• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      基于網(wǎng)絡(luò)藥理學(xué)和分子對(duì)接探討銀杏葉調(diào)控鐵死亡抗帕金森病的潛在機(jī)制

      2023-06-23 07:55:53馮科宇莫圣龍郭蘇嬋黃珍珍楊成敏簡(jiǎn)崇東
      右江醫(yī)學(xué) 2023年4期
      關(guān)鍵詞:分子對(duì)接網(wǎng)絡(luò)藥理學(xué)銀杏葉

      馮科宇 莫圣龍 郭蘇嬋 黃珍珍 楊成敏 簡(jiǎn)崇東

      【摘要】 目的 通過(guò)網(wǎng)絡(luò)藥理學(xué)方法探討銀杏葉通過(guò)調(diào)控鐵死亡抗帕金森?。≒arkinsonss disease,PD)的可能靶標(biāo)以及潛在的作用機(jī)制。

      方法 首先,從中藥系統(tǒng)藥理學(xué)數(shù)據(jù)庫(kù)與分析平臺(tái)(TCMSP)數(shù)據(jù)庫(kù)中預(yù)測(cè)銀杏葉活性成分及相關(guān)靶點(diǎn),從Genecards數(shù)據(jù)庫(kù)收集PD的靶點(diǎn),從鐵死亡數(shù)據(jù)庫(kù)(ferrDB)獲取調(diào)控鐵死亡的基因。隨后,取銀杏葉活性成分靶點(diǎn)、PD靶點(diǎn)及鐵死亡靶點(diǎn)三者的交互基因;然后,對(duì)交互基因進(jìn)行蛋白質(zhì)-蛋白質(zhì)互作(PPI)網(wǎng)絡(luò)構(gòu)建,運(yùn)用軟件Cytoscape 3.9.1可視化并篩選出關(guān)鍵活性成分和靶基因;最后,進(jìn)行基因本體論(GO)、京都基因和基因組百科全書(shū)(KEGG)富集分析。分子對(duì)接結(jié)果證明銀杏葉活性成分與關(guān)鍵靶點(diǎn)對(duì)接良好。

      結(jié)果 經(jīng)篩選共得到27種銀杏葉活性成分以及209個(gè)潛在的蛋白作用靶點(diǎn),PD靶點(diǎn)有1827個(gè),調(diào)控鐵死亡基因有259個(gè),三者交集的靶點(diǎn)有18個(gè)。通過(guò)PPI網(wǎng)絡(luò)分析共得到HMOX1、TP53、EGFR、JUN、HIF1A、VEGFA、PTGS2等7個(gè)關(guān)鍵靶點(diǎn)。主要涉及通路有流體剪切應(yīng)力和動(dòng)脈粥樣硬化、化學(xué)致癌-活性氧、MAPK通路等。

      結(jié)論 銀杏葉調(diào)控PD中鐵死亡途徑可能與HMOX1、TP53、EGFR、JUN、HIF1A、VEGFA、PTGS2等靶點(diǎn)有關(guān),涉及化學(xué)致癌-活性氧、MAPK等信號(hào)通路。

      【關(guān)鍵詞】 銀杏葉;鐵死亡;帕金森病;網(wǎng)絡(luò)藥理學(xué);分子對(duì)接

      中圖分類號(hào):R285?? 文獻(xiàn)標(biāo)志碼:A?? DOI:10.3969/j.issn.1003-1383.2023.04.006

      Exploration of the potential mechanism of Ginkgo leaf on the regularization of

      ferroptosis and the confrontation of Parkinson's disease based on network pharmacology and molecular docking

      FENG Keyu1,2, MO Shenglong1,2, GUO Suchan1,2, HUANG Zhenzhen1,2, YANG? Chengmin1, JIAN Chongdong1

      (1.Department of Neurology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China;

      2.Graduate School, Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China)

      【Abstract】 Objective To explore the possible targets and potential mechanisms of Ginkgo leaf on the regularization of ferroptosis and the confrontation of Parkinson's (PD) disease through network pharmacology method.

