陳桂容 王明剛 林華明 嚴(yán)惠萍 王秀峰
摘要:慢加急性肝衰竭起病迅速而病死率高,預(yù)后差,且缺乏特異性藥物治療及手段。近年來(lái),越來(lái)越多的證據(jù)表明腸道微生物群對(duì)維持人體微環(huán)境穩(wěn)態(tài)的作用至關(guān)重要。利用宏基因組學(xué)全面測(cè)試腸道菌群特征可證明腸道菌群與慢性肝臟疾病發(fā)生發(fā)展方面存在交互關(guān)聯(lián)。在慢加急性肝衰竭發(fā)病機(jī)制研究中,發(fā)現(xiàn)腸道微生物群在其致病過(guò)程中扮演重要角色?;诖?,本文總結(jié)了慢加急性肝衰竭發(fā)生發(fā)展過(guò)程中腸道菌群的變化特征及其參與致病的機(jī)制途徑,以期從腸道菌群調(diào)控新視角為慢加急性肝衰竭的臨床治療提供新靶點(diǎn)。
關(guān)鍵詞:胃腸道微生物組; 慢加急性肝功能衰竭; 細(xì)菌移位
基金項(xiàng)目:廣西自然科學(xué)基金(2018GXNSFGA281002, 2018GXNSFBA281031); 廣西研究生教育創(chuàng)新計(jì)劃項(xiàng)目(YCSY2022027)
Changes and pathogenic mechanism of intestinal flora in acute-on-chronic liver failure
CHEN Guirong WANG Minggang LIN Huaming YAN Huiping WANG Xiufeng (1. Graduate School of Guangxi University of Chinese Medicine, Nanning 530222, China; 2. a. Department of Scientific Research, b. First Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, China)
Corresponding author:WANG Xiufeng, 52912236@qq.com (ORCID:0000-0003-0841-5908)
Abstract:Acute-on-chronic liver failure (ACLF) has a rapid onset, a high mortality rate, and a poor prognosis, and there is still a lack of specific pharmacotherapy and treatment methods. In recent years, an increasing number of evidence has shown that intestinal flora plays a critical role in maintaining the homeostasis of human microenvironment. Comprehensive testing of intestinal flora profile using metagenomics has demonstrated an interaction association between intestinal flora and the development and progression of chronic liver diseases. Research on the pathogenesis of ACLF has found that intestinal flora plays an important role in the pathogenesis of ACLF. Based on this, this article summarizes the changes in intestinal flora and its pathogenic mechanism in the development and progression of ACLF, so as to provide new targets for the clinical treatment of ACLF from the new perspective of intestinal flora regulation.
Key words:Gastrointestinal Microbiome; Acute-On-Chronic Liver Failure; Bacterial Translocation
Research funding:Natural Science Foundation of Guangxi Zhuang Autonomous Region(2018GXNSFGA281002, 2018GXNSFBA281031); Guangxi Postgraduate Education Innovation Program (YCSY2022027)
