祁建宏 董芳旭
[摘 要] 丹皮酚是從中草藥牡丹(Paeonia suffruticosa Andr.)的根皮、徐長(zhǎng)卿(Pycnostelma paniculatum K. Schum)的全草中分離得到的主要成分之一,具有廣泛的藥理活性,臨床上主要應(yīng)用于抗炎活性方面。目前丹皮酚的藥理作用以及作用機(jī)制的研究進(jìn)展較為迅速,主要集中在抗炎、神經(jīng)保護(hù)、抗腫瘤和防治心血管疾病等方面。通過查閱近幾年丹皮酚的相關(guān)研究,并對(duì)其藥理作用及機(jī)制進(jìn)行闡述,以期擴(kuò)大丹皮酚的臨床應(yīng)用。
[關(guān)鍵詞] 丹皮酚;抗炎;神經(jīng)保護(hù);抗腫瘤;心血管疾?。凰幚碜饔?/p>
[中圖分類號(hào)] R 285.5
[文獻(xiàn)標(biāo)志碼] A
[文章編號(hào)] 1005-0310(2023)02-0072-07
Research Progress in Modern Pharmacological Effects and Mechanism of Paeonol
QI? Jianhong1, DONG? Fangxu2
(1.College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355,China;
2.College of Foreign Languages, Shandong University of Traditional Chinese Medicine, Jinan 250355,China)
Abstract: ?As one of the main components isolated from the root bark of tree peony(Paeonia suffruticosa Andr.)and the whole herb of Xu Changqing(Pycnostelma paniculatum K. Schum), Paeonol has a wide range of pharmacological activities and is mainly used in anti-inflammatory activity in clinical medicine. At present, the research on the pharmacological effects and mechanism of paeonol has made rapid progress including anti-inflammation, neuroprotection, anti-tumor, and prevention of cardiovascular disease. To expand the clinical applications of paeonol, this paper reviews the recent studies on paeonol and expounds on its pharmacological effects and mechanisms.
Keywords: Paeonol;Anti-inflammation;Neuroprotection;Anti-tumor;Cardiovascular disease;Pharmacological effects
0 引言
丹皮酚,別名芍藥醇、牡丹酚,化學(xué)式為C9H10O,主要來(lái)源于傳統(tǒng)中草藥牡丹的根皮和徐長(zhǎng)卿的全草。據(jù)文獻(xiàn)記載,丹皮酚的藥理作用研究始于20世紀(jì)60年代,是典型的抗炎類活性成分之一[1]。丹皮酚注射液在中國(guó)已成功應(yīng)用了近50年,用于炎癥/疼痛相關(guān)的適應(yīng)證。近年來(lái),研究發(fā)現(xiàn)丹皮酚的藥理作用較為廣泛。本文從抗炎、神經(jīng)保護(hù)、抗腫瘤和治療心血管疾病等方面對(duì)丹皮酚的藥理作用及其機(jī)制進(jìn)行綜述。
1 抗炎
丹皮酚具有明顯的抗炎、鎮(zhèn)痛活性,并在關(guān)節(jié)炎、皮膚炎癥、器官損傷、牙周炎和口腔炎、結(jié)腸炎的治療方面發(fā)揮著重要作用。
1.1 關(guān)節(jié)炎
