方全 韋花媚 浦澗
[專家介紹]浦澗,教授,主任醫(yī)師,博士研究生導(dǎo)師,美國留學(xué)歸國學(xué)者,現(xiàn)任右江民族醫(yī)學(xué)院附屬醫(yī)院肝膽外科主任、廣西百色市醫(yī)學(xué)會普通外科分會主任委員、廣西醫(yī)學(xué)會普通外科學(xué)術(shù)委員會副主任委員、廣西醫(yī)師協(xié)會胰腺外科醫(yī)師分會副主任委員、廣西醫(yī)師協(xié)會外科醫(yī)師分會副主任委員、廣西醫(yī)師協(xié)會腔鏡外科分會副主任委員、廣西中西醫(yī)結(jié)合學(xué)會外科學(xué)術(shù)委員會副主任委員、廣西肝癌防治學(xué)術(shù)委員會副主任委員、廣西醫(yī)學(xué)會微創(chuàng)外科學(xué)術(shù)委員會副主任委員、國際肝膽胰協(xié)會中國區(qū)外科分會委員、中國肝癌防治學(xué)術(shù)委員會委員、中南六省區(qū)普通外科學(xué)術(shù)委員會委員等。廣西知名專家,百色市高層次人才,曾獲自治區(qū)衛(wèi)生系統(tǒng)優(yōu)秀再教育工作者,右江民族醫(yī)學(xué)院優(yōu)秀研究生導(dǎo)師、十佳教師、優(yōu)秀教師,右江民族醫(yī)學(xué)院附屬醫(yī)院十佳醫(yī)師等稱號?!禛ene Therapy》《Journal of Cellular and Molecular Medicine》《Oncotarget》《Journal of Cellular Physiology》《Cancer Medicine》等被SCI收錄的國際期刊、雜志審稿人。主要從事肝、膽、胰、脾、胃腸、乳腺、甲狀腺等普通外科疾病的臨床診斷和治療,以及原發(fā)性肝癌基礎(chǔ)與臨床研究、普通外科基礎(chǔ)與臨床研究,主持或參與國家自然科學(xué)基金項(xiàng)目2項(xiàng),省部級科研項(xiàng)目9項(xiàng),已出版醫(yī)學(xué)專著1部,發(fā)表學(xué)術(shù)論文90余篇,其中SCI收錄31篇。
【摘要】 肝細(xì)胞癌(hepatocellular carcinoma,HCC)轉(zhuǎn)移復(fù)發(fā)仍是一個待解決的臨床問題。上皮-間質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT)是HCC轉(zhuǎn)移復(fù)發(fā)的重要過程,肌動蛋白絲細(xì)胞骨架重塑可能是驅(qū)動EMT發(fā)生發(fā)展的重要因素。肌動蛋白絲細(xì)胞骨架重塑促使HCC細(xì)胞形成偽足,可為HCC的侵襲、遷移、運(yùn)動提供結(jié)構(gòu)基礎(chǔ)和動力來源。因此,肌動蛋白絲細(xì)胞骨架重塑有望成為防治腫瘤細(xì)胞侵襲、遷移的潛在靶點(diǎn)。該文就肌動蛋白絲細(xì)胞骨架重塑在肝細(xì)胞癌中的有關(guān)研究進(jìn)行綜述。
【關(guān)鍵詞】 肝細(xì)胞癌;上皮-間質(zhì)轉(zhuǎn)化;肌動蛋白;骨架重塑
中圖分類號:R375.5?? 文獻(xiàn)標(biāo)志碼:A?? DOI:10.3969/j.issn.1003-1383.2023.04.001
Research progress of actin cytoskeleton remodeling in hepatocellular carcinoma
FANG Quan1a,2, WEI Huamei1b, PU Jian1a
(1a. Department of Hepatobiliary Surgery, 1b. Center for Clinical Pathological Diagnosis and Research,
1. Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China;
2. Graduate School, Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China)
【Abstract】 ??Metastasis and recurrence of hepatocellular carcinoma (HCC) is still an unsolved clinical problem. Epithelial-mesenchymal transition (EMT) is an important process in the metastasis and recurrence of HCC.Actin cytoskeleton remodeling may be an important factor that drives the occurrence and development of EMT.Actin cytoskeleton remodeling promotes the formation of pseudopodia in HCC cells, which provides the structural basis and power source for the invasion and migration of HCC. Therefore, actin cytoskeleton remodeling is expected to be a potential target for preventing tumor cell invasion and migration. This article reviews related researches on actin cytoskeleton remodeling in hepatocellular carcinoma.
