張朝玉 雷曉雨 張斌
摘 要:應(yīng)急醫(yī)療資源是應(yīng)對(duì)突發(fā)公共衛(wèi)生事件的物質(zhì)基礎(chǔ)和保障,能否根據(jù)需求及時(shí)、準(zhǔn)確地提供應(yīng)急醫(yī)療資源對(duì)于降低疫情造成的損失具有重要作用。首先,綜述了應(yīng)急醫(yī)療資源需求預(yù)測(cè)方法及緊迫度的評(píng)估指標(biāo)體系;其次,對(duì)應(yīng)急醫(yī)療資源儲(chǔ)備的關(guān)鍵問(wèn)題進(jìn)行分析,綜述了規(guī)模與輪換、政企合作、設(shè)施選址3個(gè)方面的研究現(xiàn)狀;再次,從優(yōu)化目標(biāo)、時(shí)間窗等角度總結(jié)應(yīng)急醫(yī)療資源調(diào)配模型,以及優(yōu)化算法的研究現(xiàn)狀;最后,對(duì)應(yīng)急醫(yī)療資源保障發(fā)展趨勢(shì)進(jìn)行了總結(jié)和展望,指出通過(guò)大數(shù)據(jù)技術(shù)和平臺(tái)提升應(yīng)急醫(yī)療資源保障能力尤為重要,具體應(yīng)關(guān)注3個(gè)方面:1)運(yùn)用數(shù)字技術(shù)建設(shè)應(yīng)急醫(yī)療資源大數(shù)據(jù)平臺(tái);2)通過(guò)大數(shù)據(jù)平臺(tái)重構(gòu)應(yīng)急醫(yī)療資源保障系統(tǒng);3)應(yīng)急醫(yī)療資源保障系統(tǒng)重構(gòu)的實(shí)現(xiàn)路徑。
關(guān)鍵詞:安全科學(xué)技術(shù);應(yīng)急管理;醫(yī)療資源保障;突發(fā)公共衛(wèi)生事件;大數(shù)據(jù)平臺(tái)
中圖分類號(hào):R184
文獻(xiàn)標(biāo)識(shí)碼:A DOI:10.7535/hbkd.2023yx03010
收稿日期:2023-04-04;修回日期:2023-05-18;責(zé)任編輯:張士瑩
基金項(xiàng)目:河北省社會(huì)科學(xué)基金(HB20GL058)
第一作者簡(jiǎn)介:張朝玉(1981—),男,河北石家莊人,講師,博士,主要從事應(yīng)急管理、地方政府管理、教育經(jīng)濟(jì)與管理方面的研究。E-mail:372120712@qq.com
Review on studies of emergency medical resource support
ZHANG Chaoyu,LEI Xiaoyu,ZHANG Bin
(School of Economics and Management,Hebei University of Science and Technology,Shijiazhuang,Hebei 050018,China)
Abstract:Emergency medical resources are the material basis and guarantee for responding to public health emergencies. Timely and accurate provision of emergency medical resources based on demand plays an important role in reducing the losses caused by the epidemic. Firstly, the prediction method of emergency medical resource demand and the evaluation index system of urgency were summarized. Secondly, the key issues of emergency medical resource reserve were analyzed, and the research status of scale and rotation, government-enterprise cooperation, facility location was summarized. Thirdly, the emergency medical resource allocation model was summarized from the optimization objective and time window, and the research status of optimization algorithm was summarized. Finally, the research status of emergency medical resource guarantee was reviewed, and the development trend of emergency medical resource guarantee was summarized and prospected, suggesting that it is particularly important to improve the emergency medical resource guarantee ability through big data technology and platform, which includes three aspects: 1) Using digital technology to build a big data platform for emergency medical resources; 2) Reconstructing the emergency medical resource support system through the big data platform; 3) Implementation path for the reconstruction of emergency medical resource support system.
Keywords:safety science and technology;emergency management;medical resource guarantee;public health emergencies;big data platforms
近年來(lái),公共衛(wèi)生事件頻發(fā),能否及時(shí)、準(zhǔn)確地提供應(yīng)急醫(yī)療資源是應(yīng)對(duì)疫情的關(guān)鍵。習(xí)近平總書記在中央全面深化改革委員會(huì)第十二次會(huì)議上指出:“醫(yī)用設(shè)備、防護(hù)服、口罩等物資頻頻告急,反映出國(guó)家應(yīng)急物資保障體系存在突出短板。把應(yīng)急物資保障作為國(guó)家應(yīng)急管理體系建設(shè)的重要內(nèi)容,按照集中管理、統(tǒng)一調(diào)撥、平時(shí)服務(wù)、災(zāi)時(shí)應(yīng)急、采儲(chǔ)結(jié)合、節(jié)約高效的原則,盡快健全相關(guān)工作機(jī)制和應(yīng)急預(yù)案”[1]。為貫徹落實(shí)習(xí)近平總書記關(guān)于應(yīng)急物資保障體系建設(shè)的重要精神,2022-10-11,應(yīng)急管理部、國(guó)家發(fā)展改革委、財(cái)政部、國(guó)家糧食和儲(chǔ)備局聯(lián)合印發(fā)《“十四五”應(yīng)急物資保障規(guī)劃》,對(duì)“十四五”期間應(yīng)急物資保障工作作出了全面部署。
