• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      N摻雜Co3O4納米片的制備以及活化過一硫酸鹽的性能研究

      2023-07-06 04:35:15高碩郭照冰
      關(guān)鍵詞:硫酸根催化活性活化

      高碩 郭照冰

      摘要 采用犧牲模板法合成N摻雜Co3O4納米片(N-Co NS),通過透射電子顯微鏡(TEM)、原子力顯微鏡(AFM)和光電子能譜(XPS)對制備材料的形貌結(jié)構(gòu)、化學(xué)組成進(jìn)行分析,并通過催化活化過一硫酸鹽(PMS)降解水中雙酚A(BPA)來探究催化劑的催化性能.實驗結(jié)果表明與Co3O4納米顆粒(Co NP)、Co3O4納米片(Co NS)相比,N-Co NS表現(xiàn)出了較高的催化性能.在PMS濃度為2 mmol·L-1、BPA初始質(zhì)量濃度為50 mg·L-1的反應(yīng)條件下,N-Co NS在10 min內(nèi)完全降解水中的BPA,表明N摻雜和二維納米片結(jié)構(gòu)有利于催化劑性能的提升.通過pH及離子影響實驗證實N-Co NS在復(fù)雜水化學(xué)環(huán)境中仍具有較高的活性.此外結(jié)合自由基捕獲實驗和電子順磁共振(EPR)測試證實反應(yīng)體系中產(chǎn)生了高氧化活性的羥基自由基和硫酸根自由基.

      關(guān)鍵詞 Co3O4;過一硫酸鹽;雙酚A

      中圖分類號TB332

      文獻(xiàn)標(biāo)志碼A

      0 引言

      相比于傳統(tǒng)的芬頓反應(yīng),硫酸根自由基高級氧化技術(shù)具有更高的氧化電位和更寬的pH適應(yīng)范圍,被認(rèn)為是一種極具潛力的水處理技術(shù)[1].但是,過一硫酸鹽(PMS)作為主要的氧化劑,其在常溫下比較穩(wěn)定,只有在外界能量激發(fā)的情況下才能有效產(chǎn)生高活性的氧化物種.因此,為了提升其氧化效率,人們采用多種方式對其進(jìn)行活化,如紫外光、電、超聲以及催化活化等[2-5].

      與其他方式相比,催化活化過程需要更少的能量輸入而被廣泛使用.迄今為止,已有多種催化劑被開發(fā)出來,如活性炭、石墨烯、碳納米管和金屬氧化物等[6-10].其中鈷被認(rèn)為是活化PMS最有效的過渡金屬催化劑,它對多種污染物均表現(xiàn)出優(yōu)異的催化活性.然而,鈷的流失會對水生生態(tài)系統(tǒng)的安全和穩(wěn)定造成危害.此外,鈷的利用率仍然較低.這些缺陷限制了其在水處理中的應(yīng)用.研究結(jié)果表明,利用鈷的氧化物(Co3O4、CoO、Co2O3)構(gòu)建非均相催化體系可以有效抑制鈷元素的流失[11-13].因此開發(fā)一種高效的鈷基氧化物催化劑是硫酸根自由基高級氧化技術(shù)實際應(yīng)用的重要一環(huán).二維納米片與體相的納米顆粒相比,具有更多的反應(yīng)位點(diǎn),被應(yīng)用于多種異相反應(yīng)體系中[14-15].大量研究表明,非金屬原子摻雜可改變體相材料的電子結(jié)構(gòu)的平衡狀態(tài)來創(chuàng)造新的反應(yīng)活性位點(diǎn)從而提升材料的催化活性[16-19].如N摻雜Co3O4可以增加催化劑的活性位點(diǎn)用于分解N2O、氧化CO以及析氧[20-22].然而關(guān)于N摻雜Co3O4催化活化PMS研究相對較少.