Chen等[2]用丹皮酚對(duì)大鼠踝關(guān)節(jié)內(nèi)注射尿酸單鈉晶體誘導(dǎo)關(guān)節(jié)炎模型進(jìn)行干預(yù),發(fā)現(xiàn)丹皮酚通過降低滑膜組織中腫瘤壞死因子-α(TNF-α)、白細(xì)胞介素-1β(IL-1β)和IL-6的表達(dá),減輕大鼠踝關(guān)節(jié)充血、白細(xì)胞聚集、滑膜增生等關(guān)節(jié)病理?yè)p傷的程度,說(shuō)明丹皮酚對(duì)關(guān)節(jié)炎有明顯的抑制作用。成纖維樣滑膜細(xì)胞(FLS)在類風(fēng)濕性關(guān)節(jié)炎等慢性炎癥性疾病的發(fā)病機(jī)制中起著重要作用。Liu等[3]采用MTT法檢測(cè)TNF-α誘導(dǎo)的FLS增殖情況,結(jié)果表明丹皮酚預(yù)處理可抑制FLS的增殖并呈劑量依賴性。其作用機(jī)制可能是丹皮酚下調(diào)MicroRNA-155(miR-155)的表達(dá),上調(diào)miR-155的直接靶標(biāo)叉形頭轉(zhuǎn)錄因子(FOXO3)的表達(dá),進(jìn)而抑制FLS增殖和細(xì)胞因子IL-6和IL-1β的產(chǎn)生。Lou等[4]的研究表明,丹皮酚通過磷脂酰肌醇3-激酶(PI3K)/蛋白激酶B(Akt)/核因子-κB(NF-κB)信號(hào)通路逆轉(zhuǎn)誘導(dǎo)型一氧化氮合酶、基質(zhì)金屬蛋白酶-1(MMP-1)、MMP-3、MMP-13 和環(huán)氧合酶-2(COX-2)的過度表達(dá),說(shuō)明一氧化氮(NO)和前列腺素E2(PGE2)可能是丹皮酚治療骨關(guān)節(jié)炎的潛在靶點(diǎn)。
1.2 皮膚炎癥
許多皮膚病與過度暴露于紫外線(SUV)之下有關(guān),如皮膚炎、皮膚光老化以及皮膚癌等。Xue等[5]采用微尺度熱電泳法(MST)檢測(cè)丹皮酚與T-LAK細(xì)胞源性蛋白激酶(TOPK)的親和力。結(jié)果表明,丹皮酚可與TOPK結(jié)合并抑制其活性進(jìn)而減輕SUV誘導(dǎo)的皮膚炎癥,且對(duì)小鼠表皮細(xì)胞(JB6 Cl41)和人永生化表皮細(xì)胞(HaCat)無(wú)明顯的細(xì)胞毒性,表明TOPK可能是丹皮酚抑制SUV所導(dǎo)致的皮膚炎癥的潛在靶點(diǎn)之一。Sun等[6]研究了丹皮酚對(duì)SUV誘導(dǎo)的皮膚光老化的影響,證實(shí)了二氫硫辛酰胺脫氫酶(DLD)可調(diào)節(jié)核因子E2的相關(guān)因子2(Nrf2)/抗氧化反應(yīng)元件(ARE),說(shuō)明丹皮酚主要通過DLD/Nrf2/ARE途徑介導(dǎo)的間接細(xì)胞內(nèi)源性保護(hù)機(jī)制來(lái)減少M(fèi)MP-1的產(chǎn)生,進(jìn)而改善皮膚光老化和黑色素沉著。Meng等[7]研究了丹皮酚對(duì)1-氯-2,4-二硝基苯誘導(dǎo)的小鼠特異性皮炎樣病變的作用,首次證明了丹皮酚通過抑制絲裂原活化蛋白激酶(MAPKs)/細(xì)胞外調(diào)節(jié)蛋白激酶(ERK)/p38信號(hào)轉(zhuǎn)導(dǎo),減輕病變的嚴(yán)重程度、表皮厚度和肥大細(xì)胞浸潤(rùn),減少炎性因子的產(chǎn)生。此外,丹皮酚可降低免疫球蛋白E(IgE)水平,改變輔助性T細(xì)胞亞群(Th1/Th2)比值,糾正免疫系統(tǒng)的比例失衡,然而確切機(jī)制還需要進(jìn)一步研究闡明。
1.3 器官損傷
器官損傷與炎性因子的產(chǎn)生、分布存在密切聯(lián)系,丹皮酚在器官損傷修復(fù)過程中發(fā)揮著積極作用。對(duì)乙酰氨基酚(APAP)過量是藥物性急性肝功能衰竭最常見的原因。Ding等[8]采用實(shí)時(shí)熒光定量RT-PCR法檢測(cè)促炎癥因子mRNA的表達(dá)水平,探討丹皮酚對(duì)APAP誘導(dǎo)的小鼠肝毒性的影響,說(shuō)明丹皮酚可顯著降低TNF-α、 單核細(xì)胞趨化蛋白-1(MCP-1)、 IL-1β和IL-6 mRNA表達(dá),減輕炎癥損傷。此外,探討APAP/H2O2所致的氧化應(yīng)激反應(yīng),表明丹皮酚通過減少肝細(xì)胞活性氧(ROS)的產(chǎn)生,從而減輕藥物誘導(dǎo)的肝損傷。Smads家族蛋白在將轉(zhuǎn)化生長(zhǎng)因子β(TGF-β)信號(hào)從細(xì)胞表面受體傳導(dǎo)至細(xì)胞核的過程中起到關(guān)鍵性作用。Wu等[9]和Gong等[10]發(fā)現(xiàn),丹皮酚可通過抑制TGF-β/Smad3信號(hào)通路,減輕氧化應(yīng)激和炎癥反應(yīng)來(lái)保護(hù)肝纖維化。Wang等[11]以慢性低氧性肺動(dòng)脈高壓大鼠模型為研究對(duì)象,首次證實(shí)了丹皮酚對(duì)缺氧所致的線粒體損傷具有保護(hù)作用,并通過過氧化物酶體增殖物激活受體-γ共激活因子1α(PGC-1α)逆轉(zhuǎn)肺動(dòng)脈高壓狀態(tài)下的肺動(dòng)脈平滑肌細(xì)胞凋亡。Liu等[12]證實(shí)了丹皮酚可激活高遷移率族蛋白1(HMGB1)介導(dǎo)的NF-κB/p65信號(hào)通路在急性肺損傷發(fā)病機(jī)制中發(fā)揮著重要作用,說(shuō)明HMGB1可能是丹皮酚治療休克性急性肺損傷的潛在靶點(diǎn)之一。為探討丹皮酚減輕鉛中毒致小鼠腎炎性內(nèi)質(zhì)網(wǎng)應(yīng)激反應(yīng),Liu等[13]研究表明,丹皮酚可能通過單磷酸腺苷活化蛋白激酶(AMPK)/糖原合成酶激酶-3(GSK-3)途徑抑制氧化應(yīng)激、內(nèi)質(zhì)網(wǎng)應(yīng)激和炎癥反應(yīng),從而保護(hù)腎臟損傷。Hafez等[14]研究表明,丹皮酚通過上調(diào)血紅素加氧酶-1(HO-1)和NAD(P)H醌氧化還原酶1(NQO1)蛋白的表達(dá),降低NF-κB、IL-1β和半胱氨酸天冬氨酸蛋白酶3(Caspase3)的表達(dá),發(fā)揮抗氧化、抗炎和抗凋亡作用,最終減輕消炎痛誘導(dǎo)的大鼠胃潰瘍。