研究應(yīng)急醫(yī)療資源保障有助于高效應(yīng)對(duì)突發(fā)公共衛(wèi)生事件[2]。例如:研究應(yīng)急醫(yī)療設(shè)施布局決策問(wèn)題,有助于為突發(fā)公共衛(wèi)生事件下的選址問(wèn)題提供科學(xué)依據(jù)[3];研究突發(fā)公共衛(wèi)生事件下的人力資源管理,有利于建立有彈性的醫(yī)療衛(wèi)生保障系統(tǒng),以滿足絕大多數(shù)人員的需求[4];通過(guò)GPS大數(shù)據(jù)測(cè)量應(yīng)急醫(yī)療資源保障的時(shí)空可及性,有助于幫助決策者更好地安排應(yīng)急設(shè)施的位置與應(yīng)急服務(wù)時(shí)間[5]。從醫(yī)療資源類型的角度來(lái)看,應(yīng)急醫(yī)療資源包括藥品[6]、防護(hù)用品[7]、醫(yī)療設(shè)施[8]等可更新與不可更新資源。從發(fā)展階段來(lái)看,應(yīng)急醫(yī)療資源保障可以分為災(zāi)前資源儲(chǔ)備[9]以及災(zāi)時(shí)資源調(diào)度[10]。目前,中國(guó)仍然存在著應(yīng)急醫(yī)療資源儲(chǔ)備不完善、生產(chǎn)能力不足、調(diào)度困難等問(wèn)題。近年來(lái),關(guān)于應(yīng)急醫(yī)療資源保障的研究主要集中在災(zāi)前儲(chǔ)備體系構(gòu)建[11]、災(zāi)時(shí)應(yīng)急醫(yī)療資源分配[12]、運(yùn)輸[13]以及應(yīng)急醫(yī)療設(shè)施選址[14]等方面。
本文針對(duì)應(yīng)急醫(yī)療資源需求預(yù)測(cè)、儲(chǔ)備、調(diào)配的相關(guān)研究進(jìn)行梳理和歸納,分析應(yīng)急醫(yī)療資源保障研究存在的問(wèn)題,提出應(yīng)急醫(yī)療資源保障的研究趨勢(shì)。
1 應(yīng)急醫(yī)療資源需求預(yù)測(cè)
1.1 預(yù)測(cè)方法
突發(fā)公共衛(wèi)生事件具有突發(fā)性、高傳播性、高危害性的特點(diǎn),根據(jù)獲取的災(zāi)區(qū)信息進(jìn)行分析,模擬預(yù)測(cè)所需要的醫(yī)療資源,對(duì)醫(yī)療資源供給具有重要意義。現(xiàn)有研究主要通過(guò)建立需求預(yù)測(cè)模型和軟件模擬來(lái)測(cè)算需求量,其方法主要包括3種,即傳統(tǒng)預(yù)測(cè)方法、基于人工智能的預(yù)測(cè)方法、基于傳染病模型的仿真預(yù)測(cè)方法。
1.1.1 傳統(tǒng)預(yù)測(cè)方法
傳統(tǒng)的預(yù)測(cè)方法主要有經(jīng)驗(yàn)預(yù)測(cè)法、時(shí)間序列法以及基于模糊理論的預(yù)測(cè)方法等。經(jīng)驗(yàn)預(yù)測(cè)法主要根據(jù)類似的緊急情況、密度和其他特征的以往經(jīng)驗(yàn)來(lái)預(yù)測(cè)影響[15]。時(shí)間序列法則是從過(guò)去的觀測(cè)中獲得緊急情況的時(shí)間演變特征,進(jìn)而預(yù)測(cè)未來(lái)的需求。JUANG等[16]通過(guò)收集過(guò)去的急診科患者數(shù)量進(jìn)行時(shí)間序列自回歸綜合移動(dòng)平均分析,然后采用擬合預(yù)測(cè)模型預(yù)測(cè)需求?;谀:碚摰念A(yù)測(cè)方法,主要是運(yùn)用模糊變量來(lái)描述需求量或者通過(guò)案例進(jìn)行模糊推理。宋英華等[17]選用三角模糊數(shù)描述模糊需求量,進(jìn)行應(yīng)急醫(yī)療資源選址-分配模型的求解。
1.1.2 基于人工智能的預(yù)測(cè)方法
隨著大數(shù)據(jù)時(shí)代的到來(lái),人工智能(artificial intelligence,AI)技術(shù)飛速發(fā)展,人工智能的最終目標(biāo)是學(xué)習(xí)與識(shí)別感興趣的數(shù)據(jù)和結(jié)果之間的關(guān)聯(lián)[18]。機(jī)器學(xué)習(xí)和深度學(xué)習(xí)是人工智能的2個(gè)重要子領(lǐng)域,并在應(yīng)急醫(yī)療資源需求預(yù)測(cè)方面取得了一些重要研究成果。SHAFIEKHANI等[19]建立了基于機(jī)器學(xué)習(xí)算法的時(shí)間序列預(yù)測(cè)模型,通過(guò)模型訓(xùn)練及驗(yàn)證以預(yù)測(cè)未來(lái)趨勢(shì)。MARTIN等[20]采用多層感知器(MLP)人工神經(jīng)網(wǎng)絡(luò)模型,基于集成的決策樹(shù)模型進(jìn)行特征選擇,生成一系列每日、每小時(shí)和空間分布的小時(shí)需求量預(yù)測(cè)。
1.1.3 基于傳染病模型的仿真預(yù)測(cè)方法
傳染病模型可以模擬流行病在人群中的傳播,其中易感-感染-恢復(fù)(SIR)[21]和易感-暴露-感染-恢復(fù)(SEIR)[22]模型(如圖1所示)是2個(gè)經(jīng)典的傳染病模型。相關(guān)文獻(xiàn)將其作為基礎(chǔ)模型,預(yù)測(cè)感染人數(shù)與醫(yī)療資源需求量。王付宇等[23]和許德剛等[24]利用SEIR模型預(yù)測(cè)各災(zāi)區(qū)感染人數(shù),進(jìn)而預(yù)測(cè)醫(yī)療資源的需求量。蘇強(qiáng)等[25]和樊長(zhǎng)佳等[26]結(jié)合突發(fā)公共衛(wèi)生事件特點(diǎn)對(duì)基礎(chǔ)模型進(jìn)行改進(jìn),在SEIR模型的基礎(chǔ)上考慮了醫(yī)療資源供應(yīng)比例與康復(fù)率的關(guān)系、感染者的門診就診和住院治療過(guò)程,后者選取上海市作為樣本,建立了各類應(yīng)急醫(yī)療資源需要量與疫情發(fā)展之間的動(dòng)態(tài)數(shù)量關(guān)系。
1.2 評(píng)估緊迫度
資源的有限性決定了應(yīng)急醫(yī)療資源保障需根據(jù)各個(gè)災(zāi)區(qū)的優(yōu)先級(jí)來(lái)進(jìn)行。因此,考慮各需求點(diǎn)緊急情況的差異性,根據(jù)需求緊迫程度有次序地進(jìn)行醫(yī)療資源保障具有重要意義。已有文獻(xiàn)關(guān)于應(yīng)急醫(yī)療資源需求緊迫度的評(píng)估指標(biāo)以及緊迫度得分確定方法見(jiàn)表1。
基于以上研究可發(fā)現(xiàn),相關(guān)文獻(xiàn)考慮了需求緊迫度,確定了緊迫度評(píng)估指標(biāo)體系,將受災(zāi)人數(shù)、人口密度、患病人數(shù)、醫(yī)療基礎(chǔ)設(shè)施、應(yīng)急醫(yī)療資源儲(chǔ)備情況等納入了評(píng)估指標(biāo)。應(yīng)急醫(yī)療資源需求緊迫度評(píng)估指標(biāo)確定后,需要選擇合理的評(píng)估方法,確定評(píng)估對(duì)象在各評(píng)估指標(biāo)上的評(píng)價(jià)結(jié)果,從而對(duì)緊迫度高的地區(qū)進(jìn)行優(yōu)先配送。由表1可知,大多學(xué)者評(píng)估需求緊迫度的方法為層次分析法或TOPSIS法,還有一些學(xué)者為得到相對(duì)準(zhǔn)確的判斷,將2種評(píng)價(jià)方法相結(jié)合,提出了熵權(quán)-TOPSIS法、采用B型關(guān)聯(lián)度的改進(jìn)TOPSIS法、結(jié)合了德?tīng)柗品ǖ氖噶拷怯嘞业腎GRA方法等。
2 應(yīng)急醫(yī)療資源儲(chǔ)備
應(yīng)急醫(yī)療資源儲(chǔ)備不僅面臨儲(chǔ)量難以滿足峰值需求的問(wèn)題,還存在剩余過(guò)期等問(wèn)題。本文從規(guī)模與輪換、政企合作以及設(shè)施選址3個(gè)方面梳理應(yīng)急醫(yī)療資源儲(chǔ)備現(xiàn)狀。
2.1 規(guī)模與輪換
關(guān)于應(yīng)急醫(yī)療資源儲(chǔ)備規(guī)模,一方面,相關(guān)文獻(xiàn)為使儲(chǔ)備量與實(shí)際需求相匹配,將事件發(fā)生前確定資源儲(chǔ)備量和事件發(fā)生后確定資源最優(yōu)方案結(jié)合在一起進(jìn)行研究[36];另一方面,以長(zhǎng)期平均成本最低為宗旨,研究隨機(jī)需求情況下應(yīng)急醫(yī)療資源儲(chǔ)備安排的最優(yōu)實(shí)物和資金儲(chǔ)備量[37]。關(guān)于應(yīng)急醫(yī)療資源的輪換:相關(guān)研究主要集中于易逝性應(yīng)急醫(yī)療資源的庫(kù)存優(yōu)化、輪換更新次數(shù)、輪換周期以及降低過(guò)期損失等方面[38-39]。由于易逝性醫(yī)療資源的價(jià)值隨時(shí)間而遞減,不同輪換策略直接影響應(yīng)急醫(yī)療資源的儲(chǔ)備成本。相關(guān)學(xué)者對(duì)易逝性資源輪換問(wèn)題進(jìn)行了研究,PAN等[40]為了緩解應(yīng)急藥物制劑庫(kù)存中的過(guò)期問(wèn)題,研究了從應(yīng)急儲(chǔ)備中心到醫(yī)院退貨的應(yīng)急藥品閉環(huán)供應(yīng)鏈;MENG等[41]設(shè)計(jì)了親社會(huì)銷售策略,緩解應(yīng)急易逝品庫(kù)存系統(tǒng)的過(guò)期浪費(fèi)。