      本文利用犧牲模板法制備N摻雜Co3O4納米片(N-Co NS),研究其催化活化PMS降解水中雙酚A(BPA)的性能,并探究其在多種水化學(xué)環(huán)境中的催化性能.同時還考察了反應(yīng)體系中的活性物種和催化穩(wěn)定性.

      1 實驗

      1.1 試劑與儀器

      試劑:硝酸鈷、尿素、無水乙醇、氯化鈉、碳酸鈉、叔丁醇(TBA)、甲醇(MeOH)購買自國藥集團(tuán)有限公司.過一硫酸氫鉀、腐殖酸購買自阿拉丁試劑有限公司.

      儀器:透射電子顯微鏡(TEM,H-7650 Hitachi)、原子力顯微鏡(AFM,Bruker,Diension Icon microscope)、光電子能譜(XPS,ESCALAB 25 Thermo-VG)、電子順磁共振(EPR,JESFA200 JOEL).

      1.2 催化劑的制備

      Co3O4納米顆粒(Co NP)的制備:將5 g硝酸鈷置于管式爐中,在氮?dú)夥諊?00 ℃焙燒5 h.將得到的固體用去離子水和無水乙醇多次洗滌,最后于60 ℃烘干.

      Co3O4納米片(Co NS)的制備:將0.8 g硝酸鈷溶解在40 mL去離子水中,隨后加入5 g 尿素,攪拌3 h后將溶液轉(zhuǎn)移至反應(yīng)釜中180 ℃反應(yīng)12 h.待冷卻之后,將得到的固體用去離子水和無水乙醇多次洗滌,于60 ℃烘干,然后將上述固體在氮?dú)夥諊?00 ℃焙燒5 min,冷卻之后,洗滌烘干備用.

      N摻雜Co3O4納米片(N-Co NS)的制備:將5 g石墨相氮化碳納米片分散在40 mL去離子水中,隨后加入0.8 g硝酸鈷和5 g尿素,攪拌3 h后將溶液轉(zhuǎn)移至反應(yīng)釜中180 ℃反應(yīng)12 h.待冷卻之后,將得到的固體用去離子水和無水乙醇多次洗滌,于60 ℃烘干.然后將上述固體在氮?dú)夥諊?00 ℃焙燒5 min,冷卻之后,洗滌烘干備用.

      1.3 催化劑的吸附性能評價

      將5 mg材料加入50 mL質(zhì)量濃度為50 mg·L-1的BPA溶液中,不停攪拌使其均勻分散,每隔一定時間取樣,利用0.22 μm濾頭進(jìn)行過濾,收集溶液.用高效液相色譜(e2685,waters)測定對應(yīng)溶液中BPA的質(zhì)量濃度.液相的測試條件:柱溫為30 ℃,流動相是體積比為15%的水和85%的甲醇,紫外檢測器波長為230 nm.

      1.4 催化劑的活性評價

      將5 mg材料加入50 mL質(zhì)量濃度為50 mg·L-1的BPA溶液中,不停攪拌使其均勻分散,在吸附平衡后加入2 mL 50 mmol·L-1的PMS溶液,此時反應(yīng)開始計時,每隔一定時間取出1 mL的溶液通過0.22 μm的濾頭過濾到含有0.5 mL甲醇的液相瓶中,其中甲醇是自由基淬滅劑用于終止反應(yīng).溶液中BPA的濃度通過高效液相色譜測定,高效液相色譜的測試條件和1.3一致.

      2 結(jié)果與討論

      2.1 樣品的形貌分析

      圖1是不同催化劑的TEM圖.從圖1中可以看出Co NP是團(tuán)聚的納米顆粒狀,而Co NS和N-Co NS是典型的二維納米片結(jié)構(gòu),與文獻(xiàn)[23]結(jié)果一致.

      此外,從N-Co NS的AFM圖(圖2)可以進(jìn)一步觀察到二維納米片結(jié)構(gòu),且厚度大約在15~30 nm左右.

