林曉萍, 謝柳畑, 蘇小珊, 吳煒景
脂多糖通過Nrf2信號通路誘導(dǎo)人氣道上皮細(xì)胞MUC5AC表達(dá)*
林曉萍△, 謝柳畑▲, 蘇小珊, 吳煒景
(福建醫(yī)科大學(xué)附屬第二醫(yī)院呼吸與危重癥醫(yī)學(xué)科,福建 泉州 362000)
探討核因子E2相關(guān)因子2(Nrf2)信號通路在脂多糖(LPS)上調(diào)氣道黏蛋白5AC(MUC5AC)表達(dá)中的作用。LPS干預(yù)體外培養(yǎng)的人氣道上皮細(xì)胞系A(chǔ)549細(xì)胞,以誘導(dǎo)MUC5AC表達(dá)。分別轉(zhuǎn)染小干擾RNA(siRNA)和過表達(dá)質(zhì)粒(pcDNA3-Myc3-),敲減或過表達(dá)A549細(xì)胞中的,再加入10 mg/L LPS干預(yù)24 h,RT-qPCR和Western blot法分別檢測細(xì)胞MUC5AC、Kelch樣環(huán)氧氯丙烷相關(guān)蛋白1(Keap1)、Nrf2及其下游抗氧化因子[NAD(P)H:醌氧化還原酶1(NQO1)、谷氨酸-半胱氨酸連接酶催化亞基(GCLC)、谷胱甘肽-轉(zhuǎn)移酶pi(GST-pi)和血紅素加氧酶1(HO-1)]的mRNA及蛋白表達(dá)情況。(1)LPS上調(diào)A549細(xì)胞黏蛋白MUC5AC表達(dá)(<0.01),上調(diào)Nrf2及其下游抗氧化因子NQO1、GCLC及GST-pi表達(dá),下調(diào)HO-1表達(dá)(<0.05)。(2)與陰性對照組相比,轉(zhuǎn)染siRNA能有效抑制A549細(xì)胞Nrf2 的表達(dá);敲減的A549細(xì)胞經(jīng)LPS干預(yù)后,MUC5AC的表達(dá)顯著增加(<0.05)。(3)與對照組相比,轉(zhuǎn)染過表達(dá)質(zhì)粒pcDNA3-Myc3-明顯增加A549細(xì)胞Nrf2的表達(dá);增強Nrf2表達(dá)后,LPS誘導(dǎo)的MUC5AC表達(dá)被抑制(<0.05)。Nrf2信號通路參與調(diào)控LPS誘導(dǎo)的氣道上皮細(xì)胞MUC5AC表達(dá)。
脂多糖;核因子E2相關(guān)因子2;黏蛋白5AC;氣道上皮細(xì)胞
氣道黏液是機體固有免疫的重要組成部分,不僅可濕潤氣道,還可捕獲入侵氣道的有害物質(zhì)和微生物,通過纖毛轉(zhuǎn)運系統(tǒng)清除,發(fā)揮氣道屏障和保護作用[1-2]。但在吸煙、感染和氧化應(yīng)激等致病因素作用下,氣道黏膜下腺體增生肥大、杯狀細(xì)胞增生/化生,黏蛋白基因表達(dá)上調(diào),導(dǎo)致黏液分泌增多。過多的黏液積聚在氣道中,引起并加重氣流阻塞,加速肺功能下降進程;同時損壞纖毛清除功能,導(dǎo)致細(xì)菌定植,氣道反復(fù)感染、阻塞和重塑,形成惡性循環(huán)。氣道黏液高分泌是哮喘、慢性阻塞性肺疾?。╟hronic obstructive pulmonary disease, COPD)、支氣管擴張和囊性纖維化(cystic fibrosis, CF)等慢性氣道炎癥性疾病重要的病理生理特征,也是其加重、死亡的危險因素,在疾病發(fā)生發(fā)展中發(fā)揮關(guān)鍵作用,目前仍缺乏有效的治療手段[1-8]。因此,如何有效控制氣道黏液高分泌是臨床工作中面臨的重要挑戰(zhàn),闡明氣道黏液分泌的調(diào)控機制,有助于開發(fā)新型抗氣道黏液高分泌藥物。
黏蛋白種類繁多,其中黏蛋白5AC(mucin 5AC, MUC5AC)是氣道黏蛋白的主要成分。既往研究表明脂多糖(lipopolysaccharide, LPS)、香煙煙霧、表皮生長因子(epithelial growth factor, EGF)和腫瘤壞死因子α(tumor necrosis factor-α, TNF-α)等多種因子均可誘導(dǎo)氣道MUC5AC的表達(dá)[1-5]。LPS是革蘭陰性細(xì)菌細(xì)胞壁外壁的組成成分,是上調(diào)MUC5AC表達(dá)的強誘導(dǎo)劑[9-12]。革蘭陰性菌是慢性氣道炎癥性疾病的常見致病菌,研究其菌壁致病原LPS誘導(dǎo)黏蛋白MUC5AC高表達(dá)具有重要臨床意義,將可能為降低慢性氣道炎癥性疾病的急性加重風(fēng)險和死亡率、縮短住院日、降低住院費提供新的治療策略。