據(jù)統(tǒng)計(jì)[1],肝硬化失代償期患者中慢加急性肝衰竭(ACLF)全世界患病率為35%,90 d病死率達(dá)58%。一般對(duì)癥支持治療難以有效緩解疾病進(jìn)程,人工肝及肝移植作為目前治療ACLF最有效手段在不發(fā)達(dá)地區(qū)普及度較低。近年來(lái)大量研究[2]報(bào)道ACLF患者腸道內(nèi)存在微生態(tài)失衡,肝臟與腸道之間通過(guò)“腸-肝軸”特殊結(jié)構(gòu)相互影響。探索腸道菌群變化對(duì)ACLF發(fā)生發(fā)展的影響機(jī)制以及通過(guò)調(diào)節(jié)菌群平衡治療和緩解急性肝損傷方面的研究勢(shì)在必行。
1腸道菌群與人體微環(huán)境穩(wěn)態(tài)
腸道微生態(tài)與人體健康之間的平衡關(guān)系日益得到認(rèn)可,健康的腸道菌群與宿主之間相互依存,共生共長(zhǎng)。人體胃腸道中微生物種類(lèi)繁多,數(shù)量更是高達(dá)數(shù)萬(wàn)億,腸道微生物群不僅包括細(xì)菌、病毒、真菌,還包括古生菌和原生動(dòng)物等[3-4]。成千上萬(wàn)種微生物中以擬桿菌、厚壁菌、放線菌和變形桿菌為主要門(mén)類(lèi),約占腸道內(nèi)細(xì)菌的90%。據(jù)統(tǒng)計(jì),腸道菌群在不同腸段其分布與結(jié)構(gòu)也不盡相同,從腸道近端至遠(yuǎn)端,主要優(yōu)勢(shì)菌群多以專(zhuān)性厭氧菌為主,占腸道菌群絕大多數(shù);次要菌群則以兼性厭氧菌和需氧菌為主[5]。腸道菌群在腸道微生態(tài)環(huán)境中維持著相對(duì)動(dòng)態(tài)平衡,有益菌和致病菌形成相互制約的勢(shì)態(tài),健康的菌群平衡有利于營(yíng)養(yǎng)吸收,從而調(diào)節(jié)宿主免疫力[6]。然而,當(dāng)宿主體內(nèi)微生態(tài)環(huán)境或菌群定植位點(diǎn)發(fā)生改變時(shí),一些條件致病菌在腸道內(nèi)快速增殖并破壞腸道菌群穩(wěn)態(tài),增加了腸道通透性及損壞腸道黏膜屏障,導(dǎo)致機(jī)體代謝能力和免疫力的下降,最終誘發(fā)炎癥反應(yīng)。由此可知,腸道菌群可以通過(guò)調(diào)節(jié)人體免疫過(guò)程,進(jìn)而控制機(jī)體的穩(wěn)態(tài)。2腸道微生態(tài)特征性變化與ACLF
2.1腸道微生態(tài)屏障破壞在生理狀態(tài)下,腸道菌群與機(jī)體之間維持協(xié)調(diào)平衡,互不侵?jǐn)_,這主要依賴(lài)腸道微生態(tài)屏障的完整性,其可有效阻擋腸道內(nèi)致病菌向腸道外擴(kuò)散與移位。腸道微生態(tài)屏障主要分為由上皮細(xì)胞及黏液凝膠層組成的機(jī)械屏障,腸微生物菌群構(gòu)成的生物屏障,腸道相關(guān)淋巴組織形成的免疫屏障以及由黏液、消化液和正常菌分泌的抑菌物質(zhì)組成的化學(xué)屏障[7]。當(dāng)各個(gè)屏障功能穩(wěn)定存在時(shí),腸上皮細(xì)胞之間的緊密連接、腸內(nèi)外微生物通過(guò)相互競(jìng)爭(zhēng)形成的定植抵抗力及由微生物群產(chǎn)生益于腸道的短鏈脂肪酸(short-chain fattyacids, SCFA)等共同構(gòu)成了保護(hù)腸黏膜屏障的有效途徑[8]。
現(xiàn)有研究[7]發(fā)現(xiàn)腸道黏膜屏障破壞與肝病的嚴(yán)重程度具有相關(guān)性,腸道微生態(tài)失調(diào)、炎癥反應(yīng)和細(xì)胞緊密連接功能障礙等發(fā)生會(huì)增加腸道通透性。腸道屏障受損時(shí),移位細(xì)菌和微生物毒素可以通過(guò)血液循環(huán)向遠(yuǎn)處器官傳播,肝臟作為第一個(gè)通過(guò)腸道屏障遇到細(xì)菌代謝產(chǎn)物的器官,腸道內(nèi)毒素透過(guò)屏障可直接作用于肝臟,這便形成誘導(dǎo)肝臟炎癥與急性失代償?shù)尿?qū)動(dòng)因素[9]。故增強(qiáng)腸道定植抵抗力,保護(hù)腸黏膜屏障可有效截?cái)喔嗡ソ呒膊∵M(jìn)程。腸道樹(shù)突狀細(xì)胞在調(diào)節(jié)腸道免疫屏障功能和腸道定植菌移位方面起重要作用[10-11],當(dāng)益生菌刺激腸道樹(shù)突狀細(xì)胞啟動(dòng)免疫應(yīng)答時(shí),腸道內(nèi)內(nèi)毒素和炎癥因子水平降低,腸上皮細(xì)胞緊密連接蛋白的表達(dá)增加,致使腸黏膜通透性降低,從而有效阻止內(nèi)毒素彌散入血回流至肝臟,損傷肝細(xì)胞。膠質(zhì)細(xì)胞源性神經(jīng)營(yíng)養(yǎng)因子作為腸道屏障功能調(diào)節(jié)因子可以通過(guò)抑制IL-8、TNF及髓過(guò)氧化物酶等促炎因子的表達(dá)扼制腸黏膜細(xì)胞的凋亡[12]。短鏈脂肪酸是腸道細(xì)胞的能量來(lái)源,可同時(shí)激活腸道上皮中的NOD樣受體蛋白3(NOD-like receptor protein 3,NLRP3)炎癥小體及刺激IL-18的分泌,調(diào)節(jié)腸上皮細(xì)胞對(duì)細(xì)菌產(chǎn)物的耐受性,從而改善腸黏膜屏障的完整性[13]。保護(hù)腸黏膜屏障完整是維持腸道菌群穩(wěn)態(tài)的基礎(chǔ),從根本上避免腸道菌群移位及內(nèi)毒素血癥形成,對(duì)于預(yù)防ACLF病程發(fā)展有著積極作用。