【Key words】 hepatocellular carcinoma; epithelial-mesenchymal transition (EMT); actin; cytoskeleton remodeling
肝細(xì)胞癌(hepatocellular carcinoma,HCC)是最常見的原發(fā)性肝癌,并已成為全球癌癥相關(guān)死亡的第二大原因[1]。目前手術(shù)切除仍然是肝細(xì)胞癌首選的治療方式,但是多數(shù)患者手術(shù)預(yù)后并不理想,5年生存率僅為18%。HCC術(shù)后轉(zhuǎn)移復(fù)發(fā)是其預(yù)后差的主要原因,術(shù)后高轉(zhuǎn)移復(fù)發(fā)率是臨床和科研工作者當(dāng)前面臨的重要挑戰(zhàn)[2]。因此,了解HCC侵襲遷移的機(jī)制對改善患者預(yù)后具有潛在的臨床價值。肌動蛋白絲細(xì)胞骨架重塑驅(qū)動HCC發(fā)生上皮-間質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT),進(jìn)而增強(qiáng)HCC細(xì)胞的侵襲遷移能力,這可能是HCC復(fù)發(fā)轉(zhuǎn)移的重要機(jī)制。本文就肌動蛋白絲細(xì)胞骨架重塑在HCC中的作用機(jī)制、信號調(diào)節(jié)、相關(guān)抗腫瘤藥物的研究進(jìn)展作一綜述。
1 肌動蛋白絲細(xì)胞骨架重塑
細(xì)胞骨架是復(fù)雜的纖維網(wǎng)絡(luò)支架,包括微絲(microfilament)、中間絲(intermediate filament)、微管(microtubule)三個成分[3]。微絲是由肌動蛋白分子組成的兩條線性螺旋排列的肌動蛋白纖維,故又稱肌動蛋白絲(actin filament)[4]。在細(xì)胞運(yùn)動過程中,肌動蛋白絲的分子排布及空間構(gòu)象不斷變化,使細(xì)胞適應(yīng)內(nèi)外界環(huán)境的改變,這種變化被稱為“肌動蛋白絲細(xì)胞骨架重塑(actin cytoskeleton remodeling)”[5]。在惡性腫瘤細(xì)胞運(yùn)動中,肌動蛋白絲細(xì)胞骨架重塑驅(qū)動細(xì)胞膜前端形成突起,細(xì)胞在此結(jié)構(gòu)基礎(chǔ)上進(jìn)行黏附爬行,進(jìn)而向遠(yuǎn)處定向遷移[6]。由此可見,深入了解肌動蛋白絲細(xì)胞骨架重塑的機(jī)制對理解腫瘤細(xì)胞的侵襲遷移運(yùn)動尤為重要。
1.1 肌動蛋白絲細(xì)胞骨架重塑的組裝過程
在細(xì)胞中,肌動蛋白分子以肌動蛋白絲(F-actin)和球狀肌動蛋白單體(G-actin)兩種形式存在,F(xiàn)-actin末端分為正負(fù)極,正極的組裝速度比較快,負(fù)極相反,因此,F(xiàn)-actin的正極可不斷延長,而負(fù)極則不斷縮短[7]。肌動蛋白絲細(xì)胞骨架重塑過程可分為3個步驟[8]:(1)由3~4個G-actin聚集成核;(2)核兩端招募更多的G-actin,形成F-actin單鏈;(3)F-actin不斷延長,游離G-actin濃度隨之降低,最終兩者動態(tài)平衡。在細(xì)胞內(nèi),游離G-actin的濃度是體外G-actin組裝成F-actin所需濃度的1500倍,G-actin之所以能夠維持如此之高的濃度而不發(fā)生組裝,與肌動蛋白結(jié)合蛋白(actin-binding proteins,ABPs)密切相關(guān),ABPs維持F-actin和G-actin二者動態(tài)平衡[9]。ABPs通過調(diào)控G-actin或F-actin的活性來調(diào)節(jié)G-actin的組裝速率,使肌動蛋白絲細(xì)胞骨架高度維持動態(tài)變化以適應(yīng)細(xì)胞的運(yùn)動[10]。