      Methods Firstly, the active components and related targets of Ginkgo leaf were predicted from the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP) database, Parkinson's disease targets were collected from the Genecards database, and the genes regulating ferroptosis were obtained through the ferroptosis database (ferrDB).Next, interacting genes of the active components and related targets of Ginkgo leaf, the PD targets and the genes regulating ferroptosis were taken.Then, protein-protein (PPI) network was constructed for the interactive genes, and the software Cytoscape 3.9.1 was used to visualize and screen out the key activities components and target genes.Finally, Gene Onotology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed on them.Molecular docking results proved that the active components of Ginkgo leaf the interactive genes??? were well docked with key targets.

      Results A total of 27 active components of Ginkgo leafs and 209 potential protein targets were screened, including 1827 PD targets, 259 ferroptosis genes, and 18 targets that intersected with the three.7 key targets including HMOX1, TP53, EGFR, JUN, HIF1A, VEGFA and PTGS2 were obtained by PPI network analysis.The main pathways involved were fluid shear stress and atherosclerosis, chemical carcinogenesis-reactive oxygen species, and MAPK pathways, etc.

      Conclusion The regulation of ferroptosis in PD by Ginkgo leaf may be related to HMOX1, TP53, EGFR, JUN, HIF1A, VEGFA, PTGS2 and other targets, which involves chemical carcinogenesis-reactive oxygen species, MAPK and other signaling pathways.

      【Key words】 Ginkgo leaf; ferroptosis; Parkinson's disease(PD); network pharmacology; molecular docking

      帕金森?。≒arkinsons disease, PD)是世界上第二常見(jiàn)的神經(jīng)退行性疾?。?]。臨床表現(xiàn)為靜止性震顫、肌強(qiáng)直、姿勢(shì)障礙、睡眠障礙、嗅覺(jué)障礙、自主神經(jīng)功能障礙等,PD嚴(yán)重降低患者的生活質(zhì)量,給社會(huì)及家庭帶來(lái)了沉重的負(fù)擔(dān)和極大的痛苦[2]。PD的病理特點(diǎn)是黑質(zhì)致密部的多巴胺能神經(jīng)元的死亡及丟失和α-突觸核蛋白(α-Synuclein,α-Syn)組成的路易小體的存在[2],但其具體的發(fā)病機(jī)制仍待進(jìn)一步研究。有學(xué)者發(fā)現(xiàn)鐵死亡是多巴胺能神經(jīng)元細(xì)胞死亡和PD發(fā)生的重要途徑[3]。研究發(fā)現(xiàn)鐵死亡誘導(dǎo)劑erastin可以誘導(dǎo)鐵死亡,增加小鼠腦內(nèi)α-突觸蛋白的異常累積,從而導(dǎo)致多巴胺能神經(jīng)元的丟失[4]。在臨床隨機(jī)試驗(yàn)中證明靶點(diǎn)螯合鐵可以減少患者黑質(zhì)內(nèi)的鐵沉積,減緩疾病的進(jìn)展[5]。因此調(diào)節(jié)腦內(nèi)細(xì)胞鐵死亡可能是PD的一個(gè)潛在的治療方向。

      研究表明,銀杏葉及其活性成分在PD發(fā)生發(fā)展過(guò)程中起著重要作用[6]。銀杏葉可通過(guò)其抗氧化作用改善由缺氧引起的氧化應(yīng)激,增加神經(jīng)元的存活率[7]。盡管銀杏葉在治療PD的生理功能和潛在的分子機(jī)制已被充分報(bào)道,但銀杏葉對(duì)抗PD的藥理學(xué)機(jī)制仍不清楚,尤其是與鐵死亡相關(guān)的潛在作用機(jī)制。本文通過(guò)網(wǎng)絡(luò)藥理學(xué)的方法探討銀杏葉調(diào)控鐵死亡治療PD的相關(guān)機(jī)制。

      1 資料與方法

      1.1 銀杏葉活性化合物收集和靶點(diǎn)預(yù)測(cè)

      通過(guò)中藥系統(tǒng)藥理學(xué)數(shù)據(jù)庫(kù)與分析平臺(tái)(TCMSP),篩選出有高度活性的銀杏葉有效成分,篩選條件為口服生物利用度(oral bioavailability,OB)≥30%,化合物類藥性(drug-likeness, DL)≥0.18,同時(shí)在TCMSP數(shù)據(jù)庫(kù)檢索高度活性有效成分的靶點(diǎn)。