本實驗室既往研究發(fā)現(xiàn)活性氧簇(reactive oxygen species, ROS)及雙氧化酶1(dual oxidase1, Duox1)參與調(diào)控LPS誘導(dǎo)氣道上皮細(xì)胞MUC5AC表達(dá)[13-14]。另有研究發(fā)現(xiàn),LPS通過蛋白激酶C/煙酰胺腺嘌呤二核苷酸磷酸/ROS通路上調(diào)人膽道上皮細(xì)胞MUC5AC表達(dá)[15]。以上研究提示氧化應(yīng)激在LPS誘導(dǎo)黏蛋白MUC5AC高表達(dá)中發(fā)揮重要作用。
核因子E2相關(guān)因子2(nuclear factor E2-related factor 2, Nrf2)是細(xì)胞抗氧化應(yīng)激反應(yīng)最重要的調(diào)節(jié)因子之一。在氧化應(yīng)激作用下,Nrf2與其負(fù)性調(diào)控蛋白——Kelch樣環(huán)氧氯丙烷相關(guān)蛋白1(Kelch-like ECH-associated protein l, Keap1)解偶聯(lián),進入細(xì)胞核,識別并結(jié)合抗氧化反應(yīng)元件(antioxidant response element, ARE),啟動下游抗氧化酶基因,如NAD(P)H:醌氧化還原酶1[NAD(P)H:quinone oxidoreductase 1,]、谷氨酸-半胱氨酸連接酶催化亞基(glutamate-cysteine ligase catalytic subunit,)、谷胱甘肽-轉(zhuǎn)移酶pi(glutathione-transferase-pi,)和血紅素加氧酶1(heme oxygenase-1,)等轉(zhuǎn)錄,發(fā)揮清除自由基、抑制氧化應(yīng)激和細(xì)胞凋亡、減輕炎癥反應(yīng)、調(diào)節(jié)自噬、抑制細(xì)胞焦亡等作用[16-17]。已有大量研究證實Nrf2信號通路介導(dǎo)肺保護作用,在支氣管哮喘、COPD、肺纖維化、急性肺損傷、急性呼吸窘迫綜合征和肺部腫瘤等疾病中發(fā)揮保護作用[18-19]。在敗血癥敲除小鼠模型中,LPS干預(yù)后小鼠肺部炎癥加重、大量與固有免疫反應(yīng)相關(guān)的前炎癥因子產(chǎn)生,感染性休克的死亡率明顯升高;而激活Nrf2依賴的抗氧化基因表達(dá),可減輕膿毒癥引起的肺組織炎癥反應(yīng),降低死亡率[20];甲磺酸鹽通過Nrf2通路減輕LPS引起的急性肺損傷[21];人參環(huán)氧炔醇通過Nrf2/HO-1信號通路減輕LPS誘導(dǎo)的小鼠急性肺損傷[22]。上述研究表明Nrf2信號通路能有效抑制LPS誘導(dǎo)的肺部炎癥,但對于該通路是否參與調(diào)控LPS誘導(dǎo)氣道黏蛋白MUC5AC表達(dá)尚未有報道。
本研究以氣道上皮細(xì)胞A549為研究對象,探討Nrf2信號通路在LPS上調(diào)氣道黏蛋白MUC5AC表達(dá)中的作用,為開發(fā)新型抑制氣道黏液高分泌藥物提供理論依據(jù)。
氣道上皮細(xì)胞系A(chǔ)549購自中國科學(xué)院典型培養(yǎng)物保藏委員會細(xì)胞庫。
F12K培養(yǎng)液和無支原體胎牛血清(fetal bovine serum, FBS)購自Gibco;LPS購自Sigma;Lipofectamine 2000轉(zhuǎn)染試劑和Trizol試劑購自Invitrogen;小干擾RNA(small interfering RNA, siRNA)和陰性對照(negative control, NC)siRNA購自Invitrogen;過表達(dá)質(zhì)粒pcDNA3-Myc3-來源于Addgene網(wǎng)站;質(zhì)粒大抽試劑盒購自QIAGEN;mRNA逆轉(zhuǎn)錄試劑盒和SYBR?Premix Ex TaqTM購自Promega;BCATMProtein Assay購自Thermo;抗MUC5AC抗體、抗Nrf2抗體和抗Keap1抗體購自Abcam;抗NQO1抗體購自Cell Signaling Technology;抗GST-pi抗體購自VECTOR;抗HO-1抗體購自Assay Designs;抗GCLC抗體購自ABNOVA;其他實驗試劑均為進口分裝或國產(chǎn)分析純。所用引物由上海生工生物工程技術(shù)服務(wù)有限公司根據(jù)設(shè)計合成,序列見表1。