1.4 牙周炎和口腔炎
牙周炎是一種與破骨細(xì)胞密切相關(guān)的牙周組織炎性疾?。?5]。Li等[16]研究了丹皮酚對(duì)結(jié)扎誘導(dǎo)大鼠牙周炎的抑制作用,可能是通過調(diào)節(jié)Nrf2/NF-κB/活化T-細(xì)胞核因子1(NFATc1)通路并下調(diào)NF-κB受體活化因子(RANK)的表達(dá)來(lái)抑制大鼠牙槽骨表面破骨細(xì)胞的形成,進(jìn)而減輕牙周炎所致的骨破壞,說(shuō)明Nrf2可能是丹皮酚抑制破骨細(xì)胞生成的靶點(diǎn)。放射性口腔黏膜炎是影響腫瘤患者接受放射治療的重要因素,尤其是頭頸部腫瘤。Yang等[17]以20Gy X射線照射大鼠顱骨,建立口腔粘膜炎模型,基于該模型證明了丹皮酚聯(lián)合蛻皮甾酮對(duì)放射性口腔粘膜炎的療效優(yōu)于單獨(dú)使用蛻皮甾酮,其作用途徑是抑制NF-κB信號(hào)通路。分子對(duì)接實(shí)驗(yàn)表明,丹皮酚與絲氨酸/蘇氨酸蛋白激酶/核酸內(nèi)切酶IRE1(ERN1)、聚腺苷二磷酸核糖聚合酶-1(PARP1)、蛋白酪氨酸磷酸酶非受體型22(PTPN22)具有較高的親和力,可能是丹皮酚發(fā)揮作用的分子靶標(biāo)。
1.5 結(jié)腸炎
Zong等[18]研究了丹皮酚對(duì)潰瘍性結(jié)腸炎模型大鼠的作用,發(fā)現(xiàn)丹皮酚(200 mg·kg-1,400 mg·kg-1)劑量組可減輕大鼠的炎癥程度,顯著降低小鼠結(jié)腸重量/長(zhǎng)度比、疾病活躍度指數(shù)以及結(jié)腸組織病理學(xué)評(píng)分。同時(shí),該劑量治療顯著降低了小鼠血清中IL-6和IL-17的水平,顯著升高了TGF-β1的水平。Jin等[19]研究表明,丹皮酚及其體內(nèi)代謝產(chǎn)物具有明顯的抗炎和抗氧化作用,可有效干預(yù)硫酸葡聚糖鈉誘導(dǎo)的潰瘍性結(jié)腸炎,其機(jī)制可能與阻斷MAPK/ERK/p38信號(hào)通路有關(guān)。
綜上所述,TNF-α、IL-1β、IL-6、IL-17、miR-155、NO、PGE2、TOPK、MCP-1、PGC-1α、HMGB1、HO-1、NQO1、RANK、Nrf2、PLEC、ERN1、PARP1、PTPN22等分子,以及PI3K/Akt/NF-κB、DLD/Nrf2/ARE、MAPK/ERK/p38、TGF-β/Smad3、NF-κB/p65、AMPK/GSK-3、Nrf2/NF-κB/ NFATc1等信號(hào)通路,在丹皮酚治療關(guān)節(jié)炎、皮膚炎癥、器官損傷、牙周炎和口腔炎、結(jié)腸炎等方面發(fā)揮了重要作用。NO、PGE2、TOPK、Nrf2、PLEC、ERN1、PARP1、PTPN22可能是丹皮酚治療相關(guān)炎癥性疾病的重要靶點(diǎn)。
2 神經(jīng)保護(hù)
很多神經(jīng)系統(tǒng)性疾病與炎癥反應(yīng)、氧化應(yīng)激反應(yīng)有著密切關(guān)系。研究表明,丹皮酚具有一定的神經(jīng)保護(hù)作用,是改善神經(jīng)系統(tǒng)相關(guān)疾?。ㄈ缟窠?jīng)毒性、帕金森病、抑郁癥、腦缺血性損傷、癲癇以及早衰等)的潛在治療藥物。
Jin等[20]研究表明,丹皮酚可有效調(diào)節(jié)c-Jun氨基末端激酶(JNK)/ERK/p38MAPK的信號(hào)通路和組蛋白乙?;瘉?lái)抑制神經(jīng)細(xì)胞凋亡,進(jìn)而減輕異氟醚誘導(dǎo)的新生大鼠麻醉性神經(jīng)毒性。Ye等[21]探討了丹皮酚對(duì)帕金森病的影響,發(fā)現(xiàn)丹皮酚通過抑制JNK/ERK相關(guān)信號(hào)通路的激活,保護(hù)星形膠質(zhì)細(xì)胞免于凋亡。此外,丹皮酚可提高海馬腦源性神經(jīng)營(yíng)養(yǎng)因子(BDNF)水平,減輕氧化應(yīng)激反應(yīng)和神經(jīng)炎癥,發(fā)揮神經(jīng)營(yíng)養(yǎng)和保護(hù)作用[22]。Zhu等[23]以丹皮酚對(duì)慢性不可預(yù)知的輕度應(yīng)激(CUMS)抑郁癥大鼠模型進(jìn)行干預(yù),證實(shí)了丹皮酚具有抗抑郁活性,其作用機(jī)制可能部分通過BDNF-Ras相關(guān)的C3肉毒菌毒素底物1(Rac1)/ Ras同源基因家族成員A(RhoA)途徑調(diào)節(jié)絲切蛋白1(Cofilin1)的活性,減少海馬CA1區(qū)和DG區(qū)樹突萎縮和樹突棘丟失,從而減輕抑郁樣行為。