      1.2 注釋銀杏葉靶點(diǎn)的基因

      將收集到的靶點(diǎn)導(dǎo)入蛋白質(zhì)數(shù)據(jù)庫(kù)(UniProt,https://www.uniprot.org/)和perl軟件,選擇已驗(yàn)證的信息,限定物種為人,得到相對(duì)應(yīng)的靶基因,并剔除重復(fù)和沒(méi)有靶點(diǎn)的有效成分,生成“有效成分-作用靶點(diǎn)”數(shù)據(jù)集。

      1.3 PD和鐵死亡靶點(diǎn)的篩選

      從GeneCards數(shù)據(jù)庫(kù)(http://www.genecards.org/)中收集與PD相關(guān)的靶基因,以“parkinson”為搜索關(guān)鍵詞,score≥1為有效靶點(diǎn)。從FerrDB(http://www.zhounan.org/ferrdb/)數(shù)據(jù)庫(kù)中篩選與鐵死亡相關(guān)的靶點(diǎn)。

      1.4 銀杏葉、PD和鐵死亡的三者共同基因

      利用在線網(wǎng)站VENNY(https://bioinfogp.cnb.csic.es/tools/venny/)將PD靶點(diǎn)基因、銀杏葉靶點(diǎn)基因和鐵死亡基因取交集,篩選出三者的共同靶點(diǎn),得到銀杏葉調(diào)控鐵死亡抗PD的相關(guān)靶點(diǎn)基因,并制作成韋恩圖。

      1.5 蛋白質(zhì)互作(PPI)網(wǎng)絡(luò)的構(gòu)建及關(guān)鍵靶點(diǎn)基因的篩選

      為了探索目標(biāo)蛋白之間的相互作用,將篩選出來(lái)的共同靶點(diǎn)上傳到STRING數(shù)據(jù)庫(kù)(https://string-db.org/),篩選條件設(shè)置綜合得分為>0.4及隱藏游離靶點(diǎn),獲得PPI網(wǎng)絡(luò)圖;利用CytoScape對(duì)PPI網(wǎng)絡(luò)圖進(jìn)行可視化,利用插件CytoNCA篩選得到核心基因,其度值(degree)序列均為靠前者。

      1.6 構(gòu)建中藥-成分-靶標(biāo)網(wǎng)絡(luò)

      基于PD、銀杏葉和鐵死亡交集靶點(diǎn),利用CytoScape軟件構(gòu)建中藥-成分-靶標(biāo)網(wǎng)絡(luò)。

      1.7 KEGG 和GO集合

      通過(guò)DAVID在線數(shù)據(jù)庫(kù)(https://david.ncifcrf.gov/)在生物過(guò)程、分子和細(xì)胞水平上進(jìn)行基因本體論(GO)功能富集分析及京都基因與基因組百科全書(shū)(KEGG)通路富集分析。氣泡圖在微生信(http://www.bioinformatics.com.cn/)網(wǎng)站上獲得。利用David在線數(shù)據(jù)進(jìn)行GO富集和KEGG通路的分析,P<0.05代表有顯著性。

      1.8 分子對(duì)接

      活性小分子化合物結(jié)構(gòu)來(lái)自PubChem數(shù)據(jù)庫(kù)(https://pubchem.ncbi.nlm.nih.gov/),關(guān)鍵靶點(diǎn)蛋白質(zhì)結(jié)構(gòu)來(lái)自 PDB數(shù)據(jù)庫(kù)(https://www.rcsb.org)。使用Auto Dock tools軟件對(duì)關(guān)鍵靶點(diǎn)蛋白結(jié)構(gòu)進(jìn)行分離蛋白質(zhì)、添加非極性氫、獲取 PDBQT格式等處理,并計(jì)算和小分子化合物結(jié)合時(shí)的活性口袋數(shù)值。通過(guò)perl軟件進(jìn)行分子對(duì)接,揭示結(jié)合能,然后使用 PyMOL軟件對(duì)分子對(duì)接結(jié)果進(jìn)行可視化處理。當(dāng)結(jié)合能值<0時(shí),分子蛋白被認(rèn)為是自發(fā)地相互結(jié)合和相互作用;當(dāng)結(jié)合能≤-5 kcal/mol 時(shí),代表結(jié)合良好,且結(jié)合能的數(shù)值越小,配體與受體結(jié)合越穩(wěn)定。

