sci, 2022, 67(6): 2269-2282. DOI: 10.1007/s10620-021-07054-7.
[10]LIU Y, XIAO X, WANG J, et al. Silencing circEIF3I/miR-526b-5p axis epigenetically targets HGF/c-Met signal to hinder the malignant growth, metastasis and angiogenesis of hepatocellular carcinoma[J]. Biochem Genet, 2023, 61(1): 48-68. DOI: 10.1007/s10528-022-10239-y.
[11]JU A, SHEN Y, YUE A. Circ_0011232 contributes to hepatocellular carcinoma progression through miR-503-5p/AKT3 axis[J]. Hepatol Res, 2022, 52(6): 532-545. DOI: 10.1111/hepr.13758.
[12]ZHAO Z, HE J, FENG C. CircCBFB is a mediator of hepatocellular carcinoma cell autophagy and proliferation through miR-424-5p/ATG14 axis[J]. Immunol Res, 2022, 70(3): 341-353. DOI: 10.1007/s12026-021-09255-8.
[13]RAZPOTNIK R, VIDMAR R, FONOVIC' M, et al. Circular RNA hsa_circ_0062682 binds to YBX1 and promotes oncogenesis in hepatocellular carcinoma[J]. Cancers (Basel), 2022, 14(18): 4524. DOI: 10.3390/cancers14184524.
[14]DONG W, DAI ZH, LIU FC, et al. The RNA-binding protein RBM3 promotes cell proliferation in hepatocellular carcinoma by regulating circular RNA SCD-circRNA 2 production[J]. EBioMedicine, 2019, 45: 155-167. DOI: 10.1016/j.ebiom.2019.06.030.
[15]PENG R, CAO J, SU BB, et al. Down-regulation of circPTTG1IP induces hepatocellular carcinoma development via miR-16-5p/RNF125/JAK1 axis[J]. Cancer Lett, 2022, 543: 215778. DOI: 10.1016/j.canlet.2022.215778.
[16]LU Y, ZHANG J, WU Y. Interference with circRNA DOCK1 inhibits hepatocellular carcinoma cell proliferation, invasion and migration by regulating the miR-654-5p/SMAD2 axis[J]. Mol Med Rep, 2021, 24(2): 609. DOI: 10.3892/mmr.2021.12247.
[17]GUO X, WANG Z, DENG X, et al. Circular RNA CircITCH (has-circ-0001141) suppresses hepatocellular carcinoma (HCC) progression by sponging miR-184[J]. Cell Cycle, 2022, 21(15): 1557-1577. DOI: 10.1080/15384101.2022.2057633.
[18]FENG KL, DIAO N, ZHOU ZW, et al. CircFGGY inhibits cell growth, invasion and epithelial-mesenchymal transition of hepatocellular carcinoma via regulating the miR-545-3p/Smad7 axis[J]. Front Cell Dev Biol, 2022, 10: 850708. DOI: 10.3389/fcell.2022.850708.
[19]LI G, KONG J, DONG S, et al. Circular BANP knockdown inhibits the malignant progression of residual hepatocellular carcinoma after insufficient radiofrequency ablation[J]. Chin Med J (Engl), 2022. DOI: 10.1097/CM9.00000000000001822. [Online ahead of print]
[20]LIU H, LAN T, LI H, et al. Circular RNA circDLC1 inhibits MMP1-mediated liver cancer progression via interaction with HuR[J]. Theranostics, 2021, 11(3): 1396-1411. DOI: 10.7150/thno.53227.
[21]WANG L, LONG H, ZHENG Q, et al. Circular RNA circRHOT1 promotes hepatocellular carcinoma progression by initiation of NR2F6 expression[J]. Mol Cancer, 2019, 18(1): 119. DOI: 10.1186/s12943-019-1046-7.
[22]ZHANG PF, GAO C, HUANG XY, et al. Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma[J]. Mol Cancer, 2020, 19(1): 110. DOI: 10.1186/s12943-020-01222-5.
[23]HUANG M, HUANG X, HUANG N. Exosomal circGSE1 promotes immune escape of hepatocellular carcinoma by inducing the expansion of regulatory T cells[J]. Cancer Sci, 2022, 113(6): 1968-1983. DOI: 10.1111/cas.15365.
[24]CAO P, MA B, SUN D, et al. hsa_circ_0003410 promotes hepatocellular carcinoma progression by increasing the ratio of M2/M1 macrophages through the miR-139-3p/CCL5 axis[J]. Cancer Sci, 2022, 113(2): 634-647. DOI: 10.1111/cas.15238.