Zhao等[24]建立了短暫性腦缺血大鼠模型,觀察到丹皮酚具有保護(hù)腦缺血性損傷的作用,該作用與小膠質(zhì)細(xì)胞活化和星形膠質(zhì)細(xì)胞增殖密切相關(guān)。眾所周知,氧化應(yīng)激反應(yīng)可影響細(xì)胞信號(hào)轉(zhuǎn)導(dǎo),引發(fā)細(xì)胞炎癥、衰老甚至凋亡。Liu等[25]研究了丹皮酚對(duì)癲癇的作用,發(fā)現(xiàn)丹皮酚可通過減輕氧化應(yīng)激反應(yīng)改善癲癇大鼠神經(jīng)元丟失和凋亡,發(fā)揮抗驚厥和神經(jīng)保護(hù)作用。Yang等[26]通過體外實(shí)驗(yàn)發(fā)現(xiàn),丹皮酚能顯著提高H2O2誘導(dǎo)衰老型MRC-5細(xì)胞的存活率,其作用途徑可能是增加Nrf2的核轉(zhuǎn)位,并激活其下游的抗氧化酶,從而降低了細(xì)胞內(nèi)的ROS水平。
由此可見,丹皮酚可通過JNK/ERK/p38MAPK、BDNF-Rac1/RhoA、Nrf2等途徑減輕氧化應(yīng)激反應(yīng)和炎癥反應(yīng)所導(dǎo)致的神經(jīng)細(xì)胞損傷,發(fā)揮神經(jīng)保護(hù)作用,有望成為帕金森病、抑郁癥、腦缺血性損傷、癲癇以及早衰等神經(jīng)系統(tǒng)疾病的治療藥物。
3 抗腫瘤
20世紀(jì)90年代,研究者首次證明丹皮酚有抗腫瘤作用且對(duì)結(jié)腸癌有療效[27]。丹皮酚在單獨(dú)治療前列腺癌、胃癌、口腔癌和骨肉瘤等方面具有巨大的潛力。此外,它還有放射增敏、減輕抗腫瘤藥的副作用和逆轉(zhuǎn)抗腫瘤藥耐藥性等協(xié)同作用。
3.1 抗腫瘤作用
Xu等[28]以皮下注射DU145細(xì)胞混懸液建立小鼠異種移植瘤模型,結(jié)果發(fā)現(xiàn)丹皮酚可明顯減輕前列腺腫瘤的重量且使其在體內(nèi)有良好的吸收,其抗腫瘤作用可能與抑制PI3K/Akt信號(hào)通路有關(guān)。Fu等[29]分析了丹皮酚與STITCH數(shù)據(jù)庫(kù)中記錄的胃癌(GC)基因的關(guān)聯(lián)性,發(fā)現(xiàn)表皮生長(zhǎng)因子受體2(ERBB2)分子可能是丹皮酚作用于胃癌的潛在核心靶點(diǎn)。此外,檢測(cè)丹皮酚對(duì)SGC-7901胃癌細(xì)胞活力的影響,發(fā)現(xiàn)腫瘤細(xì)胞形態(tài)變化明顯且凋亡率增加,并呈量效關(guān)系。其機(jī)制可能與下調(diào)ERBB2表達(dá)、抑制NF-κB信號(hào)通路有關(guān)。Lyu等[30]證實(shí)丹皮酚可顯著下調(diào)MMP-2和MMP-9蛋白的表達(dá)水平,從而抑制BGC823細(xì)胞的侵襲和遷移,說(shuō)明MMP-2和MMP-9可能是丹皮酚治療癌癥的潛在靶點(diǎn)。Zhou等[31]探討丹皮酚抗骨肉瘤的作用機(jī)制,初步解釋了丹皮酚通過阻斷Toll樣受體4(TLR4)/MAPK/NF-κB通路抑制小鼠骨肉瘤的生長(zhǎng)、遷移和侵襲能力。Gao等[32]研究發(fā)現(xiàn),丹皮酚通過阻斷Akt/哺乳動(dòng)物雷帕霉素靶點(diǎn)(mTOR)通路誘導(dǎo)卵巢癌細(xì)胞A2780和SKOV3的保護(hù)性自噬,并促進(jìn)其凋亡,但對(duì)正常卵巢癌上皮細(xì)胞的毒性較小。Ramachandhiran等[33]采用敘利亞金黃地鼠口腔腫瘤模型,證實(shí)了丹皮酚可通過抑制突變型p53和COX-2的蛋白表達(dá),增強(qiáng)caspase-9的表達(dá),從而發(fā)揮抗腫瘤作用。
3.2 協(xié)同抗腫瘤作用
研究發(fā)現(xiàn),丹皮酚可發(fā)揮減輕抗腫瘤藥物副作用、減輕耐藥性及增強(qiáng)放射療效等協(xié)同抗腫瘤作用。心臟毒性、肝腎損傷等毒副作用限制了部分抗腫瘤藥物在化療中的臨床應(yīng)用[34]。Wu等[35]采用藥物注射制備小鼠肝毒性損傷模型,發(fā)現(xiàn)丹皮酚可通過抑制PI3K/Akt/NF-κB信號(hào)通路降低肝細(xì)胞凋亡,改善肝功能??鼓[瘤藥阿霉素通過抑制單次跨膜受體蛋白Notch1的信號(hào)通路促進(jìn)心肌細(xì)胞凋亡、肥大和纖維化,進(jìn)而產(chǎn)生嚴(yán)重的心臟毒性。研究發(fā)現(xiàn),丹皮酚可重新激活Notch1,保護(hù)心肌細(xì)胞,減輕其心臟毒性作用[36]。紫杉醇是乳腺癌臨床化療常用的一線抗腫瘤藥物,然而化療中出現(xiàn)的耐藥現(xiàn)象限制了其應(yīng)用。Zhang等[37]研究表明,丹皮酚可通過下調(diào)SET/蛋白磷酸酶2A(PP2A)/Akt通路逆轉(zhuǎn)紫杉醇的耐藥表型P-糖蛋白(P-gp)、乳腺癌耐藥蛋白(BCRP)、多藥耐藥相關(guān)蛋白1(MRP1)和三磷酸腺苷結(jié)合盒轉(zhuǎn)運(yùn)蛋白(ABC),并首次提出SET蛋白可作為丹皮酚逆轉(zhuǎn)紫杉醇耐藥性潛在的分子靶點(diǎn),但是此結(jié)論缺乏動(dòng)物模型和人類臨床試驗(yàn)研究。放射治療是治療實(shí)體瘤的一種重要而有效的方法,為增強(qiáng)放射療效和對(duì)腫瘤的有效控制,開發(fā)新的增敏劑是至關(guān)重要的。丹皮酚通過調(diào)節(jié)輻射耐受的關(guān)鍵途徑,即缺氧誘導(dǎo)因子-1α(HIF-1α)/血管內(nèi)皮生長(zhǎng)因子(VEGF)通路和PI3K/Akt/mTOR信號(hào)轉(zhuǎn)導(dǎo)通路,誘導(dǎo)輻射后的卵巢癌細(xì)胞凋亡[38]。