      2 結(jié)? 果

      2.1 銀杏葉活性成分獲取和靶點(diǎn)的預(yù)測(cè)

      從TCMSP數(shù)據(jù)庫(kù)中檢索銀杏葉的活性成分,最終收集到銀杏葉有效成分檞皮素、山柰酚、銀杏內(nèi)酯B等27種(見(jiàn)表1)。運(yùn)用perl軟件和UniProt數(shù)據(jù)庫(kù)對(duì)27種有效成分的靶點(diǎn)添加基因名并剔除重復(fù)之后得到209個(gè)靶基因。

      2.2 靶基因的篩選與構(gòu)建中藥-成分-靶點(diǎn)網(wǎng)絡(luò)

      從FerrDB數(shù)據(jù)庫(kù)中下載整理后得到鐵死亡相關(guān)基因259個(gè),從GeneCards數(shù)據(jù)庫(kù)獲取PD基因1827個(gè)。銀杏葉靶點(diǎn)基因、PD基因和鐵死亡相關(guān)基因三者交集共得到18個(gè)基因(見(jiàn)圖1),同時(shí)構(gòu)建中藥活性成分-靶點(diǎn)的網(wǎng)絡(luò)(見(jiàn)圖2)。活性成分的基本信息見(jiàn)表2。

      2.3 PPI網(wǎng)絡(luò)構(gòu)建及關(guān)鍵靶點(diǎn)的篩選

      通過(guò)STRING分析得到PPI關(guān)系網(wǎng)絡(luò),包括18個(gè)節(jié)點(diǎn)和111條邊,將PPI網(wǎng)絡(luò)導(dǎo)入Cytoscape進(jìn)行可視化,同時(shí)利用插件CytoNA通過(guò)對(duì)度中心性(degree)、接近性(closeness)、中介中心性(betweenness)、特征向量中心性(eigenvector)、局部平均連接度(LAC)、網(wǎng)絡(luò)(network)進(jìn)行篩選后共得到7個(gè)中心基因,分別為:血紅素加氧酶1(HMOX1)、腫瘤蛋白p53(TP53)、表皮生長(zhǎng)因子受體(EGFR)、轉(zhuǎn)錄因子AP1(JUN)、缺氧誘導(dǎo)因子1(HIF1A)、血管內(nèi)皮生長(zhǎng)因子A(VEGFA)、前列腺素內(nèi)過(guò)氧物合成酶2(PTGS2)。關(guān)鍵靶點(diǎn)詳細(xì)信息見(jiàn)圖3、圖4和表3。

      2.4 GO和KEGG分析

      通過(guò)GO富集分析顯示得到170條通路,結(jié)果按照顯著性排序,選取各項(xiàng)分析的前十項(xiàng)進(jìn)行展示(見(jiàn)圖5)。GO富集分析鑒定出131個(gè)生物過(guò)程條目、24個(gè)分子功能條目和15個(gè)細(xì)胞成分條目。在biological process(BP)中,以基因表達(dá)正調(diào)控(positive regulation of gene expression)、凋亡過(guò)程的負(fù)反饋(negative regulation of apoptotic process)、對(duì)缺氧的反應(yīng)(response to hypoxia)、對(duì)活性氧的反應(yīng)(cellular response to reactive oxygen species)等為主。在 cellular component(CC)中,細(xì)胞質(zhì)(cytoplasm)和膠質(zhì)溶膠(cytosol)在細(xì)胞成分中占的比例比較大。蛋白結(jié)合(protein binding)是最豐富的molecular function(MF)條目。共得到91條KEGG通路,涉及通路包括流體剪切應(yīng)力和動(dòng)脈粥樣硬化(fluid shear stress and atherosclerosis)、化學(xué)致癌-活性氧(chemical carcinogenesis-reactive oxygen species)、MAPK通路(MAPK signaling pathway)等,取前20條信號(hào)通路繪制氣泡圖(見(jiàn)圖6)。