1.2 肌動蛋白絲細(xì)胞骨架重塑的信號調(diào)節(jié)
肌動蛋白絲細(xì)胞骨架重塑主要由Rho GTPases通路所介導(dǎo),Rho GTPases的功能類似于GTP酶,主要通過結(jié)合ADP和ATP的方式來發(fā)揮能量分子開關(guān)的作用[11]。Rho、Rac和Cdc42是被報道較多的家族:(1)RhoA、RhoB和RhoC可維持肌動蛋白絲的穩(wěn)定性和控制肌動球蛋白收縮[12];(2)RhoH可通過與Rac1、PAK-2激酶相互作用,影響片狀偽足的形成,導(dǎo)致前列腺癌細(xì)胞的浸潤遷移[13];(3)RhoU可能與PAK-4協(xié)同作用,促進(jìn)細(xì)胞的黏附和遷移[14];(4)Rac家族可能參與調(diào)節(jié)細(xì)胞前端肌動蛋白絲的聚合來影響細(xì)胞膜性突起的形成[15];(5)Cdc42除了調(diào)節(jié)細(xì)胞前端肌動蛋白絲細(xì)胞骨架重塑之外,還可調(diào)節(jié)微管骨架的形成及中間絲的延伸及定位[16]。總之,Rho家族主要調(diào)控細(xì)胞肌動蛋白的收縮力,而Rac和Cdc42則是調(diào)節(jié)細(xì)胞前端膜性突起等結(jié)構(gòu)形成,各家族成員緊密合作,共同協(xié)調(diào)細(xì)胞運(yùn)動。Rho GTPases受鳥嘌呤核苷酸交換因子(guanine nucleotide exchange factors,GEFs)和GTPase激活蛋白(GTPase-activating proteins,GAPs)調(diào)控,GEFs和GAPs通過改變Rho GTPases的空間構(gòu)象來激活Rho GTPases,使其激活下游分子[17]。ROCK是Rho GTPases重要的下游靶標(biāo),其可將波形蛋白磷酸化,研究表明,腫瘤細(xì)胞遷移速度與波形蛋白磷酸化程度密切相關(guān),其機(jī)制可能是波形蛋白參與中間絲和細(xì)胞前部突起的組裝[18]。此外,KHOO等人[19]發(fā)現(xiàn),ROCK除了可通過激活DIA1(diaphanous 1)促進(jìn)肌動蛋白的聚合,還可激活LIM激酶(LIM kinase)抑制cofilin的表達(dá),進(jìn)而調(diào)節(jié)肌動蛋白絲骨架的重塑。mTOR是一類蛋白激酶,其通過調(diào)節(jié)RhoA、Cdc42的表達(dá)來調(diào)節(jié)肌動蛋白絲骨架和細(xì)胞運(yùn)動,Wnt/Ca2+通路通過調(diào)節(jié)Rac、Rho的活性來促進(jìn)肌動蛋白絲骨架重塑[20]。
2 肌動蛋白絲細(xì)胞骨架重塑與肝細(xì)胞癌
2.1 肌動蛋白絲細(xì)胞骨架重塑與肝細(xì)胞癌侵襲遷移