2.2腸道定植菌移位
2.2.1ACLF中腸道菌群結(jié)構(gòu)和功能變化微生物群從腸道共生伙伴到定植者再到病原體的轉(zhuǎn)變始終貫穿著人體健康與疾病的發(fā)展過(guò)程,腸道菌群穩(wěn)態(tài)失調(diào)時(shí)從腸道近端到遠(yuǎn)端的菌群組成、比例也在隨之變化。腸道潛在致病菌過(guò)度生長(zhǎng)及有益菌豐度下降均造成ACLF預(yù)后不良[14]。雙歧桿菌屬、瘤胃球菌屬和梭菌屬等專(zhuān)性厭氧菌作為腸道優(yōu)勢(shì)菌群,與宿主處于共生狀態(tài),對(duì)宿主發(fā)揮著免疫、代謝和營(yíng)養(yǎng)等生理功能。一項(xiàng)多中心臨床研究[15]表明,肝硬化患者發(fā)生肝外器官衰竭、疾病惡化及向ACLF進(jìn)展的風(fēng)險(xiǎn)增高與入院時(shí)患者存在腸道微生態(tài)失調(diào)相關(guān),該研究發(fā)現(xiàn)患者腸道內(nèi)腸球菌科和鏈球菌科豐度較高,雙歧桿菌科豐度較低。在針對(duì)ACLF腸道微生物組的研究[16]中,ACLF患者糞便中擬桿菌科、魯米諾科和淋球菌科的豐度較低,而巴氏桿菌科、鏈球菌科和腸球菌科的豐度頗高。在膽汁代謝過(guò)程中,7α-脫羥基作用可將膽汁酸轉(zhuǎn)化為次級(jí)膽汁酸,能產(chǎn)生這種作用的梭菌目(如乳桿菌科、瘤胃球菌科和藍(lán)藻科)被證實(shí)在肝硬化患者腸道中顯著減少,具有潛在致病性的腸桿菌科豐度呈上升趨勢(shì)[17]。在ACLF患者中,變形桿菌的豐度變化常伴隨不良結(jié)局。變形桿菌家族如大腸桿菌、肺炎克雷伯菌和銅綠假單胞菌豐度升高,是導(dǎo)致ACLF細(xì)菌感染的主要原因[18]。研究顯示有腸道微生物結(jié)構(gòu)改變的ACLF患者病死率極高,這對(duì)預(yù)防和預(yù)測(cè)ACLF的發(fā)展以及通過(guò)各種靶向腸道微生物治療手段建立短期或長(zhǎng)期診療計(jì)劃具有重大意義。菌屬的代謝途徑或許可成為ACLF的治療靶點(diǎn)及評(píng)估臨床預(yù)后的療效指標(biāo)。
2.2.2腸道定植菌移位并發(fā)感染腸道定植菌移位引起腸道感染是一種常見(jiàn)并發(fā)癥,腸道定植菌移位或內(nèi)毒素移位主要?dú)w因于腸道細(xì)菌過(guò)度生長(zhǎng),腸道黏膜屏障受損,宿主免疫功能下降三個(gè)方面。由于腸道不斷接觸細(xì)菌和細(xì)菌產(chǎn)物,局部炎癥導(dǎo)致腸道黏膜通透性增加,病原微生物透過(guò)腸道屏障,調(diào)節(jié)免疫細(xì)胞進(jìn)而激活下游因子NF-κB,誘導(dǎo)趨化因子和炎癥因子進(jìn)入血液循環(huán),被激活的病原體相關(guān)分子模式與肝源性損傷相關(guān)的分子模式相結(jié)合,進(jìn)一步促進(jìn)ACLF惡化發(fā)展[19]。一項(xiàng)研究[20]結(jié)果顯示肝硬化患者細(xì)菌感染后死亡風(fēng)險(xiǎn)較非感染患者升高4倍,病死率為43.5%,而沒(méi)有細(xì)菌感染者的病死率僅為13.6%。另外Mücke等[21]通過(guò)篩選出173例符合歐洲肝病學(xué)會(huì)標(biāo)準(zhǔn)的ACLF住院患者,分別評(píng)估細(xì)菌感染后30 d內(nèi)病死率,其中符合歐洲肝病學(xué)會(huì)標(biāo)準(zhǔn)的3級(jí)患者病死率高達(dá)62%。
嚴(yán)重細(xì)菌感染誘發(fā)自發(fā)性細(xì)菌性腹膜炎(spontaneous bacterial peritonitis,SBP)往往與腸道細(xì)菌移位相關(guān)。肝硬化失代償期常伴嚴(yán)重腹水,在腹水中檢測(cè)到細(xì)菌DNA可明確腸道定植菌發(fā)生移位,這種移位與全身炎癥反應(yīng)、內(nèi)毒素血癥高度相關(guān)[22]。利用16SrDNA高通量測(cè)序分析SBP患者糞便中菌群特征,可見(jiàn)ACLF合并SBP患者腸道菌群中大腸桿菌志賀菌屬豐度明顯高于未發(fā)生SBP組,證實(shí)臨床上ACLF患者并發(fā)SBP與特定微生物過(guò)度生長(zhǎng)并向腸外播散有關(guān)[23]。在對(duì)腹水培養(yǎng)陽(yáng)性的失代償期肝硬化患者進(jìn)行腸道菌群分離特點(diǎn)分析時(shí),亦發(fā)現(xiàn)感染SBP的患者中超半數(shù)患者腹水中有革蘭陽(yáng)性菌過(guò)度生長(zhǎng)[24-25]。預(yù)防細(xì)菌感染,盡早識(shí)別死亡危險(xiǎn)因素的增加對(duì)于ACLF及失代償期肝硬化患者改善預(yù)后極為重要。