      2.5 分子對(duì)接

      本研究采用度中心性(degree)排名前2的槲皮素和木犀草素與關(guān)鍵靶點(diǎn)HMOX1、TP53、EGFR、JUN、HIF1A、VEGFA、PTGS2進(jìn)行分子對(duì)接(見(jiàn)表4和圖7)。其中,槲皮素與EGER、HIF1A、TP53、HMOX1的結(jié)合能分別為:-8.9 kcal/mol、-7.8 kcal/mol、-7.9 kcal/mol、-8.0 kcal/mol;木犀草素與PTGS2、JUN、VEGFA結(jié)合能分別為:-9.5 kcal/mol、-6.5 kcal/mol、-6.6 kcal/mol(見(jiàn)表4)?;钚猿煞峙c核心蛋白的結(jié)合能≤-5 kcal/mol,分子對(duì)接結(jié)果良好。

      3 討? 論

      通過(guò)網(wǎng)絡(luò)藥理學(xué)研究確認(rèn)槲皮素和木犀草素是銀杏葉調(diào)控PD中鐵死亡的主要活性化合物。槲皮素是一種黃酮類化合物,存在于許多食用和藥用植物中。研究證明使用槲皮素可逆轉(zhuǎn)細(xì)胞外β-淀粉的變性和杏仁核中的tau病,從而保護(hù)阿爾茨海默病(AD)模型小鼠的認(rèn)知和情緒功能[8]。槲皮素還能去除活性氧(ROS)和其他氧化物質(zhì),是一種鐵死亡細(xì)胞死亡的天然抑制劑[9]。木犀草素是一種天然存在的黃酮類化合物,研究已經(jīng)證實(shí)木犀草素具有抗氧化、抗癌、抗炎和神經(jīng)保護(hù)作用。木犀草素通過(guò)減輕過(guò)氧化氫酶誘導(dǎo)的氧化損傷和細(xì)胞內(nèi)活性氧的產(chǎn)生,有助于治療與氧化應(yīng)激有關(guān)的神經(jīng)退行性疾?。?0]。

      根據(jù)PPI蛋白網(wǎng)絡(luò),我們發(fā)現(xiàn)HMOX1、EGFR、PTGS2、TP53、HIF1A、JUN 、VEGFA是銀杏葉調(diào)控PD中鐵死亡的關(guān)鍵基因。HMOX1是一種應(yīng)激蛋白,可催化血紅素轉(zhuǎn)化為游離亞鐵,促進(jìn)帕金森疾病模型中鐵沉積和線粒體功能障礙[11]。EGFR是一種受體絡(luò)氨酸激酶,是癌癥發(fā)展的主要調(diào)節(jié)因子,驅(qū)動(dòng)EGFR可在膠質(zhì)母細(xì)胞瘤中誘導(dǎo)鐵死亡[12]。PTGS2,也稱為環(huán)加氧酶2(Cox-2),是前列腺素生物合成中的關(guān)鍵酶,也是炎癥過(guò)程中的重要介質(zhì)。PTGS2還可作為腦出血時(shí)鐵死亡的檢測(cè)指標(biāo)[13]。TP53在調(diào)節(jié)癌癥鐵死亡中起著雙重作用且依賴于環(huán)境作用[14]。一方面,TP53可以通過(guò)靶向SAT1增強(qiáng)鐵死亡[15];另一方面,TP53還可以通過(guò)靶向DPP4來(lái)抑制鐵死亡[16]。HIF1A是一種缺氧誘導(dǎo)因子,在氧化反應(yīng)中發(fā)揮核心作用,在纖維瘤細(xì)胞中,HIF1A通過(guò)增加脂肪酸結(jié)合蛋白3和7的表達(dá)抑制鐵死亡[17]。JUN是一種原癌基因,在面神經(jīng)損傷時(shí),c-Jun可以抑制面神經(jīng)元鐵死亡,促進(jìn)神經(jīng)修復(fù)[18]。VEGFA是一種血管內(nèi)皮因子,在子宮內(nèi)膜異位癥中,鐵死亡誘導(dǎo)了VEGFA和IL-8的分泌并促進(jìn)鄰近病變血管的生成[19]。

