• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      番木瓜抗倒伏優(yōu)勢(shì)微生物及候選基因篩選

      2023-07-22 22:27:38陳仕淼鄭劍陸覃昱張繼石蘭蓉馬松瓊范兢升甘衛(wèi)堂
      關(guān)鍵詞:番木瓜

      陳仕淼 鄭劍 陸覃昱 張繼 石蘭蓉 馬松瓊 范兢升 甘衛(wèi)堂

      摘要:【目的】篩選抗倒伏性強(qiáng)的番木瓜根際優(yōu)勢(shì)微生物,挖掘番木瓜抗倒伏差異表達(dá)的關(guān)鍵基因,為揭示番木瓜抗倒伏機(jī)制及相關(guān)品種選育提供參考?!痉椒ā吭囼?yàn)設(shè)常規(guī)施肥量處理(每株施用2.5 kg有機(jī)肥,CK)、缺肥處理(不施有機(jī)肥,WLR)和高有機(jī)肥處理(每株施用10 kg有機(jī)肥,SLR)3個(gè)處理,根據(jù)其轉(zhuǎn)錄組數(shù)據(jù)和根際微生物數(shù)據(jù),利用加權(quán)基因共表達(dá)網(wǎng)絡(luò)(WGCNA)關(guān)聯(lián)分析番木瓜抗倒伏相關(guān)的關(guān)鍵基因,并分析根際微生物變化情況?!窘Y(jié)果】SLR處理的植株抗倒伏性最強(qiáng),其次是CK,WLR處理植株的抗倒伏性最差。WLR處理植株的株高、節(jié)間長(zhǎng)度和莖粗均顯著低于CK和SLR處理的植株(P<0.05)。通過微生物組數(shù)據(jù)分析得到影響抗倒伏性狀優(yōu)勢(shì)微生物為鏈絲菌屬(Streptomyces)、慢生根瘤菌屬(Bradyrhizobium)、RB41菌屬及噬幾丁質(zhì)菌屬(Chitinophaga)。通過WGCNA分析得到2個(gè)與番木瓜抗倒伏性能相關(guān)的品藍(lán)模塊和淡黃模塊,進(jìn)而對(duì)這2個(gè)模塊構(gòu)建基因共表達(dá)網(wǎng)絡(luò),篩選出可能與番木瓜抗倒伏性能密切相關(guān)的乙酰輔酶A乙酰轉(zhuǎn)移酶基因(AACT)、聚腺苷酸結(jié)合蛋白基因(RBP47)、線粒體輸入內(nèi)膜轉(zhuǎn)位酶亞基基因(TIM9)、鈣依賴通道7TM區(qū)域基因(HYP1)、韌皮部蛋白質(zhì)絲網(wǎng)絡(luò)蛋白基因(SEO)和半胱氨酸蛋白酶抑制劑a基因(CPI)等6個(gè)核心基因。核心基因功能分析結(jié)果顯示,品藍(lán)模塊涉及番木瓜萜類代謝調(diào)控,而淡黃色模塊涉及番木瓜韌皮部生長(zhǎng)代謝調(diào)控?!窘Y(jié)論】根際優(yōu)勢(shì)微生物與番木瓜抗倒伏性密切相關(guān),其可通過調(diào)控番木瓜莖的生長(zhǎng)從而提高抗倒伏性,可作為抗倒伏性強(qiáng)番木瓜品種選育的微生物篩選標(biāo)記之一。

      關(guān)鍵詞:番木瓜;加權(quán)基因共表達(dá)網(wǎng)絡(luò)(WGCNA);優(yōu)勢(shì)微生物;抗倒伏;基因挖掘

      中圖分類號(hào):S667.9? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):2095-1191(2023)02-0336-11

      Abstract:【Objective】To screen dominant microorganisms in root of papaya with strong lodging resistance, and to mine key genes of differential expression of papaya lodging resistance, so as to provide reference for revealing mechanism of papaya lodging resistance and related variety breeding selection. 【Method】In the experiment, three treatments were set up, conventional fertilizer application (2.5 kg organic fertilizer per plant, CK), fertilizer deficiency treatment (no organic fertilizer,WLR) and high organic fertilizer treatment (10 kg organic fertilizer per plant, SLR). Based on transcriptome and rhizosphere microorganism data, association analyses of weighted gene co-expression network analysis (WGCNA) were conducted to analyze key genes related to papaya lodging resistance and changes of rhizosphere microorganisms. 【Result】The plants treated with SLR had the strongest lodging resistance, followed by CK, and the plants treated with WLR had the worst lodging resistance. The plant height, internode length, and stem diameter of WLR treated plants were significantly lower than those of CK and SLR treated plants(P<0.05). Through microbiome data analysis, dominant microorganisms that affected the trait of lodging resistance were identified: Streptomyces, Bradyrhizobium, RB41 and Chitinophaga. Two modules related to papaya lodging resistance(royal blue module and light yellow module) were obtained through WGCNA analysis. Weighted gene co-expression networks based on these two modules were established and then 6 core genes possibly related to papaya lodging resistance were screened:acetyl-CoA acetyltransferase (AACT), polyadenylate-binding protein RBP47-like gene (RBP47), mitochondrial import inner membrane translocase subunit gene (TIM9), Calcium dependent channel 7TM region gene (HYP1), phloem protein filament network protein gene (SEO), and cysteine proteinase inhibitor a-like gene(CPI). Functional analysis of the core genes showed that the royal blue module was involved in papaya terpenoid metabolism regulation, while the light yellow module was involved in papaya phloem growth regulation. 【Conclusion】Dominant rhizosphere microorganisms are closely related to papaya lod-ging resistance, and as they can strengthen lodging resistance through regulating papaya stem growth, they can be taken as one of the microorganism screening markers for highly lodging-resistant papaya breeding.