2.2 政企合作
近年來(lái),諸多學(xué)者利用供應(yīng)鏈契約理論[42]幫助政企制定合理的決策方案,以滿足突發(fā)條件下受災(zāi)人群對(duì)應(yīng)急醫(yī)療資源的巨大需求。在眾多供應(yīng)鏈契約中,期權(quán)契約[6,42-46]得到廣泛使用,其利用金融領(lǐng)域中的期權(quán)概念,具有提高供應(yīng)鏈柔性、協(xié)調(diào)渠道、規(guī)避風(fēng)險(xiǎn)、節(jié)約成本等優(yōu)勢(shì),有助于實(shí)現(xiàn)政府和企業(yè)風(fēng)險(xiǎn)共擔(dān)、收益共享。相關(guān)研究最初考慮了單一供應(yīng)商的情形,后續(xù)為滿足多樣的應(yīng)急醫(yī)療資源需求,相關(guān)學(xué)者開(kāi)始探討政府與2個(gè)供應(yīng)商聯(lián)合決策的情況。李晟等[47]研究了政府與2個(gè)異質(zhì)型供應(yīng)商聯(lián)合儲(chǔ)備的供應(yīng)系統(tǒng),在構(gòu)建政企委托代理關(guān)系的基礎(chǔ)上,為2個(gè)供應(yīng)商設(shè)計(jì)了儲(chǔ)備成本分擔(dān)契約及含收益分成的雙邊成本分擔(dān)契約,借助微分博弈的方法,推導(dǎo)出政企最優(yōu)決策策略。
2.3 設(shè)施選址
在應(yīng)急醫(yī)療資源保障過(guò)程中,醫(yī)療資源儲(chǔ)備設(shè)施選址作為重要一環(huán),直接關(guān)系到社會(huì)經(jīng)濟(jì)效益和國(guó)家應(yīng)急醫(yī)療資源保障系統(tǒng)的運(yùn)行效率[48]。應(yīng)急醫(yī)療資源儲(chǔ)備設(shè)施按照時(shí)效性可分為永久設(shè)施和臨時(shí)設(shè)施2種類型[49],災(zāi)前的永久性醫(yī)療資源儲(chǔ)備設(shè)施往往基于全覆蓋理論進(jìn)行選址,需要考慮交通通達(dá)度、資源匹配度、應(yīng)急響應(yīng)速度、供需平衡性等指標(biāo)。SHARIAT等[50]建立了由2個(gè)整數(shù)線性模型組成的應(yīng)急車輛站選址框架,以最大限度減少滿足最低可靠性覆蓋水平所需的車輛和車站數(shù)量。臨時(shí)應(yīng)急設(shè)施具有設(shè)施開(kāi)設(shè)簡(jiǎn)易、選址決策效率要求高的特點(diǎn)。相關(guān)研究將疫情擴(kuò)散模型與協(xié)同選址相結(jié)合,以總救援成本與救援時(shí)間最小化為目標(biāo),建立了確定型多目標(biāo)應(yīng)急物流中心選址模型和多目標(biāo)應(yīng)急物流中心選址的魯棒優(yōu)化模型[51]。
3 應(yīng)急醫(yī)療資源調(diào)配
應(yīng)急醫(yī)療資源調(diào)配問(wèn)題屬于特殊情況下的車輛路徑問(wèn)題(vehicle routing problem,VRP),以圖2為例,當(dāng)突發(fā)公共衛(wèi)生事件發(fā)生后,應(yīng)急醫(yī)療資源儲(chǔ)備庫(kù)將作為配送中心進(jìn)行供給,此時(shí)會(huì)存在多個(gè)應(yīng)急醫(yī)療資源需求點(diǎn)和配送中心。本文從應(yīng)急醫(yī)療資源調(diào)配模型與優(yōu)化算法2個(gè)方面分析其研究現(xiàn)狀。
3.1 應(yīng)急醫(yī)療資源調(diào)配優(yōu)化模型
國(guó)內(nèi)外學(xué)者對(duì)應(yīng)急醫(yī)療資源調(diào)配模型進(jìn)行了大量研究。筆者從優(yōu)化目標(biāo)、時(shí)間窗、資源分類、需求確定、求解方法等方面進(jìn)行歸納總結(jié),如表2所示。
首先,從模型優(yōu)化目標(biāo)角度來(lái)看,由于實(shí)際處理過(guò)程需要考慮多個(gè)因素,所以在相關(guān)研究中雙目標(biāo)模型較多,配送路徑最短、行駛時(shí)間最小、成本最低是調(diào)配問(wèn)題建模中幾個(gè)常見(jiàn)的優(yōu)化目標(biāo)。此外,一些文獻(xiàn)中還考慮到突發(fā)公共衛(wèi)生事件的特性,結(jié)合了需求滿意度、需求緊迫度、分配公平性等因素,更好地保障災(zāi)區(qū)應(yīng)急醫(yī)療資源需求。其次,從受災(zāi)點(diǎn)的需求角度看,部分文獻(xiàn)在建模時(shí)假設(shè)需求不變或已知。最后,從時(shí)間窗約束角度看,減少應(yīng)急醫(yī)療資源配送時(shí)間是降低生命財(cái)產(chǎn)損失的關(guān)鍵,應(yīng)急醫(yī)療資源配送時(shí)間窗是滿足救援及時(shí)性、急迫性要求的重要約束。相關(guān)學(xué)者考慮了時(shí)間懲罰和變質(zhì)懲罰,構(gòu)建了基于綜合時(shí)間窗約束下的應(yīng)急資源配送路徑方案生成模型,并假設(shè)受災(zāi)點(diǎn)不同、應(yīng)急資源不同時(shí)間窗約束亦不相同的情況。
3.2 應(yīng)急醫(yī)療資源調(diào)配優(yōu)化算法
在建立了應(yīng)急醫(yī)療資源調(diào)配模型之后,需要借助優(yōu)化算法來(lái)求最優(yōu)解。根據(jù)應(yīng)急醫(yī)療資源調(diào)配模型,求解算法可分為精確算法和元啟發(fā)式算法2大類,如圖3所示。
1)單點(diǎn)元啟發(fā)式優(yōu)化算法
單點(diǎn)元啟發(fā)式優(yōu)化算法在求解過(guò)程中始終基于單個(gè)解進(jìn)行尋優(yōu),模擬退火[63]、禁忌搜索[64]、變鄰域搜索[65]和自適應(yīng)大規(guī)模鄰域搜索[61,66]等算法均為以單點(diǎn)搜索為特征的串行算法,屬于單點(diǎn)元啟發(fā)式算法,適于求解單目標(biāo)VRP。不同算法的優(yōu)化思想也有差異:模擬退火算法主要通過(guò)模擬物理退火過(guò)程,以一定的概率選擇劣質(zhì)解,引導(dǎo)搜索過(guò)程朝更優(yōu)解方向移動(dòng),實(shí)現(xiàn)全局優(yōu)化;禁忌搜索算法通過(guò)引入禁忌表和禁忌規(guī)則來(lái)避免陷入局部最優(yōu),實(shí)現(xiàn)全局優(yōu)化;變鄰域搜索算法是一種改進(jìn)型的局部搜索算法,利用不同動(dòng)作構(gòu)成的鄰域結(jié)構(gòu)進(jìn)行交替搜索,能夠在集中性和疏散性之間達(dá)到很好的平衡;大規(guī)模鄰域搜索算法則是從初始解出發(fā),通過(guò)移除部分解和重新插入解2個(gè)過(guò)程不斷優(yōu)化更新解。
2)多點(diǎn)元啟發(fā)式優(yōu)化算法