      GO富集分析顯示,銀杏葉可調(diào)控氧化應(yīng)激、細(xì)胞凋亡及對(duì)缺氧的反應(yīng)等生物學(xué)過(guò)程。KEGG結(jié)果分析顯示,化學(xué)致癌-活性氧信號(hào)通路富集了10個(gè)靶點(diǎn),其中包括HMOX1、EGFR、JUN、HIF1A、VEGFA等五個(gè)關(guān)鍵靶點(diǎn),提示該通路可能是銀杏葉調(diào)控PD中鐵死亡的主要途徑?;瘜W(xué)致癌-活性氧信號(hào)主要由ROS觸發(fā),可以激活NF-κB、MAPK、PI3K-AKt等信號(hào)通路,發(fā)揮調(diào)控細(xì)胞增殖、分化、凋亡等功能[20]。銀杏葉及其相關(guān)活性成分通過(guò)活性氧相關(guān)通路發(fā)揮保護(hù)神經(jīng)的作用。ZHANG等人證明高壓氧和銀杏葉提取物通過(guò)NF-κB通路改善AD大鼠模型的認(rèn)知和記憶障礙[21]。也有學(xué)者發(fā)現(xiàn)銀杏葉提取物白果內(nèi)酯對(duì)腦缺血再灌注損傷的保護(hù)作用與MAPK通路的活化有關(guān)[22]。銀杏內(nèi)酯可作為新型外在調(diào)節(jié)劑激活A(yù)Kt/Nrf2 和 AKt/CREB信號(hào)通路,在體內(nèi)和體外防止腦缺血再灌注損傷[23]。鐵死亡的特點(diǎn)是細(xì)胞內(nèi)聚集了脂質(zhì)ROS,最終導(dǎo)致脂質(zhì)氧化,從而引起細(xì)胞膜的損傷和細(xì)胞死亡。化學(xué)致癌-活性氧信號(hào)在調(diào)節(jié)鐵死亡方面發(fā)揮著重要作用。在非小細(xì)胞癌中,激活MAPK信號(hào)通路會(huì)促進(jìn)癌細(xì)胞鐵死亡[24]。相反,在呼吸窘迫綜合征中,抑制MAPK信號(hào)通路的激活可以抑制鐵死亡引起的炎癥和氧化應(yīng)激[25]。在神經(jīng)系統(tǒng)疾病中,MAPK信號(hào)通路和NF-κB可能在腦出血后誘導(dǎo)產(chǎn)生自由基,從而誘導(dǎo)鐵死亡和細(xì)胞凋亡[26]。先前的研究證實(shí),鐵積累后MAPK途徑會(huì)被激活,抑制MAPK的激活可減少神經(jīng)元細(xì)胞的死亡[27]。PI3K-AKt信號(hào)傳導(dǎo)與許多疾病中的鐵死亡相關(guān),包括肺損傷[28]、膽囊癌[29]等。CHEN等人證明激活PI3K-AKt信號(hào)可以改善認(rèn)知障礙和鐵死亡[30]。

      綜上所述,銀杏葉可能通過(guò)槲皮素、木犀草素等多種成分作用于HMOX1、TP53、EGFR、JUN、HIF1A、VEGFA、PTGS2等核心蛋白,進(jìn)而調(diào)控化學(xué)致癌-活性氧、MAPK等信號(hào)通路,從而調(diào)控PD中的鐵死亡。然而,需要進(jìn)一步的研究來(lái)證實(shí)銀杏葉的臨床療效及其調(diào)控PD中鐵死亡的機(jī)制。

      參 考 文 獻(xiàn)

      [1] ?ELBAZ A, CARCAILLON L, KAB S, et al. Epidemiology of Parkinson's disease[J]. Rev Neurol (Paris), 2016, 172(1): 14-26.

      [2] ?CACABELOS R. Parkinson's disease: from pathogenesis to pharmacogenomics[J]. Int J Mol Sci, 2017, 18(3):551.

      [3] ?ZHANG P, CHEN L, ZHAO Q, et al. Ferroptosis was more initial in cell death caused by iron overload and its underlying mechanism in Parkinson's disease[J]. Free Radic Biol Med, 2020, 152: 227-234.

      [4] ?ITO K, EGUCHI Y, IMAGAWA Y, et al. MPP+ induces necrostatin-1- and ferrostatin-1-sensitive necrotic death of neuronal SH-SY5Y cells[J]. Cell Death Discov, 2017, 3: 17013.

      [5] MARTIN-BASTIDA A, WARD R J, NEWBOULD R, et al. Brain iron chelation by deferiprone in a phase 2 randomised double-blinded placebo controlled clinical trial in Parkinsons disease[J]. Scientific Reports, 2017, 7(1) :1398.