      Key words: Carica papaya; weighted gene co-expression network analysis (WGCNA); dominant microorgani-sms; lodging resistance; gene mining

      Foundation items: Guangxi Key Research and Development Project (Guike AB19245027); Characteristic Fruit Industry Pioneer Special Project (Guinongkemeng 202204)

      0 引言

      【研究意義】廣西是全國(guó)加工型番木瓜(Carica papaya)種植面積和產(chǎn)量最高的省份,但倒伏和花葉病嚴(yán)重影響番木瓜產(chǎn)業(yè)的發(fā)展。由于加工型番木瓜根系較淺,果實(shí)較重,受臺(tái)風(fēng)影響易造成倒伏,嚴(yán)重影響番木瓜產(chǎn)量。根際微生物通過改變植物根際生境影響植物內(nèi)源激素含量變化(鮑根生等,2020),在不同程度上影響著莖的縱向生長(zhǎng)(杜加銀等,2016)和橫向生長(zhǎng)(黃文等,2022),進(jìn)一步影響著抗倒伏性能的強(qiáng)弱。因此,挖掘影響番木瓜抗倒伏能力的優(yōu)勢(shì)微生物及相關(guān)基因,對(duì)提高番木瓜抗倒伏能力具有重要意義?!厩叭搜芯窟M(jìn)展】已有較多微生物對(duì)植物抗倒伏性發(fā)揮促進(jìn)作用的研究報(bào)道(Lata et al.,2018;Rana et al.,2020;Devi et al.,2022)。微生物不僅能通過分泌激素促進(jìn)植物莖部的橫向生長(zhǎng)(Zhu et al.,2018),同時(shí)增強(qiáng)植株的防御能力(Liu et al.,2021),從而增強(qiáng)抗倒伏性能。Patel等(2019)對(duì)甘蔗根際微生物進(jìn)行篩選,結(jié)果發(fā)現(xiàn)Escherichia sp.VRE34菌株能促進(jìn)甘蔗株高和莖粗的增加。肖明綱等(2020)研究發(fā)現(xiàn),微生物菌劑能降低水稻株高,提高其抗倒伏能力。白建飛等(2022)研究發(fā)現(xiàn),莫拉維假單胞菌GF-55具有促進(jìn)玉米苗期生長(zhǎng)及增強(qiáng)玉米吐絲抗倒伏性的功能。植物抗倒伏性能的研究主要集中在水稻(Doraira and Ismail,2017;Li et al.,2017)、玉米(Ahmad et al.,2018;Kamran et al.,2018;Zhang et al.,2018)等作物上。但微生物與番木瓜生理性狀相互作用的研究(王麗霞等,2017,2022)較少,尚未見有番木瓜根際微生物與抗倒伏性相關(guān)的研究。Meng等(2021)研究表明,影響水稻莖稈強(qiáng)度的TUT1、OsCCC1、CFL1和ACL-D等基因在水稻抗倒伏育種中發(fā)揮關(guān)鍵作用。Zhao等(2021)研究表明,矮稈基因Rht15基因上調(diào)表達(dá)可顯著降低小麥株高,提高了小麥抗倒伏能力及部分品質(zhì)性狀,但對(duì)調(diào)控小麥產(chǎn)量相關(guān)性狀有負(fù)面影響。綜上所述,糧食作物抗倒伏能力的研究較為深入,而番木瓜抗倒伏能力的機(jī)制有待進(jìn)一步揭示。加權(quán)基因共表達(dá)網(wǎng)絡(luò)分析(WGCNA)作為一種聯(lián)系生理指標(biāo)與轉(zhuǎn)錄組數(shù)據(jù)的方法,已成為分子生物學(xué)研究的有利手段之一。Zaidi等(2020)通過將抗棉花卷葉病的外源基因Mac7轉(zhuǎn)入栽培棉中,經(jīng)WGCNA分析在共表達(dá)網(wǎng)絡(luò)中發(fā)現(xiàn)了9個(gè)模塊52個(gè)核心(Hub)基因,這些基因通過生長(zhǎng)素通路及細(xì)胞區(qū)隔化參與到棉花卷葉病的調(diào)控,該結(jié)果對(duì)了解棉花的抗卷葉病機(jī)制及培育耐性植株有重要意義。Wang等(2022)基于獼猴桃果實(shí)不同發(fā)育成熟段的性狀測(cè)定結(jié)果和轉(zhuǎn)錄組數(shù)據(jù),通過WGCNA分析鑒定出調(diào)控獼猴桃風(fēng)味代謝的關(guān)鍵轉(zhuǎn)錄因子,為風(fēng)味物質(zhì)合成途徑研究提供了新的解決思路?!颈狙芯壳腥朦c(diǎn)】目前鮮見篩選抗倒伏性強(qiáng)的番木瓜根基優(yōu)勢(shì)微生物并挖掘番木瓜抗倒伏差異表達(dá)基因的研究報(bào)道。【擬解決的關(guān)鍵問題】試驗(yàn)設(shè)不同施肥量處理,根據(jù)其轉(zhuǎn)錄組數(shù)據(jù)和根際微生物數(shù)據(jù),利用WGCNA分析挖掘與番木瓜抗倒伏性狀相關(guān)的關(guān)鍵基因,篩選出影響番木瓜抗倒伏性能的優(yōu)勢(shì)微生物,為揭示番木瓜主要抗倒伏性狀的分子機(jī)制及相關(guān)育種提供數(shù)據(jù)支持。

      1 材料與方法

      1. 1 試驗(yàn)材料

      供試番木瓜品種穗中紅,種植于農(nóng)業(yè)農(nóng)村部番木瓜種質(zhì)資源圃。主要試劑:NEBNext? UltraTM RNA建庫(kù)試劑盒、USER Enzyme cDNA合成試劑盒購(gòu)自新英格蘭生物實(shí)驗(yàn)室(美國(guó))有限公司;Qubit? RNA 檢測(cè)試劑盒購(gòu)自生命技術(shù)(美國(guó))有限公司;AMPure XP核酸純化試劑盒購(gòu)自貝克曼庫(kù)爾特(美國(guó))有限公司。主要儀器設(shè)備:NanoPhotometer?分光光度計(jì)(IMPLEN,美國(guó))、Qubit? 2.0熒光計(jì)(Life Technologies,美國(guó))、Bioanalyzer 2100生物分析儀 (Agilent Technologies,美國(guó))和Illumina HiSeq測(cè)序儀(Illumina,美國(guó))。