總之,丹皮酚可通過調(diào)節(jié)TLR4/MAPK/NF-κB、PI3K/Akt/NF-κB、SET/PP2A/Akt、HIF-1α/VEGF、PI3K/Akt/mTOR等信號(hào)通路影響腫瘤的生長(zhǎng)、遷移和侵襲等,并誘導(dǎo)腫瘤細(xì)胞凋亡。此外,ERBB2、MMP-2、MMP-9、Notch1、SET可能是丹皮酚發(fā)揮抗腫瘤作用的潛在靶點(diǎn)。
4 抗心血管疾病
心血管疾病是危害人類健康的嚴(yán)重疾病,研究發(fā)現(xiàn),丹皮酚在治療動(dòng)脈粥樣硬化(AS)、改善血管內(nèi)皮功能和減輕心肌損傷方面具有獨(dú)特的優(yōu)勢(shì)。
Yuan等[39]研究發(fā)現(xiàn),丹皮酚可通過調(diào)節(jié)miR-126介導(dǎo)的PI3K/Akt/NF-κB信號(hào)通路抑制單核細(xì)胞與氧化低密度脂蛋白損傷的血管內(nèi)皮細(xì)胞粘附,說(shuō)明miR-126是丹皮酚抑制血管內(nèi)皮損傷的潛在靶點(diǎn)之一。Liu等[40]通過喂養(yǎng)高膽固醇飼料建立動(dòng)脈粥樣硬化小鼠模型,探討丹皮酚對(duì)炎癥反應(yīng)的保護(hù)作用,結(jié)果表明,丹皮酚可增加miR-223的表達(dá),通過調(diào)節(jié)信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子3(STAT3)的表達(dá)來(lái)改善AS小鼠主動(dòng)脈炎癥;體外實(shí)驗(yàn)表明,丹皮酚通過降低人臍靜脈內(nèi)皮細(xì)胞(HUVECs)炎性分子(IL-1、IL-6)和黏附分子(VCAM-1,ICAM-1)的表達(dá)水平,減少單核細(xì)胞與HUVECs的粘附。Wu等[41]研究表明,丹皮酚可誘導(dǎo)血管平滑肌細(xì)胞自噬,激活A(yù)MPK/mTOR信號(hào)通路,抑制血管平滑肌細(xì)胞增殖。然而,丹皮酚能否在體內(nèi)誘導(dǎo)適度的自噬有待進(jìn)一步研究。此外,內(nèi)質(zhì)網(wǎng)應(yīng)激導(dǎo)致的內(nèi)皮功能障礙,與多種心血管疾病的發(fā)病機(jī)制密切相關(guān)。在脂多糖(LPS)誘導(dǎo)細(xì)胞凋亡和內(nèi)皮功能障礙的研究中[42]發(fā)現(xiàn),丹皮酚可抑制TLR4和骨形態(tài)發(fā)生蛋白4(BMP4)的表達(dá),減少內(nèi)皮細(xì)胞凋亡。Li等[43]以丹皮酚聯(lián)合丹參素對(duì)異丙腎上腺素誘導(dǎo)的心肌損傷大鼠模型進(jìn)行干預(yù),研究發(fā)現(xiàn),丹皮酚與丹參素聯(lián)合預(yù)處理對(duì)大鼠心肌損傷具有保護(hù)作用,其作用機(jī)制是通過激活Nrf2/HO-1和PI3K/Akt途徑來(lái)實(shí)現(xiàn)的。
綜上所述,microRNA(如miR-126和miR-223)、TLR4、BMP4可能是丹皮酚治療心血管疾病的潛在靶點(diǎn)。丹皮酚可通過調(diào)節(jié)PI3K/Akt/NF-κB、Nrf2/HO-1、AMPK/mTOR等信號(hào)通路來(lái)改善血管內(nèi)皮功能,抑制血管平滑肌功能。
5 結(jié)束語(yǔ)
天然酚類化合物丹皮酚的抗炎活性一直是研究熱點(diǎn),與丹皮酚調(diào)控多種細(xì)胞因子、氧化應(yīng)激反應(yīng)以及炎癥通路密切相關(guān)。多個(gè)潛在作用靶點(diǎn)及對(duì)多種信號(hào)通路的調(diào)節(jié)體現(xiàn)了丹皮酚多靶點(diǎn)、多活性作用的特性,將在治療相關(guān)疾病方面發(fā)揮重要作用。
此外,研究發(fā)現(xiàn)丹皮酚衍生物也有多種藥理活性,如改善阿爾茨海默?。?4]、減輕急性肺損傷[45]、抗炎[46]、抗乙型肝炎病毒[47]、抗腫瘤[48]等。