      [6] ?YU D Y, ZHANG P, LI J, et al. Neuroprotective effects of Ginkgo biloba dropping pills in Parkinson's disease[J]. J Pharm Anal, 2021, 11(2): 220-231.

      [7] ?RIBEIRO M L, MOREIRA L M, ARCARI D P, et al. Protective effects of chronic treatment with a standardized extract of Ginkgo biloba L. in the prefrontal cortex and dorsal hippocampus of middle-aged rats[J]. Behav Brain Res, 2016, 313: 144-150.

      [8] SABOGAL-GUAQUETA A M, MUNOZ-MANCO J I, RAMIREZ-PINEDA J R, et al. The flavonoid quercetin ameliorates Alzheimer's disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer's disease model mice[J]. Neuropharmacology, 2015, 93: 134-145.

      [9] ?XIAO L, LUO G, TANG Y, et al. Quercetin and iron metabolism: what we know and what we need to know[J]. Food Chem Toxicol, 2018, 114: 190-203.

      [10] ?KIM S, CHIN Y W, CHO J. Protection of cultured cortical neurons by luteolin against oxidative damage through inhibition of apoptosis and induction of heme oxygenase-1[J]. Biol Pharm Bull, 2017, 40(3): 256-265.

      [11] CRESSATTI M, SONG W, TURK A Z, et al. Glial HMOX1 expression promotes central and peripheralα-synuclein dysregulation and pathogenicity in parkinsonian mice[J]. Glia, 2019, 67(9): 1730-1744.

      [12] ?KADIOGLU O, SAEED M, MAHMOUD N, et al. Identification of novel drug resistance mechanisms by genomic and transcriptomic? profiling of glioblastoma cells with mutation-activated EGFR[J]. Life Sci, 2021, 284: 119601.

      [13] ?CHEN B, CHEN Z, LIU M, et al. Inhibition of neuronal ferroptosis in the acute phase of intracerebral hemorrhage shows long-term cerebroprotective effects[J]. Brain Res Bull, 2019, 153: 122-132.

      [14] ?KANG R, KROEMER G, TANG D. The tumor suppressor protein p53 and the ferroptosis network[J]. Free Radic Biol Med, 2019, 133: 162-168.

      [15] ?OU Y, WANG S J, LI D, et al. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses[J]. Proc Natl Acad Sci U S A, 2016, 113(44): E6806-E6812.

      [16] ?XIE Y, ZHU S, SONG X, et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity[J]. Cell Rep, 2017, 20(7): 1692-1704.

      [17] ?YANG M, CHEN P, LIU J, et al. Clockophagy is a novel selective autophagy process favoring ferroptosis[J]. Sci Adv, 2019, 5(7):eaa w2238.

      [18] ?GAO D, HUANG Y, SUN X, et al. Overexpression of c-Jun inhibits erastin-induced ferroptosis in Schwann cells and promotes repair of facial nerve function[J]. J Cell Mol Med, 2022, 26(8): 2191-2204.

      [19] ?LI G J, LIN Y, ZHANG Y L, et al. Endometrial stromal cell ferroptosis promotes angiogenesis in endometriosis[J]. Cell Death Discov, 2022, 8(1): 29.

      [20] ?ZHANG J, WANG X, VIKASH V, et al. ROS and ROS-Mediated Cellular Signaling[J]. Oxid Med Cell Longev, 2016, 2016: 4350965.

      [21] ?ZHANG L D, MA L, ZHANG L, et al. Hyperbaric oxygen and Ginkgo Biloba extract ameliorate cognitive and memory impairment via nuclear factor Kappa-B pathway in rat model of Alzheimer's disease[J]. Chin Med J (Engl), 2015, 128(22): 3088-3093.

      [22] ?JIANG M, LI J, PENG Q, et al. Neuroprotective effects of bilobalide on cerebral ischemia and reperfusion injury are associated with inhibition of pro-inflammatory mediator production and down-regulation of JNK1/2 and p38 MAPK activation[J]. J Neuroinflammation, 2014, 11: 167.