      1. 2 抗倒伏生理性狀測(cè)定

      試驗(yàn)設(shè)常規(guī)施肥量處理(每株施用2.5 kg有機(jī)肥,CK)、缺肥處理(不施有機(jī)肥,WLR)和高有機(jī)肥處理(每株施用10 kg有機(jī)肥,SLR)共3個(gè)處理。每個(gè)處理設(shè)3次重復(fù),小區(qū)面積20 m2。在種植前將有機(jī)肥撒施于小區(qū),翻耕使其混合均勻,之后開始種植番木瓜。待果實(shí)膨大期進(jìn)行采樣,每個(gè)處理各選3株,測(cè)定其抗倒伏生理性狀如株高、莖粗等。生理指標(biāo)按照NY/T 3089—2020《熱帶作物種質(zhì)資源描述規(guī)范 番木瓜》進(jìn)行測(cè)定。

      1. 3 轉(zhuǎn)錄組測(cè)序及分析

      取中間莖稈部分0.1 g左右,液氮冷凍后送武漢邁特維爾生物科技有限公司,采用Illumina HiSeq平臺(tái)進(jìn)行轉(zhuǎn)錄組測(cè)序,共獲得9個(gè)轉(zhuǎn)錄組測(cè)序原始數(shù)據(jù)。各樣品Clean data均達(dá)7 Gb,Q30堿基百分比在93%及以上。從NCBI數(shù)據(jù)庫(kù)(https://www.ncbi.nlm.nih.gov/data-hub/taxonomy/3649/)上下載番木瓜參考基因組及其注釋文件,使用 HISAT v2.1.0構(gòu)建索引,并將Clean reads比對(duì)到參考基因組。基于比對(duì)結(jié)果,使用FPKM(Fragments per kilobase of exon per million fragments mapped)值衡量基因的表達(dá)水平,通過P<0.05且|Log2FPKM|≥1為閾值篩選差異表達(dá)基因(周陳平等,2022)。

      1. 4 微生物組數(shù)據(jù)收集及分析

      取附著在根系表面約1 mm厚的根際土壤1.0 g左右,液氮冷凍,采用CTAB法對(duì)其基因組DNA進(jìn)行提取,使用TruSeq? DNA PCR-Free Sample Preparation Kit進(jìn)行文庫(kù)構(gòu)建,并使用Phusion? High-Fidelity PCR MasterMix(New England Biolabs)實(shí)時(shí)熒光定量PCR檢測(cè)構(gòu)建好的文庫(kù),引物序列采用宏基因組測(cè)序通用引物,即16S V4引物515F/806R,18S V4引物528F/706R,18S V9引物1380F/1510R(表1)。反應(yīng)總體系30.0 μL:Phusion? High-Fidelity PCR Master Mix 15.0 μL,0.2 μmol/L上、下游引物各1.0 μL,10 ng/μL模板DNA 1.0 μL。擴(kuò)增程序:98 ℃預(yù)變性1 min;98 ℃ 10 s,50 ℃ 30 s,72 ℃ 5 min,進(jìn)行30個(gè)循環(huán);72 ℃延伸5 min。

      利用Qubit? 2.0熒光計(jì)和Bioanalyzer 2100系統(tǒng)對(duì)文庫(kù)質(zhì)量進(jìn)行評(píng)估,參數(shù)按照默認(rèn)設(shè)置,篩選文庫(kù)合格(文庫(kù)有效濃度高于2 nmol/L)后,使用NovaSeq 6000進(jìn)行上機(jī)測(cè)序,共獲得9個(gè)微生物組測(cè)序原始數(shù)據(jù)。使用R軟件(Version 2.15.3)繪制主成分分析(PCA)、主坐標(biāo)分析(PCoA)和無度量多維標(biāo)定(NMDS)圖。基于已發(fā)表文獻(xiàn)證據(jù)(Louca et al.,2016),將細(xì)菌及古菌在環(huán)境中的生態(tài)作用進(jìn)行歸類,匯總整理為FAPROTAX數(shù)據(jù)庫(kù)?;跀U(kuò)增基因的物種注釋結(jié)果,對(duì)FAPROTAX數(shù)據(jù)庫(kù)進(jìn)行查詢,從而獲得已有文獻(xiàn)支持的物種環(huán)境功能信息。

      1. 5 共表達(dá)網(wǎng)絡(luò)構(gòu)建

      利用R程序中的WGCNA軟件(https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpac-kages/WGCNA/Tutorials/)分別對(duì)不同抗倒伏性的番木瓜材料進(jìn)行共表達(dá)網(wǎng)絡(luò)構(gòu)建(Zhang and Horvath,2005)。對(duì)FPKM進(jìn)行標(biāo)準(zhǔn)化后將基因表達(dá)矩陣輸入,使用WGCNA軟件中的pickSoftThreashold計(jì)算權(quán)重值,power值選取為8,使用blockwiseModules構(gòu)建無尺度網(wǎng)絡(luò),混合動(dòng)態(tài)剪切的標(biāo)準(zhǔn)劃分模塊,參數(shù)按照默認(rèn)設(shè)置。利用田間表型數(shù)據(jù)與無尺度網(wǎng)絡(luò)構(gòu)建好的模塊進(jìn)行關(guān)聯(lián)分析,計(jì)算相關(guān)系數(shù)。

      1. 6 互作網(wǎng)絡(luò)構(gòu)建及分析

      利用Cytoscape 3.9.1進(jìn)行互作網(wǎng)絡(luò)構(gòu)建,通過NetworkAnnlyze(undirected)計(jì)算網(wǎng)絡(luò)相關(guān)拓?fù)鋵傩?,利用cytoHubba插件(版本0.1)篩選模塊核心基因。采用cytoHubba的MCC算法,篩選前5個(gè)核心基因,去除無注釋的核心基因。