腫瘤細(xì)胞從原發(fā)灶脫落演變成游走能力極強(qiáng)的單個腫瘤細(xì)胞,進(jìn)而侵襲周圍的組織和臟器,隨后進(jìn)入血管隨血流到達(dá)新部位,形成病灶,目前普遍認(rèn)為此過程需要EMT的程序化驅(qū)動[21]。經(jīng)EMT編排后,腫瘤細(xì)胞喪失了上皮細(xì)胞特性,細(xì)胞間的連接消失,腫瘤細(xì)胞以單細(xì)胞運(yùn)動的方式進(jìn)行侵襲遷移。腫瘤單細(xì)胞性運(yùn)動可分為四個步驟[22]:(1)細(xì)胞前端的肌動蛋白絲細(xì)胞骨架重塑,胞膜在前進(jìn)方向伸出突起;(2)膜性突起與細(xì)胞外基質(zhì)(extracellular martix,ECM)形成黏附連接;(3)細(xì)胞分泌蛋白酶溶解ECM中的蛋白成分,構(gòu)建利于細(xì)胞運(yùn)動的微環(huán)境;(4)肌動蛋白絲細(xì)胞骨架以黏附連接作為支點(diǎn)進(jìn)行收縮,拉動細(xì)胞向前運(yùn)動。上述變化利于HCC細(xì)胞突破細(xì)胞外基質(zhì)、基底膜、血管壁等組織屏障,隨后進(jìn)入血液、淋巴液中或者直接在體腔表面向遠(yuǎn)處移動,到達(dá)新的組織或臟器表面后,再浸潤形成新的病灶[23]。HCC遷移過程中,細(xì)胞結(jié)構(gòu)形態(tài)改變,表現(xiàn)為穩(wěn)定細(xì)胞間黏附連接的E-鈣蛋白和支撐骨架完整性的肌動蛋白絲被破壞,肌動蛋白重新組裝,胞膜表面伸出突起偽足,偽足的形成可為HCC發(fā)生侵襲遷移提供結(jié)構(gòu)基礎(chǔ)和動力來源[24]。根據(jù)結(jié)構(gòu)特點(diǎn),偽足可分為侵襲性偽足(invadopodia)、片狀偽足(lamellipodia)、絲狀偽足(filopodia)。(1)侵襲性偽足:其可分泌蛋白酶溶解ECM中的大分子蛋白,協(xié)助HCC突破組織屏障,此外,侵襲性偽足富含F(xiàn)-actin,F(xiàn)-actin動態(tài)組裝為腫瘤細(xì)胞運(yùn)動提供動力[25]。TENG等人[26]報道,過表達(dá)KIFC1使HepG2和8024細(xì)胞侵襲性偽足形成增多,導(dǎo)致HCC侵襲遷移能力增強(qiáng),敲低KIFC1可使7701細(xì)胞侵襲性偽足數(shù)目明顯減少。LAN等人[27]研究表明,過表達(dá)moesin可使SK-Hep-1和SMMC-7721細(xì)胞表達(dá)β-catenin和MMP9增加,侵襲性偽足數(shù)目增多,細(xì)胞運(yùn)動能力隨之增強(qiáng)。(2)片狀偽足:其是腫瘤細(xì)胞黏附爬行的主要結(jié)構(gòu),腫瘤細(xì)胞在運(yùn)動方向不斷形成片狀偽足,偽足與周圍基質(zhì)形成黏附,肌動蛋白借助黏附進(jìn)行收縮,將胞體拉動向前。ANXA2過表達(dá)可誘導(dǎo)SMMC-7721細(xì)胞中F-actin發(fā)生組裝,敲低ANXA2則抑制片狀偽足的形成,細(xì)胞侵襲力降低[28]。(3)絲狀偽足:其位于片狀偽足前端,主要功能是感受并接收信號刺激,誘導(dǎo)片狀偽足的形成,MA等人[29]發(fā)現(xiàn),楊梅黃酮(myricetin)可以抑制MHCC97H細(xì)胞的遷移和侵襲,促進(jìn)細(xì)胞骨架F-actin重排,細(xì)胞邊緣絲狀偽足和片狀偽足數(shù)目也隨著myricetin濃度的增加而減少。
2.2 肌動蛋白絲細(xì)胞骨架重塑與肝細(xì)胞癌EMT