      2.2 樣品的XPS分析

      圖3a是不同樣品的N 1s 譜圖,從中明顯觀察到,相比于Co NP和Co NS,N-Co NS的譜圖中出現(xiàn)了一個明顯的信號峰,這說明N原子已經(jīng)成功摻雜到Co3O4骨架結(jié)構(gòu)中[22].從圖3b可以發(fā)現(xiàn),Co2p譜圖有Co 2p3/2、Co 2p1/2、衛(wèi)星峰三種特征峰,Co 2p3/2和Co 2p1/2都可以反卷積成兩個峰,證明了催化劑中的Co具有Co2+和Co3+混合價態(tài).結(jié)合能為781.8 eV和797.3 eV的峰歸結(jié)為Co2+,結(jié)合能為779.9 eV和795.1 eV的峰歸結(jié)為Co3+,而結(jié)合能在788.4 eV和804.4 eV處的峰為Co3O4的衛(wèi)星峰[24-25].圖3c是樣品的O 1s譜圖,結(jié)合能為530.0 eV和531.3 eV分別歸屬于晶格氧和表面氧空位[26].在催化劑的Co 2p和O 1s譜圖中沒有觀察到差異性,這表明N的摻雜并沒有改變Co3O4的化學(xué)性質(zhì).

      2.3 催化劑催化活化PMS降解BPA的性能

      作為一個典型的非均相反應(yīng),污染物在催化劑表面的吸附行為對于后續(xù)的催化過程尤為重要.不投加PMS,考察了不同催化劑對BPA的吸附能力.采用Ct/C0表示降解效率,其中Ct為t時刻BPA的質(zhì)量濃度,C0為BPA的原始質(zhì)量濃度.如圖4a所示,三種催化劑對于BPA的吸附性能較弱,在吸附1 h后,水中BPA的質(zhì)量濃度沒有明顯下降,這表明在后續(xù)的PMS活化實驗中,BPA的質(zhì)量濃度下降均來自于BPA被氧化降解.

      在確定了BPA在不同催化劑表面的吸附行為之后,以此為基礎(chǔ),對它們催化活性進(jìn)行系統(tǒng)的研究.圖4b是不同材料活化PMS降解水中BPA的效果曲線,可以看出相比于純PMS反應(yīng)體系,加入三種Co基催化劑之后,BPA的降解率都有明顯提升,且它們的降解率順序為:N-Co NS>Co NS>Co NP,這是因為二維納米片結(jié)構(gòu)與體相催化劑相比具有較多的反應(yīng)活性位點(diǎn),因此Co NS的活性要高于Co NP[14-15].而在N摻雜之后,催化劑的電子結(jié)構(gòu)隨之改變,產(chǎn)生了新的反應(yīng)位點(diǎn)[20].因此N-Co NS的活性進(jìn)一步提升,在10 min內(nèi)將水中的BPA全部降解.

      通過控制反應(yīng)的溫度來考察溫度對N-Co NS活化PMS降解BPA的影響.改變溫度條件,N-Co NS活化PMS降解BPA效果如圖5a所示.實驗過程中隨著反應(yīng)溫度的升高,BPA的降解效率也隨之升高.這主要有兩點(diǎn)原因:一方面是反應(yīng)體系中溫度升高,熱能增加,有助于PMS分解生成活性自由基,另一方面溫度升高會加劇BPA分子的運(yùn)動,致使有效碰撞增加,單位時間PMS與材料接觸幾率增大,產(chǎn)生的活性自由基與BPA分子接觸幾率也增大.因此在高溫環(huán)境中BPA的降解率有所提高[27].