      2 結(jié)果與分析

      2. 1 不同施肥處理對(duì)番木瓜抗倒伏及相關(guān)性狀的影響

      由圖1可知,SLR處理的植株抗倒伏性最強(qiáng),其次是CK,WLR處理植株的抗倒伏性最差,表明抗倒伏性與施肥量有關(guān),施肥量量越多,抗倒伏性越強(qiáng)。由表2可知,WLR處理植株的株高、節(jié)間長(zhǎng)度和莖粗均顯著低于CK和SLR處理的植株(P<0.05,下同),而在莖粗方面,3個(gè)處理間均存在顯著差異;SLR處理的植株除莖粗顯著高于CK外,其余2個(gè)性狀與CK無顯著差異(P>0.05)。

      2. 2 影響番木瓜抗倒伏性能的差異根際微生物

      由PCA分析結(jié)果(圖2)可知,3個(gè)處理之間的菌落豐度存在明顯差異,SLR處理單獨(dú)分為一組,而CK和WLR處理具有相似的結(jié)果,無法完全分開。從物種豐度(圖3)上看,WLR處理優(yōu)勢(shì)微生物屬水平主要集中在羅達(dá)菌屬(Rhodaobacter)、雙歧桿菌屬(Bifidabacterium)、假黃單胞菌屬(Pseudoxanthomo-nas)、Castellabuella、霉菌屬(Mycobacterium)、腐植酸桿菌屬(Humibacter)、Acidipila及戴氏菌屬(Dyella),而SLR處理的微生物優(yōu)勢(shì)屬水平主要集中于鏈絲菌屬(Streptomyces)、慢生根瘤菌屬(Bradyrhizobium)、RB41和噬幾丁質(zhì)菌屬(Chitinophaga)等;CK處理的微生物優(yōu)勢(shì)屬水平主要集中于念珠菌屬(Candidatus_Koribacter)、帕尼巴氏菌屬(Paenibacillus)、炭疽菌屬(Bacillus)、布氏菌屬(Bryobacter)和Jatrophihabitans等。綜上所述,影響抗倒伏性狀優(yōu)勢(shì)微生物為鏈絲菌屬(Streptomyces)、慢生根瘤菌屬(Bradyrhizobium)、RB41及噬幾丁質(zhì)菌屬(Chitinophaga)。

      根據(jù)樣品在FAPROTAX數(shù)據(jù)庫(kù)中的功能注釋及豐度信息,選取豐度排名前25的功能及其在每個(gè)樣品中的豐度信息繪制熱圖,并從功能差異層面進(jìn)行聚類分析,結(jié)果如圖4所示。從功能差異層面的聚類分析結(jié)果與PCA分析結(jié)果相似。CK處理根際微生物的主要功能為硝酸鹽代謝、氮代謝和亞硝酸鹽代謝;WLR處理根際微生物的主要功能為光合作用、尿素代謝和木聚糖分解;SLR處理根際微生物的主要功能為氨的有氧代謝。植物對(duì)銨態(tài)氮的吸收利用效率強(qiáng)于硝態(tài)氮,CK處理和WLR處理根際微生物的主要功能集中在硝酸鹽代謝及光合作用,而SLR處理根際微生物的主要功能為氨代謝,表明SLR處理改變了微生物菌落結(jié)構(gòu),增加了土壤細(xì)菌對(duì)銨態(tài)氮的吸收。

      2. 3 模塊構(gòu)建及表型關(guān)聯(lián)分析

      為了解微生物對(duì)番木瓜抗倒伏性的影響,采用WGNCA共構(gòu)建了33個(gè)模塊(圖5),每一個(gè)分支表示一個(gè)共表達(dá)模塊?;疑╣rey60)模塊包含的是未分配的“游離”基因。將抗倒伏性狀與模塊進(jìn)行關(guān)聯(lián)分析,并繪制相關(guān)熱圖,結(jié)果(圖6)顯示品藍(lán)模塊基因表達(dá)量與莖的橫向生長(zhǎng)和縱向生長(zhǎng)指標(biāo)均成正相關(guān),且與莖粗相關(guān)關(guān)系最強(qiáng)(0.75,0.02);同時(shí)淡黃模塊基因表達(dá)量與番木瓜的莖生長(zhǎng)負(fù)相關(guān),且與節(jié)間長(zhǎng)度顯著負(fù)相關(guān)(0.75,0.02)。因此,基于品藍(lán)模塊和淡黃模塊開展深入研究。

      2. 4 核心基因的挖掘及共表達(dá)網(wǎng)絡(luò)的構(gòu)建

      篩選連通性>0.1的關(guān)聯(lián)節(jié)點(diǎn)構(gòu)建共表達(dá)網(wǎng)絡(luò)和挖掘核心基因。數(shù)據(jù)導(dǎo)入cytoscape 3.9.1后對(duì)共表達(dá)網(wǎng)絡(luò)進(jìn)行分析,共表達(dá)網(wǎng)絡(luò)的核心基因利用cytoHubba插件篩選MCC值前5的節(jié)點(diǎn)(圖7、圖8和表3)。通過功能查詢發(fā)現(xiàn)品藍(lán)模塊共表達(dá)網(wǎng)絡(luò)核心基因?yàn)橐阴]o酶A乙酰轉(zhuǎn)移酶基因(AACT)和聚腺苷酸結(jié)合蛋白基因(RBP47),其功能可能與能量代謝相關(guān),而淡黃模塊共表達(dá)網(wǎng)絡(luò)核心基因?yàn)轫g皮部蛋白質(zhì)絲網(wǎng)絡(luò)蛋白基因(SEO)和鈣依賴通道7TM區(qū)域基因(HYP1),其功能可能與韌皮部合成相關(guān)。