EMT被認(rèn)為是HCC對炎癥、缺氧腫瘤微環(huán)境的一種適應(yīng)性反應(yīng),與腫瘤邊界相比,腫瘤中心處于缺氧壞死狀態(tài),間充質(zhì)樣的形態(tài)和特性使細(xì)胞更容易逃離缺血缺氧中心,向腫瘤邊緣浸潤或者侵犯血管后隨血流定植于其他部位,利于HCC的進(jìn)展[30]。EMT的發(fā)生與肌動蛋白絲細(xì)胞骨架重塑密切相關(guān),上皮細(xì)胞間存在大量的黏附連接,肌動蛋白絲骨架重塑驅(qū)動黏附連接中的F-actin發(fā)生重組,細(xì)胞之間的黏附連接松解,導(dǎo)致細(xì)胞離散。此外,上皮細(xì)胞存在極性,即細(xì)胞頂部存在大量的高爾基體,細(xì)胞底部有ECM分子將細(xì)胞錨定于基底膜上,肌動蛋白絲重塑可誘導(dǎo)細(xì)胞極性發(fā)生改變,經(jīng)過上述變化,上皮細(xì)胞獲得了間質(zhì)樣細(xì)胞的特性,運(yùn)動能力增強(qiáng)[31]。
肌動蛋白絲細(xì)胞骨架重塑驅(qū)動EMT的發(fā)生發(fā)展在HCC進(jìn)展中發(fā)揮著重要作用。PENG等人[32]發(fā)現(xiàn),KLHL23可通過結(jié)合肌動蛋白來抑制肌動蛋白絲的聚合,進(jìn)而抑制肝細(xì)胞癌的EMT,沉默KLHL23,細(xì)胞形態(tài)變成間質(zhì)樣的紡錘形,Huh7細(xì)胞中E-鈣蛋白表達(dá)下降,HepG2和Hep3B細(xì)胞N-鈣蛋白及波形蛋白表達(dá)增多。CHUNG等人[33]的研究顯示,BOP1通過激活RhoA促進(jìn)F-actin重排,誘導(dǎo)Hep3B和HKCI-9細(xì)胞發(fā)生EMT,侵襲能力增強(qiáng)。HUANG等人[34]發(fā)現(xiàn),缺氧可激活HIF-1α/RhoA/ROCK1途徑,誘導(dǎo)胞膜上PIP2表達(dá)上調(diào),促使F-actin重塑進(jìn)而驅(qū)動肝細(xì)胞的EMT。LU等人[35]的研究表明,F(xiàn)AM21C通過抑制CAPZA1對F-actin的加帽能力,驅(qū)動肌動蛋白絲細(xì)胞骨架重塑,促進(jìn)肝細(xì)胞的侵襲轉(zhuǎn)移。
3 肌動蛋白絲細(xì)胞骨架重塑相關(guān)抗腫瘤藥物與肝細(xì)胞癌
以肌動蛋白絲細(xì)胞骨架為靶點(diǎn)來抑制HCC的侵襲遷移,近年來也有較多的報道。LI等人[36]表示,奧沙利鉑(oxaliplatin)可通過上調(diào)GAS7C抑制N-WASP/FAK/F-actin途徑,使HCC侵襲遷移能力下降,與低濃度處理的對照組相比,高濃度組的MHCC97H和HepG2的GAS7C表達(dá)增多,F(xiàn)-actin的表達(dá)和聚合減少,侵襲遷移能力減弱。DOLLER等人[37]發(fā)現(xiàn),經(jīng)典肌動蛋白抑制劑latrunculin A和blebbistatin可以抑制HepG2和Huh7細(xì)胞表達(dá)HuR,進(jìn)而發(fā)揮抗腫瘤特性。此外,一些中藥也可以通過抑制肌動蛋白絲骨架重塑來發(fā)揮HCC侵襲遷移的作用。WANG等人[38]發(fā)現(xiàn),體外實(shí)驗(yàn)中黃連提取物(rhizoma aqueous extract)對MHCC97-L細(xì)胞遷移具有顯著的抑制作用,F(xiàn)-actin聚合減少,其細(xì)胞網(wǎng)絡(luò)骨架受損。PARK等人[39]發(fā)現(xiàn),從藤黃中提取的化合物藤黃酸,可以通過抑制整合素β1/RHO GTPase通路,進(jìn)而抑制肌動蛋白重排,并通過下調(diào)MMP-2、MMP-9和NF-κBD的表達(dá)來抑制SK-HEP1細(xì)胞的遷移和侵襲。燈盞花素是從燈盞花(vant)中提取的化合物,體內(nèi)實(shí)驗(yàn)發(fā)現(xiàn)其可以抑制HCC的肺轉(zhuǎn)移和肝內(nèi)轉(zhuǎn)移,體外實(shí)驗(yàn)發(fā)現(xiàn)其可抑制HepG2細(xì)胞中STAT3的表達(dá)以及肌動蛋白絲的合成,最終細(xì)胞侵襲遷移能力減弱[40]。