[25]WANG Y, GAO R, LI J, et al. Downregulation of hsa_circ_0074854 suppresses the migration and invasion in hepatocellular carcinoma via interacting with HuR and via suppressing exosomes-mediated macrophage M2 polarization[J]. Int J Nanomedicine, 2021, 16: 2803-2818. DOI: 10.2147/IJN.S284560.
[26]LI Q, PAN X, ZHU D, et al. Circular RNA MAT2B promotes glycolysis and malignancy of hepatocellular carcinoma through the miR-338-3p/PKM2 axis under hypoxic stress[J]. Hepatology, 2019, 70(4): 1298-1316. DOI: 10.1002/hep.30671.
[27]ZHANG B, LIU Z, CAO K, et al. Circ-SPECC1 modulates TGFβ2 and autophagy under oxidative stress by sponging miR-33a to promote hepatocellular carcinoma tumorigenesis[J]. Cancer Med, 2020, 9(16): 5999-6008. DOI: 10.1002/cam4.3219.
[28]LIU W, YIN C, LIU Y. Circular RNA circ_0091579 promotes hepatocellular carcinoma proliferation, migration, invasion, and glycolysis through miR-490-5p/CASC3 axis[J]. Cancer Biother Radiopharm, 2021, 36(10): 863-878. DOI: 10.1089/cbr.2019.3472.
[29]LI J, HU ZQ, YU SY, et al. CircRPN2 inhibits aerobic glycolysis and metastasis in hepatocellular carcinoma[J]. Cancer Res, 2022, 82(6): 1055-1069. DOI: 10.1158/0008-5472.CAN-21-1259.
[30]CHEN Z, DU J, YANG C, et al. circ-CFH promotes the development of HCC by regulating cell proliferation, apoptosis, migration, invasion, and glycolysis through the miR-377-3p/RNF38 axis[J]. Open Life Sci, 2022, 17(1): 248-260. DOI: 10.1515/biol-2022-0029.
[31]CHEN X, SHE P, WANG C, et al. Hsa_circ_0001806 promotes glycolysis and cell progression in hepatocellular carcinoma through miR-125b/HK2[J]. J Clin Lab Anal, 2021, 35(12): e23991. DOI: 10.1002/jcla.23991.
[32]YANG Q, WU G. CircRNA-001241 mediates sorafenib resistance of hepatocellular carcinoma cells by sponging miR-21-5p and regulating TIMP3 expression[J]. Gastroenterol Hepatol, 2022, 45(10): 742-752. DOI: 10.1016/j.gastrohep.2021.11.007.
[33]LI Y, ZHANG Y, ZHANG S, et al. circRNA circARNT2 suppressed the sensitivity of hepatocellular carcinoma cells to cisplatin by targeting the miR-155-5p/PDK1 axis[J]. Mol Ther Nucleic Acids, 2021, 23: 244-254. DOI: 10.1016/j.omtn.2020.08.037.
[34]WANG S, LIU D, WEI H, et al. The hsa_circRNA_102049 mediates the sorafenib sensitivity of hepatocellular carcinoma cells by regulating Reelin gene expression[J]. Bioengineered, 2022, 13(2): 2272-2284. DOI: 10.1080/21655979.2021.2024332.
[35]LU JC, ZHANG PF, HUANG XY, et al. Amplification of spatially isolated adenosine pathway by tumor-macrophage interaction induces anti-PD1 resistance in hepatocellular carcinoma[J]. J Hematol Oncol, 2021, 14(1): 200. DOI: 10.1186/s13045-021-01207-x.
[36]HUANG H, PENG J, YI S, et al. Circular RNA circUBE2D2 functions as an oncogenic factor in hepatocellular carcinoma sorafenib resistance and glycolysis[J]. Am J Transl Res, 2021, 13(6): 6076-6086.
[37]WENG H, ZENG L, CAO L, et al. circFOXM1 contributes to sorafenib resistance of hepatocellular carcinoma cells by regulating MECP2 via miR-1324[J]. Mol Ther Nucleic Acids, 2021, 23: 811-820. DOI: 10.1016/j.omtn.2020.12.019.
[38]LI J, QIN X, WU R, et al. Circular RNA circFBXO11 modulates hepatocellular carcinoma progress and oxaliplatin resistance through miR-605/FOXO3/ABCB1 axis[J]. J Cell Mol Med, 2020, 24(9): 5152-5161. DOI: 10.1111/jcmm.15162.
[39]LI Y, LI R, CHENG D, et al. The potential of CircRNA1002 as a biomarker in hepatitis B virus-related hepatocellular carcinoma[J]. PeerJ, 2022, 10: e13640. DOI: 10.7717/peerj.13640.