      3 討論

      土壤生境差異會(huì)影響微生物群落的機(jī)構(gòu)(Li et al.,2021)。Yang等(2019)研究表明,生物碳差異會(huì)影響植物根際微生物群落差異。根際微生物能通過分泌一些激素類物質(zhì)促進(jìn)植物的生長(zhǎng)發(fā)育。本研究表明,不同施肥處理的番木瓜抗倒伏性存在明顯差異,其根際微生物組成也存在明顯差異,可能是造成番木瓜抗倒伏性能差異的原因之一。Suárez-Moreno等(2019)研究表明,鏈絲菌屬(Streptomyces)細(xì)菌不僅能產(chǎn)生鐵載體、吲哚乙酸(IAA)及胞外酶,促進(jìn)植株的生長(zhǎng),還能通過刺激植物產(chǎn)生激素如赤霉素等影響植物生長(zhǎng),提高其生長(zhǎng)力(Amaresan et al.,2018)。慢生根瘤菌屬(Bradyrhizobium)細(xì)菌能促進(jìn)宿主植物的固氮及養(yǎng)分吸收,從而促進(jìn)宿主的生長(zhǎng) (Htwe et al.,2019)。本研究通過田間觀察發(fā)現(xiàn),SLR處理能夠增強(qiáng)番木瓜的抗倒伏性,其根際優(yōu)勢(shì)微生物為鏈絲菌屬(Streptomyces)、慢生根瘤菌屬 (Bradyrhizobium)、RB41及噬幾丁質(zhì)菌屬(Chitino-phaga),且其主要功能注釋為氨的有氧代謝,說明這些優(yōu)勢(shì)細(xì)菌有可能通過分泌促生物質(zhì)提高番木瓜抗倒伏性能。但由于對(duì)番木瓜根際微生物的研究較少,根際微生物與番木瓜根系的關(guān)系上不明確,故要探明微生物影響番木瓜抗倒伏性能的機(jī)制,還需找出微生物對(duì)番木瓜根系的影響機(jī)制。

      RBP47基因不僅在植物生長(zhǎng)及促進(jìn)細(xì)胞增殖中有重要調(diào)控作用(Chen et al.,2018),還參與了轉(zhuǎn)譯等細(xì)胞過程,促進(jìn)了種子的萌發(fā)及莖的快速增長(zhǎng) (Ferraz Dos Santos,2022)。AACT能激活植物抗逆性反應(yīng)(姚元枝等,2015;陳雷等,2021),促進(jìn)脫落酸(ABA)合成水平的升高(Jozwiak et al.,2020)。也有研究表明,AACT對(duì)細(xì)胞壁多糖乙?;陵P(guān)重要(Chen,2017;Zhong et al.,2020)。本研究發(fā)現(xiàn),與莖粗顯著相關(guān)的品藍(lán)模塊中注釋到的核心基因?yàn)锳ACT基因和RBP47基因,且根際優(yōu)勢(shì)微生物的功能注釋到固氮作用,說明番木瓜莖部橫向發(fā)育的基因可能與番木瓜RBP47蛋白的表達(dá)調(diào)控及萜類化合物代謝途徑相關(guān),微生物可能通過提高光合作用激活番木瓜細(xì)胞壁乙?;瘷C(jī)制,從而促進(jìn)莖的橫向生長(zhǎng)。

      SEO為定位在篩管中的表達(dá)蛋白,當(dāng)植物受損傷后其能在篩管中表達(dá)堆積并阻斷光合產(chǎn)物的轉(zhuǎn)運(yùn)(Rüping et al.,2010),且能增強(qiáng)受損部位的機(jī)械強(qiáng)度(Knoblauch et al.,2014)。Walker(2022)研究認(rèn)為,在豆科植物中SEO蛋白受Ca2+調(diào)節(jié),通過阻斷篩管來阻止蚜蟲攝取汁液,且能通過增強(qiáng)篩管的強(qiáng)度及栓塞化來增強(qiáng)莖的機(jī)械強(qiáng)度。本研究結(jié)果表明,淡黃模塊中的核心基因出現(xiàn)了SEO基因,與其表達(dá)相關(guān)的HYP1基因也是淡黃模塊的核心基因,且與其相關(guān)的根際微生物功能注釋到光合作用和固氮作用,說明韌皮部蛋白質(zhì)絲網(wǎng)絡(luò)蛋白的表達(dá)可能是影響番木瓜抗倒伏性能的重要因素之一,微生物可能通過提高光合作用和固氮作用促進(jìn)番木瓜SEO基因和HYP1基因的表達(dá)從而影響番木瓜抗倒伏性能,但其作用機(jī)理有待進(jìn)一步研究。

      4 結(jié)論

      鏈絲菌屬(Streptomyces)、慢生根瘤菌屬(Bradyrhizobium)等根際微生物可能通過促進(jìn)固氮作用及分泌促生物質(zhì)促進(jìn)番木瓜的生長(zhǎng),從而達(dá)到促進(jìn)抗倒伏性能的作用。品藍(lán)模塊是影響莖粗的主要模塊,其通過次生代謝途徑影響番木瓜的莖粗,而淡黃模塊為影響節(jié)間長(zhǎng)度的主要模塊,其中的SEO通路是影響番木瓜節(jié)間長(zhǎng)度最可能的代謝通路。

      參考文獻(xiàn):

      白建飛,韓升才,高聚林,于曉芳,青格爾,胡樹平,張賽楠,郭江岸. 2022. 內(nèi)生菌莫拉維假單胞菌GF-55促進(jìn)玉米生長(zhǎng)和提高抗倒伏功能分析[J]. 微生物學(xué)通報(bào),49(7):2625-2637. [Bai J F,Han S C,Gao J L,Yu X F,Qing G E,Hu S P,Zhang S N,Guo J A. 2022. Endophytic bacterial strain GF-55 improves the growth and lodging resistance of maize[J]. Microbiology China,49(7):2625-2637.] doi:10.13344/j.microbiol.china.211049.