      [23] ZHANG W, SONG J K, YAN R, et al. Diterpene ginkgolides protect against cerebral ischemia/reperfusion damage in rats by activating Nrf2 and CREB through PI3K/Akt signaling[J]. Acta Pharmacol Sin, 2018, 39(8): 1259-1272.

      [24] ?LIU X, WANG L, CUI W, et al. Targeting ALDH1A1 by disulfiram/copper complex inhibits non-small cell lung cancer recurrence driven by ALDH-positive cancer stem cells[J]. Oncotarget, 2016, 7(36): 58516-58530.

      [25] ?WANG X D, ZHANG C H, ZOU N, et al. Lipocalin-2 silencing suppresses inflammation and oxidative stress of acute respiratory distress syndrome by ferroptosis via inhibition of MAPK/ERK pathway in neonatal mice[J]. Bioengineered, 2022, 13(1): 508-520.

      [26] ?HADDAD J J, LAND S C. Redox/ROS regulation of lipopolysaccharide-induced mitogen-activated protein kinase (MAPK) activation and MAPK-mediated TNF-alpha biosynthesis[J]. Br J Pharmacol, 2002, 135(2): 520-536.

      [27] YU Y, RICHARDSON D R. Cellular iron depletion stimulates the JNK and p38 MAPK signaling transduction pathways, dissociation of ASK1-thioredoxin, and activation of ASK1[J]. J Biol Chem, 2011, 286(17): 15413-15427.

      [28] ?WANG Y L, SHEN Z R, ZHAO S J, et al. Sipeimine ameliorates PM2. 5-induced lung injury by inhibiting ferroptosis via the PI3K/Akt/Nrf2 pathway: a network pharmacology approach[J]. Ecotoxicol Environ Saf, 2022, 239: 113615.

      [29] ?LIU L G, LI Y, CAO D Y, et al. SIRT3 inhibits gallbladder cancer by induction of AKT-dependent ferroptosis and blockade of epithelial-mesenchymal transition[J]. Cancer Lett, 2021, 510: 93-104.

      [30] ?CHEN F, WU Y F, LIU S X, et al. Rehmannioside A improves cognitive impairment and alleviates ferroptosis via activating PI3K/AKT/Nrf2 and SLC7A11/GPX4 signaling pathway after ischemia[J]. J Ethnopharmacol, 2022, 289: 115021.

      (收稿日期:2022-06-24 修回日期:2022-09-25)

      (編輯:王琳葵 梁明佩)

      猜你喜歡
      分子對(duì)接網(wǎng)絡(luò)藥理學(xué)銀杏葉
      會(huì)跳舞的銀杏葉
      銀杏葉(外一首)
      鴨綠江(2021年35期)2021-11-11 15:25:02
      銀杏葉(外一首)
      鴨綠江(2021年35期)2021-04-19 12:23:46
      與銀杏葉的約會(huì)
      歲月(2018年2期)2018-02-28 20:51:50
      基于網(wǎng)絡(luò)藥理學(xué)方法分析中藥臨床治療胸痹的作用機(jī)制
      從網(wǎng)絡(luò)藥理學(xué)角度研究白芍治療類風(fēng)濕關(guān)節(jié)炎的作用
      基于網(wǎng)絡(luò)藥理學(xué)的沙棘總黃酮治療心肌缺血的作用機(jī)制研究
      基于網(wǎng)絡(luò)藥理學(xué)分析丹參山楂組分配伍抗動(dòng)脈粥樣硬化的作用機(jī)制研究
      基于計(jì)算機(jī)輔助水解的中藥大豆寡肽的ETA拮抗活性預(yù)測(cè)
      靈芝三萜化合物的抗腫瘤靶點(diǎn)預(yù)測(cè)與活性驗(yàn)證
      宝丰县| 蕲春县| 丹阳市| 栾川县| 长葛市| 渝北区| 浠水县| 阳新县| 长岛县| 平塘县| 资阳市| 泸西县| 麻栗坡县| 洛扎县| 息烽县| 临沧市| 西林县| 纳雍县| 平南县| 当阳市| 咸宁市| 军事| 龙南县| 武邑县| 海南省| 万载县| 望都县| 平塘县| 新乡县| 新化县| 湟中县| 诸暨市| 泸西县| 辽中县| 长顺县| 莱芜市| 宁乡县| 平昌县| 新兴县| 扶沟县| 白沙|