      圖5b是N-Co NS在不同初始pH值溶液中活化PMS降解BPA的效果曲線,從中可以觀察到,在pH是酸性和中性的條件下,N-Co NS均表現(xiàn)出較高的催化活性,這主要是由于酸性條件有利于硫酸根自由基的產(chǎn)生,促進(jìn)了BPA的降解.但是隨著溶液pH上升到11.2時,BPA的降解效率明顯降低,這主要是因為當(dāng)溶液pH=11.2時,BPA解離成BPA負(fù)離子與N-Co NS表面存在著靜電排斥作用,減弱其在N-Co NS表面的吸附,從而降低了BPA的降解效果[28].

      水化學(xué)環(huán)境也是影響PMS活化的重要因素之一.如圖5c所示,無論是無機(jī)陰離子(Cl-,CO32-)還是有機(jī)腐殖酸分子,對于N-Co NS活化PMS均無顯著的影響,這說明N-Co NS具有在復(fù)雜水環(huán)境下的應(yīng)用潛力.

      為了研究BPA的降解機(jī)理,活性自由基捕獲實驗是必不可少的,相關(guān)研究表明活化PMS過程中會產(chǎn)生羥基自由基和硫酸根自由基[29].通常TBA是典型的羥基自由基捕獲劑,而MeOH可以作為羥基自由基和硫酸根自由基的捕獲劑.因此分別在BPA溶液中加入TBA和MeOH,用以研究反應(yīng)體系中哪種活性自由基對BPA的降解起主導(dǎo)作用.結(jié)果如圖6a所示,兩種捕獲劑對系統(tǒng)降解BPA都有抑制作用,添加TBA后,BPA的降解效率發(fā)生了明顯下降,這表明在該反應(yīng)中羥基自由基起著重要作用.而添加MeOH后,BPA的降解效率下降至50%左右,這表明硫酸根自由基在N-Co NS活化PMS降解BPA過程

      中起到主導(dǎo)作用[30].此外,利用EPR進(jìn)一步確定反應(yīng)系統(tǒng)中活性自由基.如圖6b所示,在N-Co NS/PMS反應(yīng)體系中出現(xiàn)了羥基自由基和硫酸根自由基信號峰,進(jìn)一步證實了反應(yīng)體系中硫酸根自由基和羥基自由基的存在[31].

      穩(wěn)定性是決定著催化劑是否具有實際應(yīng)用前景的關(guān)鍵因素之一.圖7是N-Co NS的回用實驗效果圖,在回用兩次之后,N-Co NS的催化活性有少許下降,可能因為在反應(yīng)過程中少量的鈷溶出導(dǎo)致性能下降,因此對反應(yīng)過程中鈷的溶出濃度進(jìn)行了測定.由圖8可知,隨著反應(yīng)時間的增加,溶液中的鈷離子不斷溶出,反應(yīng)15 min時,溶出的Co3+質(zhì)量濃度為2.9 mg·L-1,因此可以推斷N-Co NS在回用時催化性能的下降與鈷的溶出有關(guān).

      3 結(jié)論

      本文利用犧牲模板法制備了新型的N摻雜Co3O4納米片,并將其應(yīng)用于催化活化PMS降解水中BPA.實驗結(jié)果表明,二維納米片結(jié)構(gòu)和N摻雜顯著提升了Co3O4的催化活性,在10 min內(nèi)可將反應(yīng)體系中的BPA完全降解.多種條件實驗證實了N-Co NS在復(fù)雜水化學(xué)環(huán)境中均保持了較高的催化活性.此外,捕獲實驗和EPR測試揭示了反應(yīng)過程中羥基自由基對BPA的降解起到主要作用,而硫酸根自由基起到了主導(dǎo)作用.N摻雜Co3O4納米片在回用兩次之后催化活性少許下降,與反應(yīng)過程中少量的鈷離子溶出有關(guān).總體而言,N-Co NS具有較高的化學(xué)穩(wěn)定性和催化穩(wěn)定性,以及較好的水處理應(yīng)用前景.