表1 RT-qPCR引物序列
3.1細(xì)胞培養(yǎng)將A549細(xì)胞加入含10%胎牛血清、1×105/L青霉素和100 mg/L的F12K細(xì)胞培養(yǎng)液中,在37 ℃、5% CO2培養(yǎng)箱中孵育。細(xì)胞生長至80%~90%時進行傳代,取對數(shù)生長期的細(xì)胞進行實驗。
3.2A549細(xì)胞轉(zhuǎn)染siRNA嚴(yán)格按照Lipofectamine 2000轉(zhuǎn)染試劑盒說明書的步驟。轉(zhuǎn)染前1 d,將處于對數(shù)生長期的A549細(xì)胞以2×108/L的密度均勻接種于6孔板中,待細(xì)胞長至60%~70%融合時進行轉(zhuǎn)染。使用無血清無抗生素的培養(yǎng)液將Lipofectamine 2000轉(zhuǎn)染試劑和siRNA稀釋并混合,室溫下靜置20 min后加入到6孔板中繼續(xù)培養(yǎng),6 h后更換新鮮培養(yǎng)液進行常規(guī)培養(yǎng)。轉(zhuǎn)染24 h后換用無FBS的F12K培養(yǎng)基培養(yǎng)過夜,轉(zhuǎn)染48 h后加入LPS(10 mg/L)干預(yù)。實驗分為4組:NC-siRNA組、-siRNA組、LPS+NC-siRNA組和LPS+-siRNA組。
3.3A549細(xì)胞轉(zhuǎn)染過表達(dá)質(zhì)粒按照QIAGEN大抽試劑盒說明書擴增pcDNA3-Myc3-過表達(dá)質(zhì)粒和空載體質(zhì)粒。根據(jù)Lipofectamine 2000試劑盒說明書轉(zhuǎn)染質(zhì)粒(NC-pcDNA3)。轉(zhuǎn)染前1 d,將處于對數(shù)生長期的A549細(xì)胞以2×108/L的密度均勻接種于12孔板中,待細(xì)胞達(dá)到90%~95%融合度時進行轉(zhuǎn)染。使用無血清無抗生素的培養(yǎng)液將Lipofectamine 2000轉(zhuǎn)染試劑和質(zhì)?;旌希覝叵蚂o置20 min后加入到12孔板中繼續(xù)培養(yǎng),6 h后更換新鮮培養(yǎng)液進行常規(guī)培養(yǎng)。轉(zhuǎn)染24 h后換用無FBS的F12K培養(yǎng)基培養(yǎng)過夜,轉(zhuǎn)染48 h后加入LPS(10 mg/L)干預(yù)。實驗分為4組:NC-pcDNA3組、pcDNA3-Myc3-組、LPS+NC-pcDNA3和LPS+pcDNA3-Myc3-組。
3.4RT-qPCR實驗將各組A549細(xì)胞用Trizol裂解,提取細(xì)胞總RNA,分光光度法測定計算提取的總RNA含量及濃度。按照Reverse Transcriptase Kit說明書合成cDNA,再用SYBR?Premix Ex TaqTM進行檢測。以GAPDH為內(nèi)參照,采用2-ΔΔCt法計算目的基因的相對表達(dá)水平。
3.5Western blot實驗檢測蛋白表達(dá)RIPA裂解液充分裂解各組A549細(xì)胞,提取細(xì)胞總蛋白,BCA法檢測蛋白濃度后,取等量蛋白進行SDS-PAGE。依次經(jīng)過電泳、轉(zhuǎn)膜、封閉,4 ℃孵育Ⅰ抗(除MUC5AC抗體以1∶200稀釋外,其余Ⅰ抗均以1∶1 000稀釋)過夜,TBST振蕩洗滌后,室溫孵育Ⅱ抗2 h,TBST振蕩洗滌后,加入ECL發(fā)光液,ChemiDoc XRS+凝膠成像系統(tǒng)(Bio-Rad)曝光顯影,使用Quantity One 1-D 4.62軟件測量顯影條帶的吸光度,進行半定量分析。
用SPSS 21.0統(tǒng)計軟件進行分析,GraphPad Prism 5.0軟件進行作圖。計量數(shù)據(jù)均采用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示,多組間比較采用單因素方差分析(one-way ANOVA),組間兩兩比較采用最小顯著性差異(LSD)法。以<0.05為差異有統(tǒng)計學(xué)意義。