      鮑根生,宋梅玲,王玉琴,劉靜,王宏生. 2020. 不同密度甘肅馬先蒿寄生和內(nèi)生真菌互作對(duì)紫花針茅內(nèi)源激素及生物堿含量的影響[J]. 草業(yè)學(xué)報(bào),29(4):147-156. [Bao G S,Song M L,Wang Y Q,Liu J,Wang H S. 2020. Interactive effects of different densities of Pedicularis kansuensis parasitism and Epichloё endophyte infection on the endogenous hormone levels and alkaloid contents of Stipa purpurea[J]. Acta Prataculturae Sinica,29(4):147-156.] doi:10.11686/cyxb2019313.

      陳雷,陳麗娜,王萌,瞿彩麗,鄧娟,龔玲,余坤. 2021. 茅蒼術(shù)乙酰輔酶A酰基轉(zhuǎn)移酶基因(AlAACT)的克隆與序列分析[J]. 中藥材,(3):574-579. [Chen L,Chen L N,Wang M,Qu C L,Deng J,Gong L,Yu K. 2021. Cloning and sequence analysis of acetyl-CoA acetyltransferase gene (AlAACT) from Atractylodes lancea[J]. Journal of Chinese Medicinal Materials,(3):574-579.] doi:10.13863/j.issn1001-4454.2021.03.012.

      杜加銀,胡兆平,侯廣軍,符連安,李新柱,陳海寧. 2016. 微生物土壤調(diào)理劑對(duì)辣椒生長(zhǎng)及產(chǎn)量的影響[J]. 湖北農(nóng)業(yè)科學(xué),55(22):5781-5783. [Du J Y,Hu Z P,Hou G J,F(xiàn)u L A,Li X Z,Chen H N. 2016. Effect of microbial soil conditioner on growth and yield of Capsicum annuum L.[J]. Hubei Agricultural Sciences,55(22):5781-5783.] doi:10.14088/j.cnki.issn0439-8114.2016.22.014.

      黃文,郭競(jìng),劉慧超,黃曉燕,張舜,應(yīng)芳卿. 2022. 不同微生物菌劑對(duì)番茄產(chǎn)量及品質(zhì)的影響[J]. 中國(guó)瓜菜,35(8):75-78. [Huang W,Guo J,Liu H C,Huang X Y,Zhang S,Ying F Q. 2022. Different microbial agents affect tomato yield and quality[J]. China Cucurbits and Vegetables,35(8):75-78.] doi:10.16861/j.cnki.zggc.2022.0200.

      王麗霞,黃大野,何應(yīng)對(duì),井濤,丁哲利,劉永霞,韓麗娜,吳斌. 2017. 韭菜-番木瓜間作模式對(duì)根際土壤可培養(yǎng)微生物、土壤性狀的影響[J]. 湖北農(nóng)業(yè)科學(xué),56(18):3444-3446. [Wang L X,Huang D Y,He Y D,Jing T,Ding Z L,Liu Y X,Han L N,Wu B. 2017. Effects of intercropping between leek and papaya on culturable microorganisms and soil properties in rhizosphere soil[J]. Hubei Agricultural Sciences,56(18):3444-3446.] doi:10.14088/j.cnki.issn0439-8114.2017.18.

      王麗霞,殷曉敏,劉永霞,連子豪,王必尊,何應(yīng)對(duì). 2022. 間作韭菜模式下番木瓜根區(qū)微生物群落變化特征[J]. 中國(guó)農(nóng)學(xué)通報(bào),38(31):66-76. [Wang L X,Yin X M,Liu Y X,Lian Z H,Wang B Z,He Y D. 2022. Change characteristics of microbial community in the rhizosphere of papaya under papaya-leek intercropping[J]. Chinese Agricultural Science Bulletin,38(31):66-76.] doi:10.11924/j.issn. 1000-6850.casb2021-1043.

      肖明綱,楊賢莉,孫兵,遲立勇,張擘,趙北平,李明賢. 2020. 減肥配施微生物菌劑對(duì)五優(yōu)稻四號(hào)抗倒性和產(chǎn)量的影響[J]. 安徽農(nóng)業(yè)科學(xué),48(21):156-158. [Xiao M G,Yang X L,Sun B,Chi L Y,Zhang B,Zhao B P,Li M X. 2020. Effect of reduced fertilizer and utilization of microbial inoculant on lodging resistance and yield of Wuyoudao 4[J]. Journal of Anhui Agricultural Sciences,48(21):156-158.] doi:10.3969/j.issn.0517-6611.2020.21.042.

      姚元枝,黎曉英,魏麟,伍賢進(jìn),劉勝貴,唐玉蓮. 2015. 魚腥草乙酰輔酶A?;D(zhuǎn)移酶基因克隆、表達(dá)及生物信息學(xué)分析[J]. 中草藥,46(1):107-111. [Yao Y Z,Li X Y,Wei L,Wu X J,Liu S G,Tang Y L. 2015. Cloning,expression,and bioinformatics analysis of acetyl-CoA C acetyltransferase gene in Houttuynia cordata[J]. Chinese Traditional and Herbal Drugs,46(1):107-111.] doi:10.7501/j.issn.0253-2670.2015.01.021.

      周陳平,楊敏,郭金菊,鄺瑞彬,李慶萌,楊護(hù),黃炳雄,魏岳榮. 2022. 番木瓜兩性株高溫條件下花性轉(zhuǎn)變的轉(zhuǎn)錄組分析[J]. 果樹學(xué)報(bào),40(3):457-470. [Zhou C P,Yang M,Guo J J,Kuang R B,Li Q M,Yang H,Huang B X,Wei Y R. 2022. Transcriptome analysis of floral sex reversal induced by high temperature in hermaphroditic papaya (Carica papaya L.) [J]. Journal of Fruit Science,40(3):457-470.] doi:10.13925/j.cnki.gsxb.20220440.

      Ahmad I,Kamran M,Ali S,Bilegjargal B,Cai T,Ahmad S,Meng X P,Su W N,Liu T N,Han Q F. 2018. Unicona-zole application strategies to improve lignin biosynthesis,lodging resistance and production of maize in semiarid regions[J]. Field Crops Research,222:66-77. doi:10. 1016/j.fcr.2018.03.015.