綜上所述,丹皮酚具有獨(dú)特的藥用價(jià)值、廣泛的藥理活性和無(wú)明顯毒副作用等特點(diǎn),目前臨床應(yīng)用主要集中在抗炎活性方面。針對(duì)丹皮酚其他藥理作用的開發(fā),可通過丹皮酚的結(jié)構(gòu)修飾或劑型改造,進(jìn)而提高丹皮酚的溶解性和靶向性,擴(kuò)大其臨床適應(yīng)證。本文對(duì)丹皮酚在抗炎、神經(jīng)保護(hù)、抗腫瘤、治療心血管疾病等方面的藥理作用及作用機(jī)制進(jìn)行綜述,為丹皮酚的開發(fā)及臨床應(yīng)用提供參考。
[參考文獻(xiàn)]
[1] HARADA M, YAMASHITA A. Pharmacological studies on the root bark of paeonia moutan. i. central effects of paeonol[J]. Yakugaku Zasshi, 1969, 89(9): 1205-1211.
[2] CHEN G, JIA P, YIN Z Y, et al. Paeonol ameliorates monosodium urate-induced arthritis in rats through inhibiting nuclear factor-kappaB-mediated proinflammatory cytokine production [J]. Phytother Res, 2019, 33(11): 2971-2978.
[3] LIU N, FENG X, WANG W, et al. Paeonol protects against tnf-α-induced proliferation and cytokine release of rheumatoid arthritis fibroblast-like synoviocytes by upregulating foxo3 through inhibition of mir-155 expression [J]. Inflamm Res, 2017, 66(7): 603-610.
[4] LOU Y T, WANG C G, TANG Q, et al. Paeonol inhibits IL-1beta-induced inflammation via PI3K/Akt/NF-kappaB pathways: in vivo and vitro studies [J]. Inflammation, 2017, 40(5): 1698-1706.
[5] XUE P P, WANG Y, ZENG F F, et al. Paeonol suppresses solar ultraviolet-induced skin inflammation by targeting T-LAK cell-originated protein kinase [J]. Oncotarget, 2017, 8(16): 27093-27104.
[6] SUN Z W, DU J, WANG W B, et al. Paeonol extracted from paeonia suffruticosa andr. ameliorated UVB-induced skin photoaging via DLD/Nrf2/ARE and MAPK/AP-1 pathway [J]. Phytother Res, 2018, 32(9): 1741-1749.
[7] MENG Y J, LIU Z R, ZHAI C Y, et al. Paeonol inhibits the development of 1chloro2,4dinitrobenzeneinduced atopic dermatitis via mast and T cells in BALB/c mice [J]. Mol Med Rep, 2019, 19(4): 3217-3229.
[8] DING Y, LI Q, XU Y, et al. Attenuating oxidative stress by paeonol protected against acetaminophen-induced hepatotoxicity in mice [J]. PLoS One, 2016, 11(5): e0154375.
[9] WU S, LIU L, YANG S, et al. Paeonol alleviates CCl4-induced liver fibrosis through suppression of hepatic stellate cells activation via inhibiting the TGF-beta/Smad3 signaling [J]. Immunopharmacol Immunotoxicol, 2019, 41(3): 438-445.
[10] GONG X B, YANG Y, HUANG L G, et al. Antioxidation, anti-inflammation and anti-apoptosis by paeonol in LPS/d-GalN-induced acute liver failure in mice [J]. Int Immunopharmacol, 2017(46): 124-132.