多點(diǎn)元啟發(fā)式優(yōu)化算法基于多個(gè)解向量進(jìn)行求解,對(duì)一個(gè)解集進(jìn)行并行計(jì)算,遺傳算法[10,17,29,58-60,67]、蟻群算法[68-71]、粒子群算法[27,72-74]均具有多點(diǎn)搜索特征和內(nèi)在并行性,是典型的多點(diǎn)元啟發(fā)式算法,可用于求解單目標(biāo)和多目標(biāo)VRP。由表2可知,遺傳算法是求解應(yīng)急醫(yī)療資源調(diào)配模型中使用較多的算法,諸多學(xué)者在此基礎(chǔ)上對(duì)遺傳算法進(jìn)行改進(jìn),包括采用輪盤賭法選擇種群、采用二元錦標(biāo)賽選擇法進(jìn)行個(gè)體選擇、對(duì)子代種群進(jìn)行非支配排序等操作,使遺傳算法的有關(guān)性能更優(yōu)。蟻群算法的代表算法為自適應(yīng)蟻群算法,采用分組搜尋策略,將蟻群分為G組,并對(duì)轉(zhuǎn)移點(diǎn)選取策略及信息素更新策略進(jìn)行改進(jìn)。粒子群算法是一種基于群體協(xié)作的隨機(jī)搜索算法,其代表算法為多目標(biāo)改進(jìn)的新型離散粒子群優(yōu)化算法(MOINDPSO),該算法的主要思想包括3個(gè)方面:一是改進(jìn)解的表示形式,并通過(guò)一種名為解內(nèi)存的新機(jī)制改進(jìn)搜索算子;二是利用模糊相關(guān)熵分析(FCEA)的思想對(duì)方案進(jìn)行評(píng)價(jià),有效選擇較優(yōu)的方案;三是利用外部存檔存儲(chǔ)非支配解,提出從外部存檔中選擇領(lǐng)導(dǎo)者機(jī)制和增強(qiáng)所獲得解穩(wěn)定性的機(jī)制。
4 應(yīng)急醫(yī)療資源保障研究存在的問(wèn)題
近年來(lái),針對(duì)新型冠狀病毒感染,相關(guān)文獻(xiàn)從諸多視角探討了應(yīng)急醫(yī)療資源保障問(wèn)題,其中,應(yīng)急醫(yī)療資源需求預(yù)測(cè)、應(yīng)急醫(yī)療資源儲(chǔ)備、應(yīng)急醫(yī)療資源調(diào)配是提高應(yīng)急醫(yī)療資源保障能力的重要因素。
4.1 應(yīng)急醫(yī)療資源需求預(yù)測(cè)研究存在的問(wèn)題
首先,靜態(tài)的傳統(tǒng)需求預(yù)測(cè)方法無(wú)法滿足應(yīng)急醫(yī)療資源需求的動(dòng)態(tài)變化性?;谌斯ぶ悄艿念A(yù)測(cè)方法能夠使用數(shù)據(jù)集訓(xùn)練模型,應(yīng)用強(qiáng)大的運(yùn)算能力對(duì)醫(yī)療資源需求進(jìn)行預(yù)測(cè),然而人工智能預(yù)測(cè)結(jié)果無(wú)法驗(yàn)證,其精確度高度依賴數(shù)據(jù)集的準(zhǔn)確性與規(guī)模。基于傳染病模型的仿真預(yù)測(cè)方法,能夠通過(guò)模擬災(zāi)區(qū)傳播狀況預(yù)測(cè)未來(lái)感染人數(shù),進(jìn)而間接測(cè)算醫(yī)療資源需求量。然而各類參數(shù)的確定是一個(gè)問(wèn)題,需要掌握疫情的發(fā)展趨勢(shì),并對(duì)政府防控政策等條件進(jìn)行處理。其次,關(guān)于評(píng)估需求緊迫度的2種常用方法(層次分析法、TOPSIS法),層次分析法的主要特點(diǎn)是通過(guò)建立遞階層次結(jié)構(gòu),把人類的判斷轉(zhuǎn)化為若干因素兩兩之間重要度的比較,其缺點(diǎn)在于不同專家針對(duì)不同維度指標(biāo)重要性的排序會(huì)存在差異,權(quán)重設(shè)置具有主觀性。TOPSIS法的基本思想是評(píng)估方案系統(tǒng)中任何一個(gè)方案距離理想最優(yōu)解和最劣解的綜合距離,其缺點(diǎn)在于只能對(duì)評(píng)價(jià)對(duì)象的優(yōu)劣進(jìn)行排序,無(wú)法評(píng)級(jí),無(wú)法涉及有模糊因素的評(píng)價(jià)對(duì)象。最后,應(yīng)急醫(yī)療資源需求預(yù)測(cè)與需求緊迫度的評(píng)估均需進(jìn)行海量數(shù)據(jù)收集和復(fù)雜計(jì)算,會(huì)耗費(fèi)大量時(shí)間。
4.2 應(yīng)急醫(yī)療資源儲(chǔ)備研究存在的問(wèn)題
首先,近年來(lái)傳統(tǒng)庫(kù)存理論在探索自然災(zāi)害下人道救援資源的儲(chǔ)備方面已有一些成果,但難以直接復(fù)制到突發(fā)公共衛(wèi)生事件的情景下。因?yàn)橥话l(fā)公共衛(wèi)生事件與自然災(zāi)害的風(fēng)險(xiǎn)演化規(guī)律、損害形成機(jī)理具有差別性,醫(yī)療資源同普通救援資源之間也存在著差異,應(yīng)進(jìn)一步針對(duì)突發(fā)公共衛(wèi)生事件下的應(yīng)急醫(yī)療資源儲(chǔ)備管理和策略問(wèn)題進(jìn)行研究。其次,政企合作的關(guān)鍵在于分析企業(yè)參與國(guó)家醫(yī)療應(yīng)急儲(chǔ)備的收益和成本,以及探討政府在國(guó)家醫(yī)療應(yīng)急儲(chǔ)備方面的收益和成本,從而依據(jù)政企合作的均衡點(diǎn)采取相應(yīng)的財(cái)政策略。然而,中國(guó)對(duì)于應(yīng)急醫(yī)療資源儲(chǔ)備的政企合作機(jī)制研究仍處于探索階段,更加復(fù)雜的供應(yīng)鏈結(jié)構(gòu)有待進(jìn)一步研究,除了需要考慮政府與多個(gè)供應(yīng)商之間的聯(lián)合儲(chǔ)備關(guān)系,還應(yīng)該考慮多周期、多類型資源等更符合實(shí)際的政企合作模式。最后,應(yīng)急醫(yī)療資源儲(chǔ)備設(shè)施布局技術(shù)尚待完善,未能充分考慮地區(qū)性公共衛(wèi)生事件的發(fā)生種類及頻率,未能充分利用大數(shù)據(jù)技術(shù)提取各地區(qū)公共衛(wèi)生事件發(fā)生后對(duì)應(yīng)急醫(yī)療資源需求的種類與數(shù)量。在應(yīng)急醫(yī)療資源調(diào)配過(guò)程中,存在著過(guò)遠(yuǎn)運(yùn)輸與時(shí)效性不高、缺乏信息共享與溝通協(xié)調(diào)、不同級(jí)別的資源庫(kù)重復(fù)調(diào)配與資源浪費(fèi)等現(xiàn)象。
4.3 應(yīng)急醫(yī)療資源調(diào)配研究存在的問(wèn)題
首先,對(duì)應(yīng)急醫(yī)療資源調(diào)配優(yōu)化問(wèn)題的研究,體現(xiàn)了從靜態(tài)模型到動(dòng)態(tài)模型、從單目標(biāo)優(yōu)化到多目標(biāo)優(yōu)化、從傳統(tǒng)算法到智能啟發(fā)式算法、從單一理論到綜合理論的演化過(guò)程。在公共衛(wèi)生事件發(fā)生后,應(yīng)急醫(yī)療資源調(diào)配本身也具有風(fēng)險(xiǎn)性。如果應(yīng)急車輛調(diào)度不當(dāng),不僅達(dá)不到預(yù)期救援效果,還會(huì)造成新的生命和財(cái)產(chǎn)損失。因此,安全性風(fēng)險(xiǎn)評(píng)估非常重要,在應(yīng)急醫(yī)療資源調(diào)配問(wèn)題的研究中應(yīng)關(guān)注救援的安全性風(fēng)險(xiǎn)評(píng)估問(wèn)題。其次,由于應(yīng)急醫(yī)療資源需求調(diào)配問(wèn)題是一個(gè)NP Hard問(wèn)題,通過(guò)精確算法雖然能夠找到準(zhǔn)確的最優(yōu)解,但只適用于相對(duì)簡(jiǎn)單的單目標(biāo)優(yōu)化問(wèn)題求解,求解過(guò)程的運(yùn)行時(shí)間也較長(zhǎng)。因此,智能啟發(fā)式算法(包括模擬退火算法、禁忌搜索算法等單點(diǎn)元啟發(fā)式算法以及遺傳算法、蟻群算法等多點(diǎn)元啟發(fā)式算法)是未來(lái)求解該類問(wèn)題的主要方法。特別是對(duì)于大規(guī)模、多約束的復(fù)雜應(yīng)急醫(yī)療資源調(diào)配問(wèn)題,各種混合智能啟發(fā)式算法仍將發(fā)揮重要作用。除了算法研究外,建立算法基準(zhǔn)測(cè)試平臺(tái)、對(duì)不同算法進(jìn)行綜合評(píng)估、提高其適應(yīng)性也是需要關(guān)注的重要研究?jī)?nèi)容??傊袊?guó)對(duì)應(yīng)急醫(yī)療資源調(diào)配優(yōu)化問(wèn)題的研究尚處于起步階段,在多目標(biāo)優(yōu)化和實(shí)時(shí)動(dòng)態(tài)優(yōu)化等方面還有進(jìn)一步拓展的空間。
5 研究展望