4 展望
肝細(xì)胞癌給人類社會帶來沉重的經(jīng)濟(jì)負(fù)擔(dān),手術(shù)切除是治療HCC的首選方式,但是術(shù)后容易發(fā)生轉(zhuǎn)移復(fù)發(fā),其機(jī)制尚未清楚。EMT被認(rèn)為是HCC轉(zhuǎn)移復(fù)發(fā)的關(guān)鍵步驟,肌動蛋白絲細(xì)胞骨架重塑可能是驅(qū)動EMT的重要因素。此外,肌動蛋白絲細(xì)胞骨架重塑促使HCC細(xì)胞形成膜突起性偽足,偽足增強(qiáng)HCC的運(yùn)動游走能力,從而使腫瘤細(xì)胞實(shí)現(xiàn)肝內(nèi)外轉(zhuǎn)移乃至向全身臟器播散。目前,以肌動蛋白絲骨架重塑為靶點(diǎn)的藥物在臨床上的應(yīng)用收效甚微,更多相關(guān)藥物有待研發(fā)。此外,HCC細(xì)胞肌動蛋白絲骨架重塑的機(jī)制有待進(jìn)一步闡明,此領(lǐng)域需要更多、更深入的研究,進(jìn)而為防治HCC轉(zhuǎn)移復(fù)發(fā)和藥物研發(fā)提供理論基礎(chǔ)。
參 考 文 獻(xiàn)
[1] ?中華人民共和國國家衛(wèi)生健康委員會.原發(fā)性肝癌診療指南(2022年版)[J].腫瘤綜合治療電子雜志,2022,8(2):16-53.
[2] ?董曉鋒,楊英豪,張燕,等.原發(fā)性肝癌治療現(xiàn)狀及MDT治療模式的探討[J].肝臟,2021,26(3):262-265.
[3] ?MERINO F, POSPICH S,RAUNSER S. Towards a structural understanding of the remodeling of the actin cytoskeleton[J]. Seminars in Cell Dev Biol, 2020, 102:51-64.
[4] ?LANDINO J, LEDA M, MICHAUD A, et al. Rho and F-actin self-organize within an artificial cell cortex[J]. Curr Biol, 2021, 31(24): 5613-5621.
[5] ?李璐,黃紅武.肌動蛋白細(xì)胞骨架重構(gòu)調(diào)節(jié)免疫細(xì)胞功能的研究進(jìn)展[J].免疫學(xué)雜志, 2019, 35(8): 727-731.
[6] ?LUSBY R, DUNNE P, TIWARI V K. Tumour invasion and dissemination[J]. Biochem Soc Trans, 2022, 50(3): 1245-1257.
[7] ?SUN B, QU R, FAN T, et al.Actin polymerization state regulates osteogenic differentiation in human adipose-derived stem cells[J]. Cell Mol Biol Lett, 2021, 26(1): 15.
[8] ?TANG D D, GERLACH B D. The roles and regulation of the actin cytoskeleton, intermediate filaments and microtubules in smooth muscle cell migration[J]. Respir Res, 2017, 18(1):54.