3腸道菌群參與ACLF致病機(jī)制途徑
3.1腸道菌群過(guò)度激活LPS/ Toll樣受體4(TLR4)信號(hào)通路肝臟作為重要的免疫調(diào)節(jié)器官,可調(diào)節(jié)相關(guān)免疫功能對(duì)宿主起到防御保護(hù)作用。TLR4作為肝細(xì)胞上表達(dá)的一種模式識(shí)別受體,它的主要配體是內(nèi)毒素脂多糖(LPS)和細(xì)胞死亡產(chǎn)物(如裂解核小體、組蛋白、高遷移率族蛋白B1)[26]。當(dāng)腸道來(lái)源的LPS特異性識(shí)別肝細(xì)胞上的TLR4受體時(shí),LPS和TLR4之間相互作用激活髓樣分化因子88(myeloid differentiation factor88,MyD88)依賴(lài)途徑,MyD88則進(jìn)一步啟動(dòng)下游NF-κB信號(hào)通路,最終導(dǎo)致促炎介質(zhì)的釋放,誘發(fā)炎癥級(jí)聯(lián)反應(yīng)[27],這種級(jí)聯(lián)反應(yīng)的形成促成全身炎癥反應(yīng)綜合征以及對(duì)肝臟的“二次打擊”(圖1)。Engelmann等[26]通過(guò)檢測(cè)發(fā)現(xiàn)ACLF或急性肝衰竭患者血漿和肝組織中的TLR4表達(dá)上調(diào),TLR4配體增加,證明了TLR4是ACLF發(fā)病的關(guān)鍵因素。使用TLR4拮抗劑(TAK-242)選擇性地破壞TLR4信號(hào)通路可減少LPS誘導(dǎo)肝細(xì)胞和單核細(xì)胞中的細(xì)胞因子分泌和細(xì)胞凋亡。由此可見(jiàn)肝臟內(nèi)內(nèi)毒素水平上升激活TLR4誘導(dǎo)的免疫反應(yīng)是導(dǎo)致肝損傷的重要機(jī)制之一。
3.2腸道菌群參與膽汁酸異常代謝膽汁酸作為膽汁的主要功能成分,在肝臟中合成后儲(chǔ)存于膽囊,隨后被釋放到小腸中。膽汁酸代謝途徑經(jīng)過(guò)腸道時(shí),95%的膽汁酸在回腸末端被重吸收,再經(jīng)門(mén)靜脈循環(huán)系統(tǒng)回流至肝臟重新參與膽汁排泄[28]。此時(shí)剩余的初級(jí)膽汁酸經(jīng)腸道共生菌分泌的7α-脫羥基酶及膽鹽水解酶(bile salt hydrolase,BSH)轉(zhuǎn)化成次級(jí)膽汁酸,當(dāng)腸道中梭菌屬及產(chǎn)BSH的細(xì)菌(包括擬桿菌屬、梭狀桿菌屬、乳酸桿菌屬及雙歧桿菌屬等)豐度降低時(shí),7α-脫羥基酶及BSH嚴(yán)重分泌不足,該代謝膽汁酸途徑受阻形成腸肝循環(huán)障礙,膽汁酸大量?jī)?chǔ)積,加重肝損傷或直接誘導(dǎo)死亡[29](圖2)。法尼醇核受體R在該膽汁酸代謝過(guò)程中維持肝內(nèi)膽汁酸的正常水平以及膽汁酸池穩(wěn)態(tài),能有效防止膽汁淤積性肝損傷。另外腸道中的次級(jí)膽汁酸激活G蛋白偶聯(lián)受體1負(fù)調(diào)控NF-κB及STAT3通路亦可抑制肝臟炎癥反應(yīng)[30]。
值得關(guān)注的是腸道中膽汁酸代謝紊亂也會(huì)使腸道通透性增加,致使菌群移位,內(nèi)毒素進(jìn)入肝臟產(chǎn)生腸源性?xún)?nèi)毒素血癥,形成肝衰竭并發(fā)癥的共同物質(zhì)基礎(chǔ)。
3.3腸道菌群激活強(qiáng)氧化應(yīng)激反應(yīng)? 氧化應(yīng)激在各種肝臟疾病的病理生理學(xué)中占有重要地位[31]?;钚匝酰≧OS)作為體內(nèi)信號(hào)分子參與了多種信號(hào)通路并在人體內(nèi)發(fā)揮有益作用,當(dāng)腸道菌群失調(diào)時(shí)細(xì)菌繁殖并釋放毒力因子進(jìn)入肝臟從而過(guò)度激活Kupffer細(xì)胞引發(fā)氧化應(yīng)激反應(yīng)產(chǎn)生大量ROS[32]。肝臟是受氧化應(yīng)激反應(yīng)影響的主要器官,肝星狀細(xì)胞、Kupffer細(xì)胞和腸道內(nèi)皮細(xì)胞均對(duì)氧化應(yīng)激反應(yīng)敏感。高水平的氧化應(yīng)激參與了炎癥性、代謝性及脂肪性肝病的發(fā)病機(jī)制[33]。腸道菌群還可促進(jìn)內(nèi)源性乙醇及其化合物生成,誘導(dǎo)肝星狀細(xì)胞及Kupffer細(xì)胞形成ROS,ROS及LPS共同刺激炎性因子釋放,產(chǎn)生一系列炎癥反應(yīng)加重慢性肝病進(jìn)展[34]。嚴(yán)格控制細(xì)胞內(nèi)ROS水平,并保持氧化劑和抗氧化劑分子之間的平衡有利于延緩氧化應(yīng)激對(duì)肝臟的損害。但目前對(duì)于腸道菌群引起的氧化應(yīng)激反應(yīng)在ACLF中的作用還需進(jìn)行不斷探索,為ACLF機(jī)制方面研究增加新的突破口。
4靶向腸道微生物群防治ACLF