突發(fā)公共衛(wèi)生事件成因復(fù)雜、種類繁多,應(yīng)急措施涉及主體多、不確定程度高、影響因素多,導(dǎo)致公共衛(wèi)生事件的發(fā)展趨勢(shì)、潛在風(fēng)險(xiǎn)、資源需求等難以被準(zhǔn)確預(yù)測(cè)與識(shí)別。雖然后疫情時(shí)代的應(yīng)急管理更加復(fù)雜,但隨著信息技術(shù)和智能算法的快速發(fā)展,完善應(yīng)急醫(yī)療資源保障越來(lái)越具有可能性。其中,通過(guò)大數(shù)據(jù)技術(shù)和平臺(tái)提升應(yīng)急醫(yī)療資源保障能力顯得尤為重要。具體而言,應(yīng)關(guān)注以下幾個(gè)方面。
1)運(yùn)用數(shù)字技術(shù)建設(shè)應(yīng)急醫(yī)療資源大數(shù)據(jù)平臺(tái)。第一,全面提升應(yīng)急醫(yī)療資源保障的網(wǎng)絡(luò)化、數(shù)字化、智能化水平,構(gòu)建基于多元參與主體協(xié)同與合作的大數(shù)據(jù)平臺(tái),更好地掌握應(yīng)急醫(yī)療資源的需求預(yù)測(cè)、生產(chǎn)儲(chǔ)備、交通運(yùn)輸、分發(fā)配送、社會(huì)捐贈(zèng)等各方面信息,充分把握醫(yī)療資源保障能力冗余程度,幫助政府部門全面掌握情況,進(jìn)行形勢(shì)判斷。第二,建立完整、動(dòng)態(tài)的城市數(shù)據(jù)庫(kù)。城市數(shù)據(jù)庫(kù)的建立有利于提高城市災(zāi)害的風(fēng)險(xiǎn)評(píng)估效率,改善資料收集、數(shù)據(jù)使用上的困難。第三,搭建立體、全面、信息化的智能運(yùn)輸網(wǎng)絡(luò),提高醫(yī)療資源保障效率,完善應(yīng)急物流網(wǎng)絡(luò),充分發(fā)揮復(fù)合一貫制運(yùn)輸?shù)奶攸c(diǎn),促進(jìn)彼此之間的協(xié)同配合、形成互補(bǔ)優(yōu)勢(shì)。
2)運(yùn)用大數(shù)據(jù)平臺(tái)重構(gòu)應(yīng)急醫(yī)療資源保障系統(tǒng)。第一,通過(guò)大數(shù)據(jù)平臺(tái)統(tǒng)計(jì)分析代表性城市醫(yī)院和醫(yī)療資源生產(chǎn)企業(yè)的儲(chǔ)備情況,評(píng)估重大疫情下對(duì)醫(yī)療資源的需求,估算短缺數(shù)量;分析醫(yī)院、醫(yī)學(xué)院、醫(yī)療物資生產(chǎn)企業(yè)醫(yī)療資源的儲(chǔ)備能力、供給能力,分析物流企業(yè)配送能力。第二,基于需求總量設(shè)立重構(gòu)目標(biāo),并根據(jù)類別進(jìn)行分解,設(shè)計(jì)類別、結(jié)構(gòu)層次和空間配置格局等方面的細(xì)化目標(biāo)。第三,分析醫(yī)療資源保障系統(tǒng)重構(gòu)的參與主體及其網(wǎng)絡(luò)結(jié)構(gòu)。第四,分析多元主體的功能、等級(jí)、網(wǎng)絡(luò)結(jié)構(gòu)等作用機(jī)理,從功能完善度、結(jié)構(gòu)合理度和網(wǎng)絡(luò)通達(dá)度等方面探索主體間相互作用的傳導(dǎo)路徑。
3)利用重構(gòu)的應(yīng)急醫(yī)療資源保障系統(tǒng)制定相關(guān)策略。應(yīng)急醫(yī)療資源保障系統(tǒng)重構(gòu)一方面要基于醫(yī)療資源大數(shù)據(jù)分析,預(yù)測(cè)重大疫情對(duì)醫(yī)療資源需求量、城市間聯(lián)系強(qiáng)度和醫(yī)療資源空間配置格局等,依據(jù)預(yù)測(cè)結(jié)果,設(shè)置安全儲(chǔ)備,以多元參與主體的關(guān)系結(jié)構(gòu)和作用傳導(dǎo)路徑為設(shè)計(jì)原則,設(shè)計(jì)應(yīng)急預(yù)案。另一方面,基于醫(yī)療資源保障系統(tǒng)韌性評(píng)價(jià)指數(shù)、短缺和應(yīng)急預(yù)案設(shè)置,用“短缺率”來(lái)刻畫韌性,開(kāi)展醫(yī)療資源保障系統(tǒng)重構(gòu)的政策仿真實(shí)驗(yàn),評(píng)估各項(xiàng)短缺和應(yīng)急預(yù)案的設(shè)計(jì)效果。此外,還要針對(duì)政策仿真實(shí)驗(yàn)結(jié)果,明確多元參與主體的責(zé)任,制定針對(duì)性的醫(yī)療資源保障策略。
參考文獻(xiàn)/References:
[1] 習(xí)近平.全面提高依法防控依法治理能力,健全國(guó)家公共衛(wèi)生應(yīng)急管理體系[J].求是,2020(5):4-8.
[2] ZHANG Wen,XIE Rui,DONG Xuefan,et al.SEIR-FMi:Acoronavirus disease epidemiological model based on intra-city movement, inter-city movement and medical resource investment[J].Computers in Biology and Medicine,2022,149. DOI:10.1016/j.compbiomed.2022.106046.
[3] LIU Jingkuang,CAO Liying,ZHANG Dongyu,et al.Optimization of site selection for emergency medical facilities considering the SEIR model[J].Computational Intelligence and Neuroscience,2022. DOI:10.1155/2022/1912272.
[4] BROLAN C E,KRVER S,PHILLIPS G,et al.Lessons from the frontline:The COVID-19 pandemic emergency care experience from a human resource perspective in the Pacific region[J]. The Lancet Regional Health:Western Pacific,2022,25.DOI:10.1016/j.lanwpc.2022.100514.
[5] XIA Tianqi,SONG Xuan,ZHANG Haoran,et al.Measuring spatio-temporal accessibility to emergency medical services through big GPS data[J].Health & Place,2019,56:53-62.
[6] 劉陽(yáng),田軍,周琨.基于期權(quán)契約的應(yīng)急藥品儲(chǔ)備模型研究[J].運(yùn)籌與管理,2021,30(8):67-74.
LIU Yang,TIAN Jun,ZHOU Kun.A relief drug pre-positioning model via an option contract[J].Operations Research and Management Science,2021,30(8):67-74.
[7] ZHOU Q S,OLSEN T L.Rotating the medical supplies for emergency response:a simulation based approach[J].International Journal of Production Economics,2018,196:1-11.
[8] YANG Yun,MA Changxi,LING Gang.Pre-location for temporary distribution station of urban emergency materials considering priority under COVID-19:a case study of Wuhan City,China[J].Physica a: Statistical Mechanics and Its Applications,2022,597.DOI:10.1016/j.physa.2022.127291.