[9] ?BISARIA A, HAYER A, GARBETT D, et al. Membrane-proximal F-actin restricts local membrane protrusions and directs cell migration[J]. Science, 2020, 368(6496): 1205-1210.
[10] ?SCHAKS M, GIANNONE G, ROTTNER K.Actin dynamics in cell migration[J]. Essays Biochem, 2019, 63(5): 483-495.
[11] ?MOSADDEGHZADEH N, AHMADIAN M R. The RHO family GTPases:mechanisms of regulation and signaling[J]. Cells, 2021, 10(7): 1831.
[12] ?SEETHARAMAN S, ETIENNE-MANNEVILLE S. Cytoskeletal crosstalk in cell migration[J]. Trends Cell Biolo,2020, 30(9): 720-735.
[13] ?TAJADURA-ORTEGA V, GARG R,ALLEN R, et al.An RNAi screen of Rho signalling networks identifies RhoH as a regulator of Rac1 in prostate cancer cell migration[J]. BMC Biol, 2018, 16(1): 29.
[14] ?DART A E, BOX G M, COURT W, et al.PAK4 promotes kinase-independent stabilization of RhoU to modulate cell adhesion[J]. J Cell Biol, 2015, 211(4): 863-879.
[15] ?HUDSON L G, GILLETTE J M, KANG H, et al. Ovarian tumor microenvironment signaling: convergence on the Rac1 GTPase[J]. Cancers, 2018, 10(10): 358.
[16] ?URRUTIA P J, BODALEO F, BóRQUEZ D A, et al. Tuba activates Cdc42 during neuronal polarization downstream of the small GTPase Rab8a[J].J? Neurosci,2021,41(8):1636-1649.
[17] ?MLLER P M, RADEMACHER J, BAGSHAW R D, et al. Systems analysis of RhoGEF and RhoGAP regulatory proteins reveals spatially organized RAC1 signalling from integrin adhesions[J]. Nat Cell Biol, 2020, 22(4): 498-511.
[18] ?TERRIAC E, COCEANO G, MAVAJIAN Z, et al. Vimentin levels and serine 71 phosphorylation in the control of cell-Matrix adhesions, migration speed, and shape of transformed human fibroblasts[J]. Cells, 2017, 6(1): 2.
[19] ?KHOO P, ALLAN K, WILLOUGHBY L, et al.In Drosophila, RhoGEF2 cooperates with activated Ras in tumorigenesis through a pathway involving Rho1-Rok-Myosin-Ⅱ and JNK signalling[J]. Dis Model? Mech, 2013, 6(3): 661-678.
[20] ?KOTELEVETS L, CHASTRE E. Rac1 signaling: from intestinal homeostasis to colorectal cancer metastasis[J]. Cancers, 2020, 12(3): 665.
[21] ?王蓮子.FOXK1通過PI3K/AKT信號通路抑制肝癌細(xì)胞自噬誘導(dǎo)EMT促進(jìn)腫瘤遷移侵襲[D].合肥:安徽醫(yī)科大學(xué),2022.
[22] ?BEMMERLEIN L, DENIZ I A, KARBANOVA J, et al. Decoding single cell morphology in osteotropic breast cancer cells for dissecting their migratory, molecular and biophysical heterogeneity[J]. Cancers, 2022, 14(3):603.
[23] ?溫穩(wěn).肝癌細(xì)胞侵襲過程中原子力學(xué)特性及細(xì)胞骨架重塑的研究[D].蘭州:蘭州大學(xué),2015.
[24] ?RUBTSOVA S N, ZHITNYAK I Y, GLOUSHANKOVA N A. Phenotypic plasticity of cancer cells based on remodeling of the actin cytoskeleton and adhesive structures[J]. Int J? Mol Sci, 2021, 22(4): 1821.
[25] ?藍(lán)書炳.Moesin通過調(diào)節(jié)侵襲性偽足和β-catenin/MMP9信號軸促進(jìn)肝癌細(xì)胞侵襲、轉(zhuǎn)移的分子機(jī)制研究[D].福州:福建農(nóng)林大學(xué),2020.