健康的腸道菌群在很大程度上反映了宿主的整體健康狀況,對(duì)調(diào)節(jié)營(yíng)養(yǎng)及藥物代謝、維持腸道黏膜屏障的結(jié)構(gòu)完整性、免疫調(diào)節(jié)和對(duì)病原體定植抵抗等方面均具有特定的功能。因此,利用腸道微生物群的生理特性緩解ACLF疾病發(fā)展可作為一種預(yù)防性治療思路。通過(guò)干預(yù)模式合理改變腸道菌群分布及防止腸黏膜屏障受損可有效緩解肝衰竭進(jìn)程。目前臨床應(yīng)用較為廣泛的治療措施有飲食調(diào)理、微生態(tài)制劑、抗生素治療及糞菌移植等。
4.1飲食調(diào)理ACLF的治療可靶向調(diào)節(jié)腸道微生物群,減少腸道致病菌的產(chǎn)生,飲食調(diào)理作為治療過(guò)程的重要一環(huán)被廣泛應(yīng)用于臨床。高脂、高糖飲食已被證實(shí)可影響人腸道中的菌群結(jié)構(gòu),腸桿菌科、埃希氏菌、克雷伯氏菌和志賀氏菌在高脂肪飲食中處于較高水平,擬桿菌、乳酸和腸球菌顯著減少[35]。補(bǔ)充膳食纖維對(duì)于ACLF患者腸道菌群紊亂有著明顯改善作用,膳食纖維干預(yù)可使雙歧桿菌和乳酸桿菌屬的豐度升高,還可促進(jìn)腸道SCFA形成及降低腸道LPS釋放,其中SCFA在維持腸道屏障及提供能量方面尤顯重要[36-37]。
4.2微生態(tài)制劑益生菌作為微生態(tài)制劑是一種對(duì)機(jī)體有益的活性微生物,能夠預(yù)防性的調(diào)節(jié)腸道菌群紊亂,對(duì)維持腸道黏膜完整性和調(diào)節(jié)免疫系統(tǒng)有重要作用[38]。益生菌亦被證明有利于腸道SCFA的形成,丁酸鹽和丙酸鹽作為主要的SCFA,除了在維持腸道屏障方面具有重要作用,還能維持機(jī)體水電解質(zhì)平衡、調(diào)節(jié)腸道pH值和抑制病原微生物活力[39]。Horvath等[40]研究表明使用多種益生菌治療后的肝硬化失代償期患者腸道有益微生物群豐度明顯增加,并且有效改變了原始微生物群組成及腸黏膜屏障功能。故調(diào)整ACLF患者飲食結(jié)構(gòu)或口服益生菌在臨床應(yīng)用中可作為基礎(chǔ)治療手段。除益生菌外,益生元和合生元(由益生元和益生菌合成)同樣對(duì)調(diào)節(jié)腸道菌群紊亂和腸黏膜屏障穩(wěn)固性有較強(qiáng)作用。
4.3抗生素治療臨床上對(duì)ACLF并發(fā)的感染可常規(guī)使用抗生素治療,正如服用利福昔明治療腸道菌群失調(diào)引起的細(xì)菌感染及肝性腦病,一定程度上可對(duì)有害致病菌起到打擊作用。一項(xiàng)隨機(jī)雙盲對(duì)照臨床試驗(yàn)[41]表明,利福昔明-α可降低腸道微生物群衍生的內(nèi)毒素血癥及炎癥反應(yīng),其作用機(jī)制可能是利福昔明-α降低了腸道微環(huán)境中富含的TNF-α和白細(xì)胞介素-17等致炎因子,增強(qiáng)了對(duì)入侵性病菌的抗菌反應(yīng),并促進(jìn)了腸道屏障修復(fù)。然而,另有部分學(xué)者[42]對(duì)使用抗生素治療有著不同的觀點(diǎn),認(rèn)為過(guò)度使用抗生素會(huì)對(duì)宿主產(chǎn)生持久的負(fù)面影響,使腸道菌群產(chǎn)生耐藥性,反而不利于預(yù)防和緩解ACLF疾病的發(fā)展。
4.4菌群移植有關(guān)菌群移植的研究在臨床中也逐漸被開(kāi)展,這是一種對(duì)重建腸道菌群穩(wěn)態(tài)的較為實(shí)用的方法,即通過(guò)移植正常腸道菌群至ACLF患者體內(nèi)從而調(diào)整患者腸道菌群的紊亂狀態(tài)。目前的研究已提供了不少相關(guān)依據(jù)證明此種治療方法的可靠性,亦為肝硬化失代償期患者及ACLF患者的治療帶來(lái)更多希望。
5總結(jié)與展望
ACLF是全球肝硬化和慢性肝病患者死亡的主要原因,早期診斷、積極預(yù)防誘發(fā)因素可改善預(yù)后,但目前主要局限于支持性治療,針對(duì)ACLF特異性療法尚未明確。迄今為止,肝移植是最有效的治療手段,但肝源供應(yīng)、移植后排斥反應(yīng)及經(jīng)濟(jì)費(fèi)用成了另一難題。因此通過(guò)探索其他靶向治療手段成了當(dāng)務(wù)之急。腸道一直以來(lái)被喻為人體第三大器官,對(duì)維持人體健康有巨大貢獻(xiàn)。通過(guò)肝臟與腸道之間的特殊連接,本文闡述了腸道菌群參與ACLF疾病發(fā)展過(guò)程中的幾種作用機(jī)制,腸道黏膜屏障破壞,菌群移位,膽汁酸通路及免疫細(xì)胞激活均參與誘導(dǎo)炎癥反應(yīng)和肝細(xì)胞凋亡。腸道菌群移位導(dǎo)致細(xì)菌感染及SBP是加重ACLF死亡的危險(xiǎn)因素。故而以靶向調(diào)節(jié)腸道菌群為切入點(diǎn)對(duì)預(yù)防和改善肝硬化失代償期及ACLF進(jìn)展尤顯重要。但是由于腸道菌群的種類(lèi)及數(shù)量眾多,對(duì)誘發(fā)和加重ACLF疾病的菌群種類(lèi)研究尚不全面,大量未知菌群的有益或有害方面仍不得而知,未來(lái)還需要在這一領(lǐng)域進(jìn)行大規(guī)模、高質(zhì)量挖掘和探索。此外,腸道微生物組結(jié)構(gòu)及致病菌數(shù)量變化可能是預(yù)測(cè)肝硬化急性失代償及ACLF發(fā)展的有用標(biāo)志物,但腸道微生物的特征并非一致,仍亟待深化研究。最后,腸道微生物組在失代償期肝硬化和ACLF病因病機(jī)中的作用同樣值得進(jìn)一步探究和改進(jìn),這可能成為疾病診斷和治療策略的理論基礎(chǔ),為后期ACLF治療提供更合理、更有效的依據(jù)。