      Amaresan N,Kumar K,Naik J H,Bapatla K G,Mishra R K. 2018. Chapter 8-streptomyces in plant growth promotion:Mechanisms and role[M]//Singh B P,Gupta V K,Passari A K. New and Future Developments in Microbial Biotechnology and Bioengineering. Amsterdam:Elsevier.

      Chen C,Li C L,Wang Y,Renaud J,Tian G,Kambhampati S,Saatian B,Nguyen V,Hannoufa A,Marsolais F,Yuan Z C,Yu K F,Austin R S,Liu J,Kohalmi S E,Wu K Q,Huang S Z,Cui Y H. 2017. Cytosolic acetyl-CoA promotes histone acetylation predominantly at H3K27 in Arabidopsis[J]. Nature Plants,3(10):814-824. doi:10. 1038/s41477-017-0023-7.

      Chen J Y,Kalinowska K,Müller B,Mergner J,Deutzmann R,Schwechheimer C,Hammes U Z,Dresselhaus T. 2018. DiSUMO-LIKE interacts with RNA-binding proteins and affects cell-cycle progression during maize embryogenesis[J]. Current Biology,28(10):1548-1560. doi:10.1016/j.cub.2018.03.066.

      Devi R,Kaur T,Kour D,Yadav A N. 2022. Microbial consortium of mineral solubilizing and nitrogen fixing bacteria for plant growth promotion of amaranth (Amaranthus hypochondrius L.)[J]. Biocatalysis and Agricultural Biotechnology,43:102404. doi:10.1016/j.bcab.2022.102404.

      Doraira D,Ismail M R. 2017. Distribution of silicified microstructures,regulation of cinnamyl alcohol dehydrogenase and lodging resistance in silicon and paclobutrazol media-ted Oryza sativa[J]. Frontiers in Physiology,8:491. doi:10.3389/fphys.2017.00491.

      Ferraz Dos Santos L,Santana Silva R J,F(xiàn)alc?o L L,Alves R M,Marcellino L H,Micheli F. 2022. Cupuassu (Theobroma grandiflorum[Willd. ex Sprengel] Schumann) fruit development:Key genes involved in primary metabolism and stress response[J]. Agronomy,12(4):763. doi:10. 3390/agronomy12040763.

      Htwe A Z,Moh S M,Soe K M,Moe K,Yamakawa T. 2019. Effects of biofertilizer produced from Bradyrhizobium and Streptomyces griseoflavus on plant growth,nodulation,nitrogen fixation,nutrient uptake,and seed yield of mung bean,cowpea,and soybean[J]. Agronomy,9(2):77. doi:10.3390/agronomy9020077.

      Jozwiak A,Sonawane P D,Panda S,Garagounis C,Papadopoulou K K,Abobie B,Massalha H,Almekias-Siegl E,Scherf T,Aharoni A. 2020. Plant terpenoid metabolism co-opts a component of the cell wall biosynthesis machinery[J]. Nature Chemical Biology,16(7):740-748. doi:10.1038/s41589-020-0541-x.

      Kamran M,Ahmad I,Wang H Q,Wu X R,Xu J,Liu T N,Ding R X,Han Q F. 2018. Mepiquat chloride application increases lodging resistance of maize by enhancing stem physical strength and lignin biosynthesis[J]. Field Crops Research,224:148-159. doi:10.1016/j.fcr.2018.05.011.

      Knoblauch M,F(xiàn)roelich D R,Pickard W F,Peters W S. 2014. SEORious business:Structural proteins in sieve tubes and their involvement in sieve element occlusion[J]. Journal of Experimental Botany,65(7):1879-1893. doi:10.1093/jxb/eru071.

      Lata R,Chowdhury S,Gond S K,White Jr J F. 2018. Induction of abiotic stress tolerance in plants by endophytic microbes[J]. Letters in Applied Microbiology,66(4):268-276. doi:10.1111/lam.12855.

      Li A Y,Wang Y P,Wang Y J,Dong H L,Wu Q X,Mehmood K,Chang Z Y,Li Y,Chang Y F,Shi L J,Tang Z X,Zhang H. 2021. Microbiome analysis reveals soil microbial community alteration with the effect of animal excretion contamination and altitude in Tibetan Plateau of China[J]. International Soil and Water Conservation Research,9(4):639-648. doi:10.1016/j.iswcr.2021.04.011.

      Li F C,Xie G S,Huang J F,Zhang R,Li Y,Zhang M M,Wang Y T,Li A,Li X K,Xia T,Qu C C,Hu F,Ragauskas A J,Peng L C. 2017. OsCESA9 conserved‐site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice[J]. Plant Biotechnology Journal,15(9):1093-1104. doi:10.1111/pbi.12700.

      Liu H W,Li J Y,Carvalhais L C,Percy C D,Prakash V J,Schenk P M,Singh B K. 2021. Evidence for the plant recruitment of beneficial microbes to suppress soil-borne pathogens[J]. New Phytologist,229(5):2873-2885. doi:10.1111/nph.17057.

      Louca S,Parfrey L W,Doebeli M. 2016. Decoupling function and taxonomy in the global ocean microbiome[J]. Scien-ce,353(6305):1272-1277. doi:https://doi.org/10.1126/science.aaf4507.

      Meng B X,Wang T,Luo Y,Xu D Z,Li L Z,Diao Y,Gao Z Y,Hu Z L,Zheng X F. 2021. Genome-wide association study identified novel candidate loci/genes affecting lod-ging resistance in rice[J]. Genes,12(5):718. doi:10.3390/genes12050718.

      Patel P,Shah R,Joshi B,Ramar K,Natarajan A. 2019. Mole-cular identification and biocontrol activity of sugarcane rhizosphere bacteria against red rot pathogen Colletotrichum falcatum[J]. Biotechnology Reports,21:e00317. doi:10.1016/j.btre.2019.e00317.