      參考文獻(xiàn)

      References

      [1]Ghanbari F,Moradi M.Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants:review[J].Chemical Engineering Journal,2017,310:41-62

      [2] Lee J,von Gunten U,Kim J H.Persulfate-based advanced oxidation:critical assessment of opportunities and roadblocks[J].Environmental Science & Technology,2020,54(6):3064-3081

      [3] Xiao R Y,Luo Z H,Wei Z S,et al.Activation of peroxymonosulfate/persulfate by nanomaterials for sulfate radical-based advanced oxidation technologies[J].Current Opinion in Chemical Engineering,2018,19:51-58

      [4] Xiao S,Cheng M,Zhong H,et al.Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways:a review[J].Chemical Engineering Journal,2020,384:123265

      [5] Yang Q,Ma Y H,Chen F,et al.Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water[J].Chemical Engineering Journal,2019,378:122149

      [6] Liu J Q,Wu P X,Yang S S,et al.A photo-switch for peroxydisulfate non-radical/radical activation over layered CuFe oxide:rational degradation pathway choice for pollutants[J].Applied Catalysis B:Environmental,2020,261:118232

      [7] Shukla P,Wang S B,Singh K,et al.Cobalt exchanged zeolites for heterogeneous catalytic oxidation of phenol in the presence of peroxymonosulphate[J].Applied Catalysis B:Environmental,2010,99(1/2):163-169

      [8] Hu P D,Su H R,Chen Z Y,et al.Selective degradation of organic pollutants using an efficient metal-free catalyst derived from carbonized polypyrrole via peroxymonosulfate activation[J].Environmental Science & Technology,2017,51(19):11288-11296

      [9] Zhang J J,Zhao X,Wang Y B,et al.Peroxymonosulfate-enhanced visible light photocatalytic degradation of bisphenol A by perylene imide-modified g-C3N4[J].Applied Catalysis B:Environmental,2018,237:976-985

      [10] Shao H X,Zhao X,Wang Y B,et al.Synergetic activation of peroxymonosulfate by Co3O4modified g-C3N4 for enhanced degradation of diclofenac sodium under visible light irradiation[J].Applied Catalysis B:Environmental,2017,218:810-818

      [11] Liu G S,Lv H S,Sun H Y,et al.Fabrication of tubelike Co3O4with superior peroxidase-like activity and activation of PMS by a facile electrospinning technique[J].Industrial & Engineering Chemistry Research,2018,57(6):2396-2403

      [12] Pervaiz E,Gul I H,Anwar H.Hydrothermal synthesis and characterization of CoFe2O4 nanoparticles and nanorods[J].Journal of Superconductivity and Novel Magnetism,2013,26(2):415-424

      [13] Shukla P,Sun H Q,Wang S B,et al.Co-SBA-15 for heterogeneous oxidation of phenol with sulfate radical for wastewater treatment[J].Catalysis Today,2011,175(1):380-385

      [14] 孫寶,張賽,蘇子亭,等.TiO2納米棒-ZnO納米片分級結(jié)構(gòu)的制備及光電性能[J].功能材料,2018,49(9):9020-9026

      SUN Bao,ZHANG Sai,SU Ziting,et al.Preparation and photoelectrical property of the TiO2-ZnO nanorod-nanosheet hierarchical structure[J].Journal of Functional Materials,2018,49(9):9020-9026

      [15] 顧留洋,王樹林.ZnO納米棒陣列、納米片及其發(fā)光和光催化特性[J].功能材料,2015,46(3):3041-3044

      GU Liuyang,WANG Shulin.ZnO nanorod arrays and nanosheets,its photoluminescence and photocatalytic properties[J].Journal of Functional Materials,2015,46(3):3041-3044

      [16] 郭艷蕊,嚴(yán)慧羽,宋慶功,等.Ni摻雜濃度對CdS:Ni體系電子和光學(xué)性質(zhì)的影響[J].功能材料,2020,51(4):4136-4141

      GUO Yanrui,YAN Huiyu,SONG Qinggong,et al.Effect of Ni doping concentration on the electronic and optical properties of CdS:Ni systems[J].Journal of Functional Materials,2020,51(4):4136-4141