利益沖突聲明:本文不存在任何利益沖突。作者貢獻(xiàn)聲明:陳桂容、王明剛、王秀峰對(duì)文章的思路及設(shè)計(jì)有關(guān)鍵貢獻(xiàn);陳桂容負(fù)責(zé)擬定寫(xiě)作框架并撰寫(xiě)文章;林華明、嚴(yán)惠萍均參與了文獻(xiàn)檢索及論文修訂;王明剛、王秀峰負(fù)責(zé)指導(dǎo)修改并最終定稿。
參考文獻(xiàn):
[1]MEZZANO G, JUANOLA A, CARDENAS A, et al. Global burden of disease: acute-on-chronic liver failure, a systematic review and meta-analysis[J]. Gut, 2022, 71(1): 148-155. DOI: 10.1136/gutjnl-2020-322161.
[2]GIANNELLI V, DI GREGORIO V, IEBBA V, et al. Microbiota and the gut-liver axis: bacterial translocation, inflammation and infection in cirrhosis[J]. World J Gastroenterol, 2014, 20(45): 16795-16810. DOI: 10.3748/wjg.v20.i45.16795.
[3]GOMAA EZ. Human gut microbiota/microbiome in health and diseases: a review[J]. Antonie Van Leeuwenhoek, 2020, 113(12): 2019-2040. DOI: 10.1007/s10482-020-01474-7.
[4]LAN P, YIN SM, HE Z. Research progress of gut microbiota in the prevention and treatment of colorectal cancer[J]. Chin J Dig Surg, 2022, 21(6): 730-736. DOI: 10.3760/cma.j.cn115610-20220402-00176.蘭平, 殷盛梅, 何真. 腸道微生態(tài)在結(jié)直腸癌預(yù)防和治療中的研究進(jìn)展[J]. 中華消化外科雜志, 2022, 21(6): 730-736. DOI: 10.3760/cma.j.cn115610-20220402-00176.
[5]OHARA AM, SHANAHAN F. The gut flora as a forgotten organ[J]. EMBO Rep, 2006, 7(7): 688-693. DOI: 10.1038/sj.embor.7400731.
[6]FAN Y, PEDERSEN O. Gut microbiota in human metabolic health and disease[J]. Nat Rev Microbiol, 2021, 19(1): 55-71. DOI: 10.1038/s41579-020-0433-9.
[7]CHOPYK DM, GRAKOUI A. Contribution of the Intestinal microbiome and gut barrier to hepatic disorders[J]. Gastroenterology, 2020, 159(3): 849-863. DOI: 10.1053/j.gastro.2020.04.077.
[8]HIIPPALA K, JOUHTEN H, RONKAINEN A, et al. The potential of gut commensals in reinforcing intestinal barrier function and alleviating inflammation[J]. Nutrients, 2018, 10(8): 988. DOI: 10.3390/nu10080988.
[9]TREBICKA J, BORK P, KRAG A, et al. Utilizing the gut microbiome in decompensated cirrhosis and acute-on-chronic liver failure[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(3): 167-180. DOI: 10.1038/s41575-020-00376-3.