[11] WANG D, DU Y, XU H, et al. Paeonol protects mitochondrial injury and prevents pulmonary vascular remodeling in hypoxia [J]. Respir Physiol Neurobiol, 2019, 268: 103252.
[12] LIU X, XU Q, MEI L, et al. Paeonol attenuates acute lung injury by inhibiting HMGB1 in lipopolysaccharide-induced shock rats [J]. Int Immunopharmacol, 2018(61): 169-177.
[13] LIU C M, YANG H X, MA J Q, et al. Role of AMPK pathway in lead-induced endoplasmic reticulum stress in kidney and in paeonol-induced protection in mice [J]. Food and Chemical Toxicology, 2018(122): 87-94.
[14] HAFEZ H M, MORSY M A, MOHAMED M Z, et al. Mechanisms underlying gastroprotective effect of paeonol against indomethacin-induced ulcer in rats [J]. Hum Exp Toxicol, 2019, 38(5): 510-518.
[15] 陳筑,宿凌愷.丹皮酚對(duì)牙齦卟啉單胞菌誘導(dǎo)骨髓來(lái)源巨噬細(xì)胞功能的影響[J].華西口腔醫(yī)學(xué)雜志,2017,35(2):139-144.
[16] LI J, LI Y P, PAN S, et al. Paeonol attenuates ligation-induced periodontitis in rats by inhibiting osteoclastogenesis via regulating Nrf2/NF-kappaB/NFATc1 signaling pathway [J]. Biochimie, 2019, 156: 129-137.
[17] YANG L, PAN J. Therapeutic effect of ecdysterone combine paeonol oral cavity direct administered on radiation-induced oral mucositis in rats[J]. Int J Mol Sci, 2019, 20(15): 3800.
[18] ZONG S Y, PU Y Q, XU B L, et al. Study on the physicochemical properties and anti-inflammatory effects of paeonol in rats with TNBS-induced ulcerative colitis [J]. Int Immunopharmacol, 2017,42: 32-38.
[19] JIN X, WANG J, XIA Z M, et al. Anti-inflammatory and anti-oxidative activities of paeonol and its metabolites through blocking mapk/erk/p38 signaling pathway [J]. Inflammation, 2016,39(1): 434-446.
[20] JIN H Y, WANG M Y, WANG J M, et al. Paeonol attenuates isoflurane anesthesia-induced hippocampal neurotoxicity via modulation of JNK/ERK/P38MAPK pathway and regulates histone acetylation in neonatal rat [J]. J Matern Fetal Neonatal Med,2020,33(1): 81-91.
[21] YE M S, YI Y X, WU S X, et al. Role of paeonol in an astrocyte model of parkinsons disease [J]. Med Sci Monit, 2017, 23: 4740-4748.
[22] SHI X, CHEN Y H, LIU H, et al. Therapeutic effects of paeonol on methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid-induced Parkinsons disease in mice [J]. Mol Med Rep, 2016,14(3): 2397-2404.
[23] ZHU X L, CHEN J J, HAN F, et al. Novel antidepressant effects of paeonol alleviate neuronal injury with concomitant alterations in BDNF, Rac1 and RhoA levels in chronic unpredictable mild stress rats [J]. Psychopharmacology (Berl), 2018,235(7): 2177-2191.
[24] ZHAO Y, FU B S, ZHANG X J, et al. Paeonol pretreatment attenuates cerebral ischemic injury via upregulating expression of pAkt, Nrf2, HO-1 and ameliorating BBB permeability in mice [J]. Brain Res Bull,2014(109): 61-67.
[25] LIU D H, AGBO E, ZHANG S H, et al. Anticonvulsant and neuroprotective effects of paeonol in epileptic rats [J]. Neurochem Res, 2019,44(11): 2556-2565.
[26] YANG L, XING S, WANG K, et al. Paeonol attenuates aging MRC-5 cells and inhibits epithelial-mesenchymal transition of premalignant HaCaT cells induced by aging MRC-5 cell-conditioned medium [J]. Mol Cell Biochem, 2018,439(1-2): 117-129.
[27] CHUNG J G. Paeonol promotion of DNA adduct formation and arylamines N-acetyltransferase activity in human colon tumour cells [J]. 1999,37(4): 327-334.
[28] XU Y, ZHU J Y, LEI Z M, et al. Anti-proliferative effects of paeonol on human prostate cancer cell lines DU145 and PC-3 [J]. J Physiol Biochem, 2017,73(2): 157-165.
[29] FU J, YU L H, LUO J, et al. Paeonol induces the apoptosis of the SGC7901 gastric cancer cell line by downregulating ERBB2 and inhibiting the NFkappaB signaling pathway [J]. Int J Mol Med, 2018,42(3): 1473-1483.
[30] LYU Z K, LI C L, JIN Y, et al. Paeonol exerts potential activities to inhibit the growth, migration and invasion of human gastric cancer BGC823 cells via downregulating MMP2 and MMP9 [J]. Mol Med Rep, 2017,16(5): 7513-7519.
[31] ZHOU J G, LIU Q L, QIAN R, et al. Paeonol antagonizes oncogenesis of osteosarcoma by inhibiting the function of TLR4/MAPK/NF-kappaB pathway [J]. Acta Histochem, 2020,122(1):151455.