[9] ZHANG Meng,KONG Zhaojun.A tripartite evolutionary game model of emergency supplies joint reserve among the government,enterprise and society[J].Computers & Industrial Engineering,2022,169.DOI:10.1016/j.cie.2022.108132.
[10]ZHOU Yawen,LIU Jing,ZHANG Yutong,et al.A multi-objective evolutionary algorithm for multi-period dynamic emergency resource scheduling problems[J].Transportation Research Part E-Logistics and Transportation Review,2017,99:77-95.
[11]蔡健平,王晶.平疫結(jié)合的突發(fā)公共衛(wèi)生事件醫(yī)療物資儲(chǔ)備體系建設(shè)研究[J].中國(guó)工程科學(xué),2022,24(6):107-115.
CAI Jianping,WANG Jing.Peacetime and epidemic combination medical materials reserve system for public health emergencies[J].Strategic Study of CAE,2022,24(6):107-115.
[12]WANG Chengwen,XIONG Li,WANG Houcai.An allocation model for emergency medical services based on integrated healthcare during an epidemic[J].International Journal of Disaster Risk Reduction,2022,82.DOI:10.1016/j.ijdrr.2022.103305.
[13]LIU Jia,BAI Jinyu,WU Desheng.Medical supplies scheduling in major public health emergencies[J].Transportation Research Part E-Logistics and Transportation Review,2021,154.DOI: 10.3201/eid2306.161417.
[14]HUANG H C,ARAZ O M,MORTON D P,et al.Stockpiling ventilators for influenza pandemics[J].Emerging Infectious Diseases,2017,23(6):914-921.
[15]HUANG Di,WANG Shuaian,LIU Zhiyuan.A systematic review of prediction methods for emergency management[J].International Journal of Disaster Risk Reduction,2021,62.DOI:10.1016/j.ijdrr.2021.102412.
[16]JUANG W C,HUANG S J,HUANG F D,et al.Application of time series analysis in modelling and forecasting emergency department visits in a medical centre in Southern Taiwan[J].BMJ Open,2017,7(11).DOI: 10.1136/bmjopen-2017-018628.
[17]宋英華,裴俊龍,方丹輝,等.常態(tài)化疫情防控背景下區(qū)域應(yīng)急醫(yī)療物資選址-分配模型[J].中國(guó)安全生產(chǎn)科學(xué)技術(shù),2021,17(11):5-9.
SONG Yinghua,PEI Junlong,F(xiàn)ANG Danhui,et al.Location-allocation model of regional emergency medical material under background of normalized epidemic prevention and control[J].Journal of Safety Science and Technology,2021,17(11):5-9.
[18]COMITO C,PIZZUTI C.Artificial intelligence for forecasting and diagnosing COVID-19 pandemic: A focused review[J].Artificial Intelligence in Medicine,2022,128.DOI:10.1016/j.artmed.2022.102286.
[19]SHAFIEKHANI S,NAMDAR P,RAFIEI S.A COVID-19 forecasting system for hospital needs using ANFIS and LSTM models:A graphical user interface unit[J].Digital Health,2022,8.DOI:10.1177/205520762210850.
[20]MARTIN R J,MOUSAVI R,SAYDAM C.Predicting emergency medical service call demand:a modern spatiotemporal machine learning approach[J].Operations Research for Health Care,2021,28.DOI:org/10.1016/j.orhc.2021.100285.
[21]KERMACK W O,MCKENDRICK A G.Contributions to the mathematical theory of epidemics[J].Bulletin of Mathematical Biology,1991,53(1/2):33-55.
[22]LI M Y,MULDOWNEY J S.Global stability for the SEIR model in epidemiology[J].Mathematical Biosciences,1995,125(2):155-164.
[23]王付宇,湯濤,李艷,等.疫情事件下多災(zāi)點(diǎn)應(yīng)急資源最優(yōu)化配置研究[J].復(fù)雜系統(tǒng)與復(fù)雜性科學(xué),2021,18(1):53-62.
WANG Fuyu,TANG Tao,LI Yan,et al.Study on optimal allocation of emergency resources in multiple disaster sites under epidemic events[J].Complex Systems and Complexity Science,2021,18(1):53-62.
[24]許德剛,李凡,王露,等.優(yōu)化煙花算法在醫(yī)療物資應(yīng)急調(diào)度中的應(yīng)用[J].計(jì)算機(jī)工程與應(yīng)用,2021,57(24):249-258.
XU Degang,LI Fan,WANG Lu,et al.Application of optimized fireworks algorithm in emergency dispatching of medical supplies[J].Computer Engineering and Applications,2021,57(24):249-258.
[25]蘇強(qiáng),陸書翔.多階段應(yīng)急醫(yī)療物資動(dòng)態(tài)分配優(yōu)化模型與算法[J].工業(yè)工程與管理,2022,27(4):50-57.
SU Qiang,LU Shuxiang.Optimization model and algorithm for multi-period dynamic emergency medical supplies scheduling[J].Industrial Engineering and Management,2022,27(4):50-57.
[26]樊長(zhǎng)佳,杜炎秋,梁笛,等.COVID-19期間上海市應(yīng)急醫(yī)療資源配置建模與仿真[J].系統(tǒng)仿真學(xué)報(bào),2022,34(1):93-103.
FAN Changjia,DU Yanqiu,LIANG Di,et al.Modeling and simulation of emergency medical resources allocation in Shanghai during COVID-19[J].Journal of System Simulation,2022,34(1):93-103.
[27]張莉,張惠珍,劉冬,等.考慮緊迫度的應(yīng)急物資調(diào)度及粒子群算法求解[J].系統(tǒng)仿真學(xué)報(bào),2022,34(9):1988-1998.
ZHANG Li,ZHANG Huizhen,LIU Dong,et al.Particle swarm algorithm for solving emergency material dispatch considering urgency[J].Journal of System Simulation,2022,34(9):1988-1998.
[28]段容谷,莊媛媛,張克勇,等.突發(fā)公共衛(wèi)生事件下多階段應(yīng)急救援物資配置研究[J].中國(guó)安全生產(chǎn)科學(xué)技術(shù),2021,17(12):142-148.
DUAN Ronggu,ZHUANG Yuanyuan,ZHANG Keyong,et al.Research on allocation of multi-stage emergency rescue materials under public health emergencies[J].Journal of Safety Science and Technology,2021,17(12):142-148.
[29]趙建有,韓萬(wàn)里,鄭文捷,等.重大突發(fā)公共衛(wèi)生事件下城市應(yīng)急醫(yī)療物資配送[J].交通運(yùn)輸工程學(xué)報(bào),2020,20(3):168-177.
ZHAO Jianyou,HAN Wanli,ZHENG Wenjie,et al.Distribution of emergency medical supplies in cities under maj or public health emergency[J].Journal of Traffic and Transportation Engineering,2020,20(3):168-177.
[30]胡曉偉,宋浪,楊濱毓,等.重大突發(fā)公共衛(wèi)生事件下城市應(yīng)急醫(yī)療物資優(yōu)化調(diào)度研究[J].中國(guó)公路學(xué)報(bào),2020,33(11):55-64.
HU Xiaowei,SONG Lang,YANG Binyu,et al.Optimal matching of urban emergency medical supplies under major public health events[J].China Journal of Highway and Transport,2020,33(11):55-64.
[31]宋英華,白明軒,馬亞萍,等.考慮區(qū)域?yàn)?zāi)情分級(jí)的應(yīng)急物資公平調(diào)度優(yōu)化模型[J].中國(guó)安全科學(xué)學(xué)報(bào),2022,32(1):172-179.
SONG Yinghua,BAI Mingxuan,MA Yaping,et al.Optimal model for fair dispatch of emergency materials considering regional disaster classification[J].China Safety Science Journal,2022,32(1):172-179.
[32]苑津莎,馬姿,楊宏.地震救災(zāi)初期應(yīng)急物資智能調(diào)度問(wèn)題的研究[J].科學(xué)技術(shù)與工程,2020,20(21):8702-8708.