[10]ZHANG Y, ZHANG J, XU T, et al. Allicin ameliorates intraintestinal bacterial translocation after trauma/hemorrhagic shock in rats: The role of mesenteric lymph node dendritic cell[J]. Surgery, 2017, 161(2): 546-555. DOI: 10.1016/j.surg.2016.08.029.
[11]HU Z, WU YS. The role and mechanism of gut microbiota in the occurrence of colorectal cancer[J]. Chin J Dig Surg, 2021, 20(6): 708-712. DOI: 10.3760/cma.j.cn115610-20210323-00142.?胡洲, 武永勝. 腸道菌群在結(jié)直腸癌發(fā)生中的作用及機(jī)制[J]. 中華消化外科雜志, 2021, 20(6): 708-712. DOI: 10.3760/cma.j.cn115610-20210323-00142.
[12]MEIR M, FLEMMING S, BURKARD N, et al. The glial cell-line derived neurotrophic factor: a novel regulator of intestinal barrier function in health and disease[J]. Am J Physiol Gastrointest Liver Physiol, 2016, 310(11): G1118- G1123. DOI: 10.1152/ajpgi.00125.2016.
[13]MACIA L, TAN J, VIEIRA AT, et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome[J]. Nat Commun, 2015, 6: 6734. DOI: 10.1038/ncomms7734.
[14]KIM SE, PARK JW, KIM HS, et al. The role of gut dysbiosis in acute-on-chronic liver failure[J]. Int J Mol Sci, 2021, 22(21): 11680. DOI: 10.3390/ijms222111680.
[15]BAJAJ JS, VARGAS HE, REDDY KR, et al. Association between intestinal microbiota collected at hospital admission and outcomes of patients with cirrhosis[J]. Clin Gastroenterol Hepatol, 2019, 17(4): 756-765.e3. DOI: 10.1016/j.cgh.2018.07.022.
[16]BAJAJ JS, HEUMAN DM, HYLEMON PB, et al. Altered profile of human gut microbiome is associated with cirrhosis and its complications[J]. J Hepatol, 2014, 60(5): 940-947. DOI: 10.1016/j.jhep.2013.12.019.
[17]KAKIYAMA G, PANDAK WM, GILLEVET PM, et al. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis[J]. J Hepatol, 2013, 58(5): 949-955. DOI: 10.1016/j.jhep.2013.01.003.
[18]FERNNDEZ J, ACEVEDO J, WIEST R, et al. European Foundation for the Study of Chronic Liver Failure. Bacterial and fungal infections in acute-on-chronic liver failure: prevalence, characteristics and impact on prognosis[J]. Gut, 2018, 67(10): 1870-1880. DOI: 10.1136/gutjnl-2017-314240.
[19]JENNE CN, KUBES P. Immune surveillance by the liver[J]. Nat Immunol, 2013, 14(10): 996-1006. DOI: 10.1038/ni.2691.
[20]ARVANITI V, DAMICO G, FEDE G, et al. Infections in patients with cirrhosis increase mortality four-fold and should be used in determining prognosis[J]. Gastroenterology, 2010, 139(4): 1246-1256, 1256.e1-5. DOI: 10.1053/j.gastro.2010.06.019.
[21]MCKE MM, RUMYANTSEVA T, MCKE VT, et al. Bacterial infection-triggered acute-on-chronic liver failure is associated with increased mortality[J]. Liver Int, 2018, 38(4): 645-653. DOI: 10.1111/liv.13568.
[22]BRUNS T, REUKEN PA, STENGEL S, et al. The prognostic significance of bacterial DNA in patients with decompensated cirrhosis and suspected infection[J]. Liver Int, 2016, 36(8): 1133-1142. DOI: 10.1111/liv.13095.
[23]LI CQ, GUO JC, XUN YH, et al. Characterization of intestinal flora in chronic plus acute liver failure combined with spontaneous peritonitis[J]. Zhejiang J Integr Tradit Chin West Med, 2021, 31(11): 1012-1015. DOI: 10.3969/j.issn.1005-4561.2021.11.007.?李春青, 過(guò)建春, 荀運(yùn)浩, 等. 慢加急性肝衰竭合并自發(fā)性腹膜炎腸道菌群特征分析[J]. 浙江中西醫(yī)結(jié)合雜志, 2021, 31(11): 1012-1015. DOI: 10.3969/j.issn.1005-4561.2021.11.007.
[24]ALEXOPOULOU A, VASILIEVA L, AGIASOTELLI D, et al. Extensively drug-resistant bacteria are an independent predictive factor of mortality in 130 patients with spontaneous bacterial peritonitis or spontaneous bacteremia[J]. World J Gastroenterol, 2016, 22(15): 4049-4056. DOI: 10.3748/wjg.v22.i15.4049.