[32] GAO L K, WANG Z, LU D H, et al. Paeonol induces cytoprotective autophagy via blocking the Akt/mTOR pathway in ovarian cancer cells [J]. Cell Death Dis, 2019,10(8): 609.
[33] RAMACHANDHIRAN D, VINOTHKUMAR V, BABUKUMAR S. Paeonol exhibits anti-tumor effects by apoptotic and anti-inflammatory activities in 7,12-dimethylbenz(a)anthracene induced oral carcinogenesis [J]. Biotech Histochem,2018,94(1): 1-16.
[34] WU J, XU L, SUN C, et al. Paeonol alleviates epirubicin-induced renal injury in mice by regulating Nrf2 and NF-κB pathways [J]. Eur J Pharmacol, 2017,795:84-93.
[35] WU J, XUE X, ZHANG B, et al. The protective effects of paeonol against epirubicin-induced hepatotoxicity in 4T1-tumor bearing mice via inhibition of the PI3K/Akt/NF-kB pathway [J]. Chem-Biol Interact,2016,244: 1-8.
[36] SYEDA T A I, BALASUBRAMANIAN T P P, SUDHAKARAN R, et al. Paeonol reverses adriamycin induced cardiac pathological remodeling through notch1 signaling reactivation in H9c2 cells and adult zebrafish heart[J]. Chem Res Toxicol, 2020,33(2):312-323.
[37] ZHANG W P, CAI J X, CHEN S Y, et al. Paclitaxel resistance in MCF-7/PTX cells is reversed by paeonol through suppression of the SET/phosphatidylinositol 3-kinase/Akt pathway [J]. Mol Med Rep, 2015,12(1):1506-1514.
[38] ZHOU H M, SUN Q X, CHENG Y. Paeonol enhances the sensitivity of human ovarian cancer cells to radiotherapy-induced apoptosis due to downregulation of the phosphatidylinositol-3-kinase/Akt/phosphatase and tensin homolog pathway and inhibition of vascular endothelial growth factor [J]. Exp Ther Med, 2017,14(4):3213-3220.
[39] YUAN X S, CHEN J, DAI M J. Paeonol promotes microRNA-126 expression to inhibit monocyte adhesion to ox-LDL-injured vascular endothelial cells and block the activation of the PI3K/Akt/NF-kappaB pathway [J]. Int J Mol Med, 2016,38(6):1871-1878.
[40] LIU Y R, LI C, WU H F, et al. Paeonol attenuated inflammatory response of endothelial cells via stimulating monocytes-derived exosomal microRNA-223 [J]. Front Pharmacol, 2018,9:1105.
[41] WU H F, SONG A, HU W J, et al. The anti-atherosclerotic effect of paeonol against vascular smooth muscle cell proliferation by up-regulation of autophagy via the ampk/mtor signaling pathway [J]. Front Pharmacol, 2017(8):948.
[42] CHOY K W, LAU Y S, MURUGAN D, et al. Paeonol attenuates lps-induced endothelial dysfunction and apoptosis by inhibiting bmp4 and tlr4 signaling simultaneously but independently[J]. J Pharmacol Exp Ther, 2018,364(3):420-432.
[43] LI H, SONG F, DUAN L R, et al. Paeonol and danshensu combination attenuates apoptosis in myocardial infarcted rats by inhibiting oxidative stress: roles of Nrf2/HO-1 and PI3K/Akt pathway [J]. Sci Rep,2016,6:23693.
[44] HAN F, ZHUANG T T, CHEN J J, et al. Novel derivative of paeonol, paeononlsilatie sodium, alleviates behavioral damage and hippocampal dendritic injury in Alzheimers disease concurrent with cofilin1/phosphorylated-cofilin1 and RAC1/CDC42 alterations in rats [J]. PLoS One, 2017,12(9):e0185102.
[45] FU P K, YANG C Y, HUANG S C, et al. Evaluation of LPS-induced acute lung injury attenuation in rats by aminothiazole-paeonol derivatives[J]. Molecules, 2017,22(10):1605.
[46] HUANG L G, ZHANG B S, YANG Y, et al. Synthesis and anti-inflammatory activity of paeonol analogues in the murine model of complete Freunds adjuvant induced arthritis [J]. Bioorg Med Chem Lett, 2016,26(21):5218-5221.
[47] HUANG T J, CHUANG H, LIANG Y C, et al. Design, synthesis, and bioevaluation of paeonol derivatives as potential anti-HBV agents [J]. Eur J Med Chem, 2015,90:428-435.
[48] TSAI C Y, KAPOOR M, HUANG Y P, et al. Synthesis and evaluation of aminothiazole-paeonol derivatives as potential anticancer agents [J]. Molecules, 2016,21(2):145.
(責(zé)任編輯 柴 智)
[收稿日期] 2022-08-16
[作者簡(jiǎn)介] 祁建宏(1995—),男,山東煙臺(tái)人,山東中醫(yī)藥大學(xué)藥學(xué)院碩士研究生,主要研究方向?yàn)榭共《舅幬锖Y選及網(wǎng)絡(luò)藥理學(xué)研究;董芳旭(2000—),男,山東威海人,山東中醫(yī)藥大學(xué)外國(guó)語(yǔ)學(xué)院學(xué)生,主要研究方向?yàn)橹嗅t(yī)藥翻譯與跨文化傳播。E-mail:qjh951024@163.com