YUAN Jinsha,MA Zi,YANG Hong.Research on intelligent dispatching of emergency materials in the early stage of earthquake relief[J].Science Technology and Engineering,2020,20(21):8702-8708.
[33]都雪靜,王愛(ài)輝,孫菲菲.突發(fā)事件下公路應(yīng)急物資調(diào)度優(yōu)化[J].交通信息與安全,2021,39(4):52-59.
DU Xuejing,WANG Aihui,SUN Feifei.The optimized scheduling of emergency supplies in highways under emergencies[J].Journal of Transport Information and Safety,2021,39(4):52-59.
[34]YANG Y,MA C X,ZHOU J B,et al.A multi-dimensional robust optimization approach for cold-chain emergency medical materials dispatch under COVID-19:A case study of Hubei Province[J].Journal of Traffic and Transportation Engineering (English Edition),2022,9(1):1-20.
[35]LIU H S,SUN Y X,PAN N,et al.Study on the optimization of urban emergency supplies distribution paths for epidemic outbreaks[J].Computers & Operations Research,2022,146.DOI:10.1016/j.cor.2022.105912.
[36]李珍萍,張煜煒,田歆,等.應(yīng)急醫(yī)療物資儲(chǔ)備與分配問(wèn)題研究[J].系統(tǒng)科學(xué)與數(shù)學(xué),2021,41(12):3422-3445.
LI Zhenping,ZHANG Yuwei,TIAN Xin,et al.Research on reserve and distribution problem of emergency medical supplies[J].Journal of Systems Science and Mathematical Sciences,2021,41(12):3422-3445.
[37]張煒健,施先亮,黃安強(qiáng),等.重大公共衛(wèi)生事件下應(yīng)急藥品儲(chǔ)備方式優(yōu)化分配策略[J].系統(tǒng)工程理論與實(shí)踐,2022,42(1):110-122.
ZHANG Weijian,SHI Xianliang,HUANG Anqiang,et al.Optimal allocation policies for emergency medicine reserve methods against major public health events[J].Systems Engineering-Theory& Practice,2022,42(1):110-122.
[38]柴亞光,李芃萱.考慮儲(chǔ)備周期的應(yīng)急物資柔性采購(gòu)模型[J].管理學(xué)報(bào),2021,18(7):1068-1075.
CHAI Yaguang,LI Pengxuan.Flexible procurement model for government′s emergency supplies considering reserve period[J].Chinese Journal of Management,2021,18(7):1068-1075.
[39]林勇,張立,汪貽生,等.考慮輪換更新的應(yīng)急物資政企協(xié)同預(yù)置儲(chǔ)備優(yōu)化研究[J].中國(guó)安全生產(chǎn)科學(xué)技術(shù),2022,18(5):205-209.
LIN Yong,ZHANG Li,WANG Yisheng,et al.Research on optimization of government-enterprise collaborative preset reserve of emergency supplies considering rotation renewal[J].Journal of Safety Science and Technology,2022,18(5):205-209.
[40]PAN Wei,GUO Ying,ZHANG Wenji,et al.Order policy for emergency medicine with return uncertainty in a closed-loop supply chain[J].PLOS One,2018,13(10).DOI: 10.1371/journal.pone.0205643.eCollection 2018.
[41]MENG Qingchun,GUO Ying,ZHANG Xiaran.Mitigation strategies for expiration in perishable emergency inventory system[J].Compu-ters & Industrial Engineering,2021,157.DOI:10.1016/j.cie.2021.107336.
[42]劉陽(yáng),田軍,馮耕中,等.供應(yīng)商風(fēng)險(xiǎn)規(guī)避下基于期權(quán)契約的政企聯(lián)合儲(chǔ)備應(yīng)急物資模型[J].運(yùn)籌與管理,2020,29(11):102-111.
LIU Yang,TIAN Jun,F(xiàn)ENG Gengzhong,et al.The model of joint relief supplies reserves of the governmentand a risk-averse supplier based on an option contract[J].Operations Research and Management Science,2020,29(11):102-111.
[43]龐海云,葉永.基于實(shí)物期權(quán)契約的應(yīng)急物資政企聯(lián)合儲(chǔ)備模型[J].系統(tǒng)管理學(xué)報(bào),2020,29(4):733-741.
PANG Haiyun,YE Yong.Government-Enterprise joint reserve model of emergency materials based on real option contract[J].Journal of Systems & Management,2020,29(4):733-741.
[44]劉陽(yáng),田軍,馮耕中,等.基于期權(quán)契約的政企聯(lián)合儲(chǔ)備應(yīng)急物資模型與利潤(rùn)分配機(jī)制研究[J].中國(guó)管理科學(xué),2020,28(8):162-171.
LIU Yang,TIAN Jun,F(xiàn)ENG Gengzhong,et al.The model of joint relief supplies pre-positioning by the governmentand two suppliers based on option contractsand suppliers′ profits allocation mechanism[J].Chinese Journal of Management Science,2020,28(8):162-171.
[45]扈衷權(quán),田軍,馮耕中.基于期權(quán)采購(gòu)的政企聯(lián)合儲(chǔ)備應(yīng)急物資模型[J].系統(tǒng)工程理論與實(shí)踐,2018,38(8):2032-2044.
HU Zhongquan,TIAN Jun,F(xiàn)ENG Gengzhong.The model of joint emergency supplies reserves of governments and enterprises based on option procurement[J].Systems Engineering-Theory & Practice,2018,38(8):2032-2044.
[46]胡婉婷,丁晶晶,梁樑.基于期權(quán)代儲(chǔ)協(xié)議的應(yīng)急物資政企聯(lián)合儲(chǔ)備模型研究[J/OL].中國(guó)管理科學(xué).[2023-05-18].https://kns.cnki.net/kcms/detail/detail.aspx?FileName=ZGGK20220810002&DbName=DKFX2022.
HU Wanting,DING Jingjing,LIANG Liang.Joint reserve model of government and enterprise for relief materialsbased on a delegated reserve contract with option[J/OL].Chinese Journal of Management Science.[2023-05-18].https://kns.cnki.net/kcms/detail/detail.aspx?FileName=ZGGK20220810002&DbName=DKFX2022.
[47]李晟,豐景春,吳凱麗,等.政企聯(lián)合儲(chǔ)備應(yīng)急物資的合作策略研究[J/OL].中國(guó)管理科學(xué).[2023-05-18].https://kns.cnki.net/kcms/detail/detail.aspx?FileName=ZGGK20220810003&DbName=DKFX2022.
LI Sheng,F(xiàn)ENG Jingchun,WU Kaili,et al.Study on cooperative strategy of government-enterprise joint reserve of emergency supplies[J/OL].Chinese Journal of Management Science.[2023-05-18].https://kns.cnki.net/kcms/detail/detail.aspx?FileName=ZGGK20220810003&DbName=DKFX2022.
[48]付德強(qiáng),王旭,張偉.基于NSGA-Ⅱ的應(yīng)急儲(chǔ)備庫(kù)多目標(biāo)選址決策模型及算法研究[J].運(yùn)籌與管理,2014,23(4):64-69.
FU Deqiang,WANG Xu,ZHANG Wei.Decision model of the multi-objective supplies reserve storage location problem based NSGA-Ⅱ[J].Operations Research and Management Science,2014,23(4):64-69.
[49]高紅.突發(fā)公共衛(wèi)生事件下應(yīng)急物流儲(chǔ)備中心選址優(yōu)化研究[J].中國(guó)儲(chǔ)運(yùn),2022(8):185-186.
[50]SHARIAT M A,BABAEI M,MOADI S,et al.Linear upper-bound unavailability set covering models for locating ambulances:application to Tehran rural roads[J].European Journal of Operational Research,2012,221(1):263-272.
[51]李昌兵,李小倩,曹帥,等.疫情防控視角下多層級(jí)儲(chǔ)備庫(kù)協(xié)同選址及物流配送研究[J/OL].運(yùn)籌與管理.[2023-05-18].https://kns.cnki.net/kcms/detail/detail.aspx?FileName=YCGL20220123005&DbName=CAPJ2022.