[25]ZHANG W, WANG GC, ZHANG T, et al. Distribution characteristics and drug resistance analysis of clinically isolated pathogens in patients complicated with decompensated hepatitis B cirrhosis and spontaneous bacterial peritonitis[J]. Int J Lab Med, 2022, 43(19): 2346-2351. DOI: 10.3969/j.issn.1673-4130.2022.19.009.張旺, 王國(guó)充, 張?zhí)穑?等. 乙型肝炎肝硬化失代償期并發(fā)自發(fā)性細(xì)菌性腹膜炎患者臨床分離菌的分布特點(diǎn)及耐藥情況分析[J].國(guó)際檢驗(yàn)醫(yī)學(xué)雜志, 2022, 43(19): 2346-2351. DOI: 10.3969/j.issn.1673-4130.2022.19.009.
[26]ENGELMANN C, SHEIKH M, SHARMA S, et al. Toll-like receptor 4 is a therapeutic target for prevention and treatment of liver failure[J]. J Hepatol, 2020, 73(1): 102-112. DOI: 10.1016/j.jhep.2020.01.011.
[27]WANG Y, CHEN H, CHEN Q, et al. The protective mechanism of CAY10683 on intestinal mucosal barrier in acute liver failure through LPS/TLR4/MyD88 pathway[J]. Mediators Inflamm, 2018, 2018: 7859601. DOI: 10.1155/2018/7859601.
[28]BIAGIOLI M, CARINO A. Signaling from intestine to the host: how bile acids regulate intestinal and liver immunity[J]. Handb Exp Pharmacol, 2019, 256: 95-108. DOI: 10.1007/164_2019_225.
[29]GRNER N, MATTNER J. Bile acids and microbiota: multifaceted and versatile regulators of the liver-gut axis[J]. Int J Mol Sci, 2021, 22(3):1397. DOI: 10.3390/ijms22031397.
[30]PAN N, DOIGNON I, GARCIN I, et al. The receptor TGR5 protects the liver from bile acid overload during liver regeneration in mice[J]. Hepatology, 2013, 58(4): 1451-1460. DOI: 10.1002/hep.26463.
[31]CICHOZ·-LACH H, MICHALAK A. Oxidative stress as a crucial factor in liver diseases[J]. World J Gastroenterol, 2014, 20(25): 8082-8091. DOI: 10.3748/wjg.v20.i25.8082.
[32]ZHONG W, QIAN K, XIONG J, et al. Curcumin alleviates lipopolysaccharide induced sepsis and liver failure by suppression of oxidative stress-related inflammation via PI3K/AKT and NF-κB related signaling[J]. Biomed Pharmacother, 2016, 83: 302-313. DOI: 10.1016/j.biopha.2016.06.036.
[33]POPA GL, POPA MI. Oxidative stress in chronic hepatitis B-an update[J]. Microorganisms, 2022, 10(7): 1265. DOI: 10.3390/microorganisms10071265.
[34]GUSTOT T, LEMMERS A, MORENO C, et al. Differential liver sensitization to toll-like receptor pathways in mice with alcoholic fatty liver[J]. Hepatology, 2006, 43(5): 989-1000. DOI: 10.1002/hep.21138.
[35]BEAM A, CLINGER E, HAO L. Effect of diet and dietary components on the composition of the gut microbiota[J]. Nutrients, 2021, 13(8): 2795. DOI: 10.3390/nu13082795.
[36]SO D, WHELAN K, ROSSI M, et al. Dietary fiber intervention on gut microbiota composition in healthy adults: a systematic review and meta-analysis[J]. Am J Clin Nutr, 2018, 107(6): 965-983. DOI: 10.1093/ajcn/nqy041.
[37]KOH A, de VADDER F, KOVATCHEVA-DATCHARY P, et al. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites[J]. Cell, 2016, 165(6): 1332-1345. DOI: 10.1016/j.cell.2016.05.041.
[38]KOCOT AM, JAROCKA-CYRTA E, DRABIN′SKA N. Overview of the importance of biotics in gut barrier integrity[J]. Int J Mol Sci, 2022, 23(5): 2896. DOI: 10.3390/ijms23052896.
[39]CONG J, ZHOU P, ZHANG R. Intestinal microbiota-derived short chain fatty acids in host health and disease[J]. Nutrients, 2022, 14(9): 1977. DOI: 10.3390/nu14091977.
[40]HORVATH A, DURDEVIC M, LEBER B, et al. Changes in the intestinal microbiome during a multispecies probiotic intervention in compensated cirrhosis[J]. Nutrients, 2020, 12(6): 1874. DOI: 10.3390/nu12061874.
[41]PATEL VC, LEE S, MCPHAIL M, et al. Rifaximin-α reduces gut-derived inflammation and mucin degradation in cirrhosis and encephalopathy: RIFSYS randomised controlled trial[J]. J Hepatol, 2022, 76(2): 332-342. DOI: 10.1016/j.jhep.2021.09.010.
[42]BECATTINI S, TAUR Y, PAMER EG. Antibiotic-induced changes in the intestinal microbiota and disease[J]. Trends Mol Med, 2016, 22(6): 458-478. DOI: 10.1016/j.molmed.2016.04.003.
收稿日期:2022-10-24;錄用日期:2022-12-08
本文編輯:王瑩
引證本文:CHEN GR, WANG MG, LIN HM, et al. Changes and pathogenic mechanism of intestinal flora in acute-on-chronic liver failure[J]. J Clin Hepatol, 2023, 39(8): 1992-1998.