      Rana K L,Kour D,Kaur T,Sheikh I,Yadav A N,Kumar V,Suman A,Dhaliwal H S. 2020. Endophytic microbes from diverse wheat genotypes and their potential biotechnological applications in plant growth promotion and nutrient uptake[J]. Proceedings of the National Academy of Sciences,India Section B:Biological Sciences,90(5):969-979. doi:10.1007/s40011-020-01168-0.

      Rüping B,Ernst A M,Jekat S B,Nordzieke S,Reineke A R,Müller B,Bornberg-Bauer E,Prüfer D,Noll G A. 2010. Molecular and phylogenetic characterization of the sieve element occlusion gene family in Fabaceae and non-Fabaceaeplants[J]. BMC Plant Biology,10:219. doi:10.1186/1471-2229-10-219.

      Suárez-Moreno Z R,Vinchira-Villarraga D M,Vergara-Morales D I,Castellanos L,Ramos F A,Guarnaccia C,Degrassi G,Venturi V,Moreno-Sarmiento N. 2019. Plant-growth promotion and biocontrol properties of three Streptomyces spp. isolates to control bacterial rice pathogens[J]. Frontiers in Microbiology,10:290. doi:10.3389/fmicb.2019.00290.

      Walker G P. 2022. Sieve element occlusion:Interactions with phloem sap-feeding insects. A review[J]. Journal of Plant Physiology,269:153582. doi:10.1016/j.jplph.2021.153582.

      Wang R C,Shu P,Zhang C,Zhang J L,Chen Y,Zhang Y X,Du K,Xie Y,Li M Z,Ma T,Zhang Y,Li Z G,Grierson D,Pirrello J,Chen K,Bouzayen M,Zhang B,Liu M C. 2022. Integrative analyses of metabolome and genome-wide transcriptome reveal the regulatory network gover-ning flavor formation in kiwifruit(Actinidia chinensis)[J]. New Phytologist,233(1):373-389. doi:10.1111/nph.17618.

      Yang F,Zhou Y,Liu W M,Tang W Z,Meng J,Chen W F,Li X Z. 2019. Strain-specific effects of biochar and its water-soluble compounds on bacterial growth[J]. Applied Scie-nces,9(16):3209. doi:10.3390/app9163209.

      Zaidi S S,Naqvi R Z,Asif M,Strickler S,Shakir S,Shafiq M,Khan A M,Amin I,Mishra B,Mukhtar M S,Scheffler B E,Scheffler J A,Mueller L A,Mansoor S. 2020. Molecular insight into cotton leaf curl geminivirus disease resistance in cultivated cotton(Gossypium hirsutum)[J]. Plant Biotechnology Journal,18(3):691-706. doi:10.1111/pbi.13236.

      Zhang B ,Horvath S. 2005. A general framework for weighted gene co-expression network analysis[J]. Statistical Applications in Genetics and Molecular Biology,4(1):Article17. doi:10.2202/1544-6115.1128

      Zhang Y L,Liu P,Zhang X X,Zheng Q,Chen M,Ge F,Li Z L,Sun W T,Guan Z R,Liang T H,Zheng Y,Tan X L,Zou C Y,Peng H W,Pan G T,Shen Y. 2018. Multi-locus genome-wide association study reveals the genetic architecture of stalk lodging resistance-related traits in maize[J]. Frontiers in Plant Ence,9:611. doi:10.3389/fpls. 2018.00611.

      Zhao Z C,Duan S,Hao J M,Cui C G,Yang Y,Condon A G,Chen F,Hu Y G,Chen L. 2021. The dwarf gene Rht15 improved lodging resistance but differentially affected agronomic and quality traits in durum wheat[J]. Field Crops Research,263:108058. doi:10.1016/j.fcr.2021. 108058.

      Zhong R Q,Cui D T,Richardson E A,Phillips D R,Azadi P,Lu G,Ye Z H. 2020. Cytosolic Acetyl-CoA generated by ATP-citrate lyase is essential for acetylation of cell wall polysaccharides[J]. Plant and Cell Physiology,61(1):64-75. doi:10.1093/pcp/pcz178.

      Zhu S Y,Wang Y Z,Xu X M,Liu T M,Wu D Q,Zheng X,Tang S W,Dai Q Z. 2018. Potential use of high-throughput sequencing of soil microbial communities for estima-ting the adverse effects of continuous cropping on ramie (Boehmeria nivea L. Gaud)[J]. PLoS One,13(5):e197095. doi:10.1371/journal.pone.0197095.

      (責(zé)任編輯 陳 燕)

      猜你喜歡
      番木瓜
      墨西哥:全球最大番木瓜出口國(guó)
      番木瓜有助于防癌和其他疾病
      番木瓜豐產(chǎn)優(yōu)質(zhì)栽培技術(shù)
      紅土地(2016年3期)2017-01-15 13:45:37
      墨西哥:世界第五大番木瓜生產(chǎn)國(guó)
      超聲波輔助與溶劑萃取番木瓜籽油的比較研究
      印度的番木瓜產(chǎn)業(yè)增長(zhǎng)
      生番木瓜可治愈潰瘍
      墨西哥成為世界最大番木瓜出口國(guó)
      英國(guó)MWW成為獨(dú)有的aurora番木瓜進(jìn)口商
      2013年巴西番木瓜出口增長(zhǎng)了9%
      廊坊市| 普宁市| 安溪县| 沅江市| 三门峡市| 漯河市| 青州市| 金溪县| 夏河县| 思南县| 镇远县| 渭源县| 桐梓县| 乐东| 甘洛县| 靖西县| 即墨市| 西乌珠穆沁旗| 朝阳区| 宁阳县| 抚松县| 通许县| 桐乡市| 平谷区| 乌审旗| 甘孜| 湖州市| 无极县| 托克托县| 汉寿县| 同心县| 乌兰县| 措美县| 商都县| 英吉沙县| 鲜城| 和顺县| 水富县| 淮南市| 明溪县| 尖扎县|