[40]DU N, LI K, WANG Y, et al. CircRNA circBACH1 facilitates hepatitis B virus replication and hepatoma development by regulating the miR-200a-3p/MAP3K2 axis[J]. Histol Histopathol, 2022, 37(9): 863-877. DOI: 10.14670/HH-18-452.
[41]HE W, ZHU X, TANG X, et al. Circ_0027089 regulates NACC1 by targeting miR-136-5p to aggravate the development of hepatitis B virus-related hepatocellular carcinoma[J]. Anticancer Drugs, 2022, 33(1): e336-e348. DOI: 10.1097/CAD.0000000000001211.
[42]CHEN Y, LI S, WEI Y, et al. Circ-RNF13, as an oncogene, regulates malignant progression of HBV-associated hepatocellular carcinoma cells and HBV infection through ceRNA pathway of circ-RNF13/miR-424-5p/TGIF2[J]. Bosn J Basic Med Sci, 2021, 21(5): 555-568. DOI: 10.17305/bjbms.2020.5266.
[43]ZHU M, LIANG Z, PAN J, et al. Hepatocellular carcinoma progression mediated by hepatitis B virus-encoded circRNA HBV_circ_1 through interaction with CDK1[J]. Mol Ther Nucleic Acids, 2021, 25: 668-682. DOI: 10.1016/j.omtn.2021.08.011.
[44]WANG Y, PEI L, YUE Z, et al. The potential of serum exosomal hsa_circ_0028861 as the novel diagnostic biomarker of HBV-derived hepatocellular cancer[J]. Front Genet, 2021, 12: 703205. DOI: 10.3389/fgene.2021.703205.
[45]SONG Y, CAO P, LI J. Plasma circular RNA hsa_circ_0001821 acts as a novel diagnostic biomarker for malignant tumors[J]. J Clin Lab Anal, 2021, 35(11): e24009. DOI: 10.1002/jcla.24009.
[46]EL SHARKAWI FZ, AWAD MS, ELAGAWY W, et al. Circular RNAs 0064286 and 0000475: potential diagnostic biomarkers in hepatocellular carcinoma[J]. Asian Pac J Cancer Prev, 2021, 22(9): 3039-3044. DOI: 10.31557/APJCP.2021.22.9.3039.
[47]NIE G, PENG D, LI B, et al. Diagnostic accuracy of serum/plasma circular RNAs and the combination of circular RNAs and α-fetoprotein for detecting hepatocellular carcinoma: A Meta-analysis[J]. Front Genet, 2021, 12: 722208. DOI: 10.3389/fgene.2021.722208.
[48]ZHANG Y, LI J, CUI Q, et al. Circular RNA hsa_circ_0006091 as a novel biomarker for hepatocellular carcinoma[J]. Bioengineered, 2022, 13(2): 1988-2003. DOI: 10.1080/21655979.2021.2006952.
[49]CHEN G, XIE D, ZHANG P, et al. Circular RNA hsa_circ_0000437 may be used as a new indicator for the diagnosis and prognosis of hepatocellular carcinoma[J]. Bioengineered, 2022, 13(6): 14118-14124. DOI: 10.1080/21655979.2022.2081458.
[50]ZHANG P, SUN H, WEN P, et al. circRNA circMED27 acts as a prognostic factor and mediator to promote lenvatinib resistance of hepatocellular carcinoma[J]. Mol Ther Nucleic Acids, 2022, 27: 293-303. DOI: 10.1016/j.omtn.2021.12.001.
[51]KIM G, HAN JR, PARK SY, et al. Circular noncoding RNA hsa_circ_0005986 as a prognostic biomarker for hepatocellular carcinoma[J]. Sci Rep, 2021, 11(1): 14930. DOI: 10.1038/s41598-021-94074-y.
[52]LEE T, PAQUET M, LARSSON O, et al. Tumor cell survival dependence on the DHX9 DExH-box helicase[J]. Oncogene, 2016, 35(39): 5093-5105. DOI: 10.1038/onc.2016.52.
[53]ZHOU S, WEI J, WANG Y, et al. Cisplatin resistance-associated circRNA_101237 serves as a prognostic biomarker in hepatocellular carcinoma[J]. Exp Ther Med, 2020, 19(4): 2733-2740. DOI: 10.3892/etm.2020.8526.
收稿日期:2022-10-27;錄用日期:2022-12-17
本文編輯:王瑩
引證本文:MIAO SY, YANG J, GUAN WY,? et al. Role of circular RNA in the development, progression, diagnosis, and treatment of hepatocellular carcinoma[J]. J Clin Hepatol, 2023, 39(8): 1983-1991.