[26] ?TENG K, WEI S, ZHANG C, et al. KIFC1 is activated by TCF-4 and promotes hepatocellular carcinoma pathogenesis by regulating HMGA1 transcriptional activity[J]. J Exp Clin Cancer Res, 2019, 38(1):329.
[27] ?LAN S B, ZHENG X Y, HU P, et al. Moesin facilitates metastasis of hepatocellular carcinoma cells by improving invadopodia formation and activating β-catenin/MMP9 axis[J]. Biochem and Biophys Res? Commun, 2020, 524(4): 861-868.
[28] ?SHI H, XIAO L, DUAN W, et al. ANXA2 enhances the progression of hepatocellular carcinoma via remodeling the cell motility associated structures[J]. Micron, 2016, 85:26-33.
[29] ?MA H X, ZHU L, REN J N, et al. Myricetin inhibits migration and invasion of hepatocellular carcinoma MHCC97H cell line by inhibiting the EMT process[J]. Oncol Lett, 2019, 18(6):6614-6620.
[30] ?于景霞,劉婷,李沁愷,等.肝細(xì)胞癌相關(guān)的上皮間質(zhì)轉(zhuǎn)化研究進(jìn)展[J].中華肝臟病雜志,2017,25(5):389-392.
[31] ?GURZU S, KOBORI L, FODOR D, et al.Epithelial mesenchymal and endothelial mesenchymal transitions in hepatocellular carcinoma: a review[J]. Biomed Res Int, 2019, 2019:2962580.
[32] ?PENG J M, BERA R, CHIOU C Y, et al. Actin cytoskeleton remodeling drives epithelial-mesenchymal transition for hepatoma invasion and metastasis in mice[J]. Hepatology, 2018, 67(6): 2226-2243.
[33] ?CHUNG K Y, CHENG I K C, CHING A K K, et al. Block of proliferation 1 (BOP1) plays an oncogenic role in hepatocellular carcinoma by promoting epithelial-to-mesenchymal transition[J]. Hepatology,2011,54(1):307-318.
[34] ?HUANG D, CAO L, XIAO L, et al.Hypoxia induces actin cytoskeleton remodeling by regulating the binding of CAPZA1 to F-actin via PIP2 to drive EMT in hepatocellular carcinoma[J]. Cancer Lett, 2019, 448:117-127.
[35] ?LU Y, HUANG D, WANG B L, et al. FAM21C promotes hepatocellular carcinoma invasion and metastasis by driving actin cytoskeleton remodeling via inhibiting capping ability of CAPZA1[J]. Front Oncol,2022, 11:809195.
[36] ?LI D, ZHANG B, HU C. Oxaliplatin inhibits proliferation and migration of human hepatocellular carcinoma cells via GAS7C and the N-WASP/FAK/F-actin pathway[J]. Acta Biochim Biophys, Sin(Shanghai), 2017, 49(7): 581-587.
[37] ?DOLLER A, BADAWI A, SCHMID T, et al. The cytoskeletal inhibitors latrunculin A and blebbistatin exert antitumorigenic properties in human hepatocellular carcinoma cells by interfering with intracellular HuR trafficking[J]. Exp Cell Res, 2015, 330(1): 66-80.
[38] ?WANG N, FENG Y, LAU E P W, et al. F-actin reorganization and inactivation of Rho signaling pathway involved in the inhibitory effect of Coptidis Rhizoma on hepatoma cell migration[J]. Integr Cancer Ther, 2010, 9(4): 354-364..
[39] ?PARK M S, KIM N H, KANG C W, et al.Antimetastatic effects of gambogic acid are mediated via the actin cytoskeleton and NF-κB pathways in SK-HEP1 cells[J]. Drug Dev Res, 2015, 76(3): 132-142.
[40] ?KE Y, BAO T H, WU X S, et al. Scutellarin suppresses migration and invasion of human hepatocellular carcinoma by inhibiting the STAT3/Girdin/Akt activity[J]. Biochem Biophys Res Commun, 2017, 483(1): 509-515.
(收稿日期:2022-06-22 修回日期:2022-08-13)
(編輯:黃研研)