      [17] 劉健梅,朱忠其,張瑾,等.S摻雜改性TiO2光催化劑的研究[J].功能材料,2014,45(1):1006-1009

      LIU Jianmei,ZHU Zhongqi,ZHANG Jin,et al.Research of S-doped modified TiO2 photocatalyst[J].Journal of Functional Materials,2014,45(1):1006-1009

      [18] 張華榮,苗掛帥,馬興平,等.氟、鋅共摻雜TiO2納米晶的制備與光催化性能[J].功能材料,2014,45(16):16125-16129

      ZHANG Huarong,MIAO Guashuai,MA Xingping,et al.Preparation and photocatalytic properties of F-Zn-codoped nanocrystalline TiO2[J].Journal of Functional Materials,2014,45(16):16125-16129

      [19] 童穎,趙飛文,焦雷,等.雜原子摻雜的碳材料在電容脫鹽方面的應(yīng)用研究進(jìn)展[J].功能材料,2017,48(8):8001-8006

      TONG Ying,ZHAO Feiwen,JIAO Lei,et al.Heteroatom-doped carbon materials for capacitive deionization[J].Journal of Functional Materials,2017,48(8):8001-8006

      [20] Xu L,Wang Z M,Wang J L,et al.N-doped nanoporous Co3O4nanosheets with oxygen vacancies as oxygen evolving electrocatalysts[J].Nanotechnology,2017,28(16):165402

      [21] Yin C C,Liu Y N,Xia Q N,et al.Oxygen vacancy-rich nitrogen-doped Co3O4nanosheets as an efficient water-resistant catalyst for low temperature CO oxidation[J].Journal of Colloid and Interface Science,2019,553:427-435

      [22] Hu X B,Wang Y Z,Wu R F,et al.N-doped Co3O4catalyst with a high efficiency for the catalytic decomposition of N2O[J].Molecular Catalysis,2021,509:111656

      [23] Ma X D,Ma W X,Jiang D L,et al.Construction of novel WO3/SnNb2O6 hybrid nanosheet heterojunctions as efficient Z-scheme photocatalysts for pollutant degradation[J].Journal of Colloid and Interface Science,2017,506:93-101

      [24] Hassan H M A,Betiha M A,Elshaarawy R F M,et al.Promotion effect of palladium on Co3O4incorporated within mesoporous MCM-41 silica for CO oxidation[J].Applied Surface Science,2017,402:99-107

      [25] Ma L,Seo C Y,Chen X Y,et al.Indium-doped Co3O4 nanorods for catalytic oxidation of CO and C3H6 towards diesel exhaust[J].Applied Catalysis B:Environmental,2018,222:44-58

      [26] Abu-Zied B M,Soliman S A,Asiri A M.Role of rubidium promotion on the nitrous oxide decomposition activity of nanocrystalline Co3O4-CeO2catalyst[J].Applied Surface Science,2019,479:148-157

      [27] 陳煒,張宇東,蔡珺晨,等.殼聚糖負(fù)載磺化酞菁鈷催化過硫酸鹽降解甲基橙的研究[J].中國環(huán)境科學(xué),2019,39(1):157-163

      CHEN Wei,ZHANG Yudong,CAI Junchen,et al.Degradation of methyl orange by chitosan microsphere supported cobalt tetrasulfophthalocyanine activated persulfate[J].China Environmental Science,2019,39(1):157-163

      [28] Chang C,F(xiàn)u Y,Hu M,et al.Photodegradation of bisphenol A by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solar light irradiation[J].Applied Catalysis B:Environmental,2013,142/143:553-560

      [29] Zhao H X,Wang L,Kong D Y,et al.Degradation of triclosan in a peroxymonosulfate/Br-system:identification of reactive species and formation of halogenated byproducts[J].Chemical Engineering Journal,2020,384:123297