LI Changbing,LI Xiaoqian,CAO Shuai,et al.Research on collaborative site selection and logistics distribution of multilevel storage warehouses from the perspective of epidemic prevention and control[J/OL].Operations Researchand Management Science.[2023-05-18].https://kns.cnki.net/kcms/detail/detail.aspx?FileName=YCGL20220123005&DbName=CAPJ2022.
[52]DAN Bingbing,ZHU Wanhong,LI Huabing,et al.Dynamic optimization model and algorithm design for emergency materials dispatch[J].Mathematical Problems in Engineering,2013.DOI:10.1155/2013/841458.
[53]CHANG Fusheng,WU J S,LEE C N,et al.Greedy-search-based multi-objective genetic algorithm for emergency logistics scheduling[J].Expert Systems With Applications,2014,41(6):2947-2956.
[54]DU Lijing,LI Xiaohuan,GAN Yuan,et al.Optimal model and algorithm of medical materials delivery drone routing problem under major public health emergencies[J].Sustainability,2022,14(8).DOI:10.3390/su14084651.
[55]WANG Hongman,XU Renfei,ZIJIE Xiong,et al.Research on the optimized dispatch and transportation scheme for emergency logistics[J].Procedia Computer Science,2018,129:208-214.
[56]QIN Jin,YE Yong,CHENG Birong,et al.The emergency vehicle routing problem with uncertain demand under sustainability environments[J].Sustainability,2017,9(2). DOI:10.3390/su9020288.
[57]陳豐,丁文龍,葉一芃,等.公共衛(wèi)生事件暴發(fā)初期的醫(yī)療物資調(diào)度優(yōu)化[J].中國(guó)公路學(xué)報(bào),2020,33(11):65-72.
CHEN Feng,DING Wenlong,YE Yipeng,et al.Optimal coordination model of medical commodities in the initial stage of the outbreak of public health events[J].China Journal of Highway and Transport,2020,33(11):65-72.
[58]王喆,邵鴻遠(yuǎn),叢子皓,等.考慮供應(yīng)商聚類的應(yīng)急醫(yī)療物資協(xié)同配送仿真[J].系統(tǒng)仿真學(xué)報(bào),2022,34(10):2303-2311.
WANG Zhe,SHAO Hongyuan,CONG Zihao,et al.Simulation of emergency medical materials collaborative distribution considering supplier clustering[J].Journal of System Simulation,2022,34(10):2303-2311.
[59]林灝,趙星,張龍琳.基于兩階段模型的應(yīng)急醫(yī)療物資配送路徑研究[J].武漢理工大學(xué)學(xué)報(bào)(交通科學(xué)與工程版),2023,47(1):54-60.
LIN Hao,ZHAO Xing,ZHANG Longlin.Research on distribution route of emergency medical materials based on two-stage model[J].Journal of Wuhan University of Technology(Transportation Science & Engineering),2023,47(1):54-60.
[60]呂偉,李志紅,馬亞萍,等.考慮受災(zāi)點(diǎn)需求時(shí)間窗的應(yīng)急物資配送車輛路徑規(guī)劃研究[J].中國(guó)安全生產(chǎn)科學(xué)技術(shù),2020,16(3):5-11.
LYU Wei,LI Zhihong,MA Yaping,et al.Research on route planning of emergency materials distribution vehicles considering time window of requirements by disaster point[J].Journal of Safety Science and Technology,2020,16(3):5-11.
[61]蔣陽(yáng)升,韓佳哲,朱娟秀,等.考慮新冠疫情擴(kuò)散規(guī)律的醫(yī)療物資動(dòng)態(tài)配送優(yōu)化[J].安全與環(huán)境學(xué)報(bào),2023,23(5):1579-1587.
JIANG Yangsheng,HAN Jiazhe,ZHU Juanxiu,et al.Optimization of dynamic medical supplies distribution considering COVID-19′s diffusion rule[J].Journal of Safety and Environment,2023,23(5):1579-1587.
[62]吳坷,宋英華,呂偉.醫(yī)療應(yīng)急物資車輛配送優(yōu)化調(diào)度時(shí)間窗模型研究[J].中國(guó)安全生產(chǎn)科學(xué)技術(shù),2022,18(1):11-16.
WU Ke,SONG Yinghua,LYU Wei.Research on time window model for optimal scheduling on vehicle distribution of medical emergency materials[J].Journal of Safety Science and Technology,2022,18(1):11-16.
[63]呂偉,李志紅,馮滿滿,等.考慮資源和時(shí)間窗約束的應(yīng)急物資調(diào)配模型[J].中國(guó)安全科學(xué)學(xué)報(bào),2019,29(12):137-143.
LYU Wei,LI Zhihong,F(xiàn)ENG Manman,et al.Emergency material allocation in consideration of resource and time window constraints[J].China Safety Science Journal,2019,29(12):137-143.
[64]韓亞娟,楊宇航,彭運(yùn)芳.考慮救援點(diǎn)資源分布的救援車輛路徑優(yōu)化[J].上海大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,24(4):655-664.
HAN Yajuan,YANG Yuhang,PENG Yunfang.Rescue vehicle routing optimization considering distribution of resources in rescue points[J].Journal of Shanghai University(Natural Science Edition),2018,24(4):655-664.
[65]BOUCHRA B,BTISSAM D,MOHAMMAD C.A hybrid genetic algorithm for the static and dynamic vehicle routing problem with soft time Windows[C]//2016 3rd International Conference on Logistics Operations Management (GOL).Fez:IEEE,2016:1-9.
[66]BARBATO M,CESELLI A,PREMOLI M.On the impact of resource relocation in facing health emergencies[J].European Journal of Operational Research,2023,308(1):422-435.
[67]WANG Shaoren,WU Y J,LI Ruiting.An improved genetic algorithm for location allocation problem with grey theory in public health emergencies[J].International Journal of Environmental Research and Public Health,2022,19(15).DOI:10.3390/ijerph19159752.
[68]劉欣.基于蟻群算法的醫(yī)療人力資源應(yīng)急調(diào)度設(shè)計(jì)[J].信息技術(shù),2021(2):142-146.
LIU Xin.Design of emergency dispatch of medical human resources based on ant colony algorithm[J].Information Technology,2021(2):142-146.
[69]趙宏業(yè).基于自適應(yīng)蟻群算法的醫(yī)療資源應(yīng)急優(yōu)化調(diào)度模型設(shè)計(jì)[J].電子設(shè)計(jì)工程,2022,30(23):28-32.
ZHAO Hongye.Design of emergency optimal scheduling model for medical resources based on adaptive ant colony algorithm[J].Electro-nic Design Engineering,2022,30(23):28-32.
[70]SHEN Jinxing,LIU Kun,MA Changxi,et al.Bibliometric analysis and system review of vehicle routing optimization for emergency material distribution[J].Journal of Traffic and Transportation Engineering(English Edition),2022,9(6):893-911.
[71]劉紫玉,趙麗霞,薛建越,等.面向車輛路徑問(wèn)題的改進(jìn)蟻群算法研究[J].河北科技大學(xué)學(xué)報(bào),2022,43(1):80-89.
LIU Ziyu,ZHAO Lixia,XUE Jianyue,et al.Research on vehicle routing problem based on improved ant colony algorithm[J].Journal of Hebei University of Science and Technology,2022,43(1):80-89.
[72]尹雅楠,甄然,武曉晶,等.自適應(yīng)多啟發(fā)蟻群算法的無(wú)人機(jī)路徑規(guī)劃[J].河北科技大學(xué)學(xué)報(bào),2021,42(1):38-47.
YIN Yanan,ZHEN Ran,WU Xiaojing,et al.Research on UAV route planning based on adaptive multi heuristic ant colony algorithm[J].Journal of Hebei University of Science and Technology,2021,42(1):38-47.
[73]PENG Dajiang,YE Chunming,WAN Mengran.A multi-objective improved novel discrete particle swarm optimization for emergency resource center location problem[J].Engineering Applications of Artificial Intelligence,2022,111.DOI:10.1016/j.engappai.2022.104725.
[74]WANG Yanyan,SUN Baiqing.A multiobjective allocation model for emergency resources that balance efficiency and fairness[J].Mathematical Problems in Engineering,2018.DOI:10.1155/2018/7943498.