      [30] 王曉曉,王兆慧,柳建設(shè).熱活化過硫酸鹽氧化降解水體中泛影酸鈉的研究[J].環(huán)境科學(xué)學(xué)報,2019,39(5):1519-1526

      WANG Xiaoxiao,WANG Zhaohui,LIU Jianshe.Degradation of sodium diatrizoate by thermally activated persulfate oxidation process[J].Acta Scientiae Circumstantiae,2019,39(5):1519-1526

      [31] Qiu P X,Xue N X,Cheng Z W,et al.The cooperation of photothermal conversion,photocatalysis and sulfate radical-based advanced oxidation process on few-layered graphite modified graphitic carbon nitride[J].Chemical Engineering Journal,2021,417:127993

      Fabrication of N-doped Co3O4 nanosheets with high catalyticperformance of activating peroxymonosulfate

      GAO Shuo GUO Zhaobing

      1School of Environmental Science and Engineering/Jiangsu Key Laboratory of Atmospheric Environment Monitoring &Pollution Control/Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology,

      Nanjing University of Information Science & Technology,Nanjing 210044

      AbstractNitrogen-doped Co3O4 nanosheets (N-Co NS) were synthesized by sacrificial template method.The morphological structure and chemical composition of the obtained materials were characterized by Transmission Electron Microscopy (TEM),Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS).In addition,the catalytic performance of the prepared catalysts was evaluated by catalytically activating peroxymonosulfate (PMS) to degrade bisphenol A (BPA) in water.Compared with Co3O4 nanoparticles (Co NP) and Co3O4 nanosheets (Co NS),N-Co NS exhibits higher catalytic performance according to the experimental results.Under the reaction conditions that the dosage of PMS is 2 mmol·L-1and the initial concentration of BPA is 50 mg·L-1,N-Co NS completely degrades BPA in water within 10 minutes,indicating that the N-doping and two-dimensional nanosheet structure are beneficial to the improvement of catalyst performance.N-Co NS still has high activity in complex water chemical environment proved by the pH and ions effect experiments.Besides,the high oxidative activity hydroxyl radicals and sulfate radicals were produced in the reaction system,which was confirmed by the trapping experiments and Electron Paramagnetic Resonance (EPR) tests.

      Key words Co3O4;peroxymonosulfate (PMS);bisphenol A (BP

      猜你喜歡
      硫酸根催化活性活化
      無Sn-Pd活化法制備PANI/Cu導(dǎo)電織物
      某黃金冶煉廠水系中硫酸根濃度降低試驗探索
      小學(xué)生活化寫作教學(xué)思考
      電場強(qiáng)化SRB生物膜降解硫酸根條件優(yōu)化
      稀土La摻雜的Ti/nanoTiO2膜電極的制備及電催化活性
      環(huán)化聚丙烯腈/TiO2納米復(fù)合材料的制備及可見光催化活性
      循環(huán)水中硫酸根測定干擾因素的研究
      基于B-H鍵的活化對含B-C、B-Cl、B-P鍵的碳硼烷硼端衍生物的合成與表征
      Fe3+摻雜三維分級納米Bi2WO6的合成及其光催化活性增強(qiáng)機(jī)理
      LaCoO3催化劑的制備及其在甲烷催化燃燒反應(yīng)中的催化活性
      开远市| 义乌市| 泰安市| 昌平区| 宜昌市| 永城市| 泰安市| 资阳市| 廉江市| 潜江市| 武宁县| 马关县| 策勒县| 黔西县| 开封市| 玉环县| 绵竹市| 安福县| 卓尼县| 徐州市| 元谋县| 十堰市| 新余市| 克东县| 海南省| 无锡市| 上林县| 郓城县| 江孜县| 静海县| 延寿县| 屯门区| 青浦区| 福泉市| 凤阳县| 木里| 柳林县| 黄浦区| 郸城县| 龙门县| 庆城县|