使用不同濃度(5、10和15 mg/L)LPS干預(yù)A549細(xì)胞不同時間(6、12和24 h),結(jié)果發(fā)現(xiàn)各個濃度及干預(yù)時間均可上調(diào)MUC5AC表達(dá)(<0.05或<0.01),以10 mg/L LPS干預(yù)24 h最為顯著(<0.01),見圖1。
Figure 1. Lipopolysaccharide (LPS) induced MUC5AC expression in A549 cells. A: MUC5AC mRNA expression was induced by LPS at different concentrations; B: MUC5AC mRNA expression was induced by LPS (10 mg/L) in a time-dependent manner; C: LPS (10 mg/L) induced MUC5AC protein expression. Mean±SD. n=3. **P<0.01 vs 0 mg/L LPS group; #P<0.05 vs 0 h; △△P<0.01 vs control group.
RT-qPCR和Western blot結(jié)果顯示,10 mg/L LPS干預(yù)A549細(xì)胞后Nrf2的mRNA及蛋白表達(dá)明顯增多(<0.01),Keap1的mRNA及蛋白表達(dá)減少(<0.01),見圖2A??寡趸蜃覰QO1、GCLC和GST-pi的mRNA及蛋白表達(dá)均增多,但HO-1的表達(dá)減少,見圖2B。以上結(jié)果表明,LPS可能通過Nrf2信號通路上調(diào)A549細(xì)胞MUC5AC表達(dá)。
Figure 2. Effects of LPS on Keap1/Nrf2 signaling pathway and downstream antioxidant factors in A549 cells. RT-qPCR (A and C) and Western blot (B and D) were used to detect the level of Keap1/Nrf2 (A and B) and downstream antioxidant factors NQO1, GCLC, GST-pi and HO-1 (C and D). Mean±SD. n=3. *P<0.05, **P<0.01 vs control group.
RT-qPCR和Western blot結(jié)果顯示,與轉(zhuǎn)染陰性對照siRNA的A549細(xì)胞相比,轉(zhuǎn)染siRNA的A549細(xì)胞Nrf2的mRNA和蛋白表達(dá)均顯著減少(<0.05),見圖3A。這說明siRNA成功轉(zhuǎn)入細(xì)胞,且能顯著降低A549細(xì)胞的表達(dá)。
Figure 3. Knockdown of Nrf2 augmented LPS-induced MUC5AC production in A549 cells. A: the mRNA and protein expression of Nrf2 was decreased after Nrf2 siRNA transfection in A549 cells; B: RT-qPCR was used to detect the mRNA levels of Keap1, Nrf2 and MUC5AC; C: Western blot was used to detect the protein expression of Keap1, Nrf2 and MUC5AC. Mean±SD. n=3. *P<0.05 vs NC-siRNA group; #P<0.05 vs LPS+NC-siRNA group.
與對照組相比,敲減的A549細(xì)胞經(jīng)LPS作用,Keap1和MUC5AC表達(dá)上調(diào)(<0.05),見圖3B、C;下游抗氧化因子NQO1、GCLC和HO-1的mRNA及蛋白表達(dá)均明顯被抑制,GST-pi的表達(dá)增強(<0.05),見圖4。這表明Nrf2信號通路參與調(diào)控LPS誘導(dǎo)的氣道上皮細(xì)胞MUC5AC表達(dá)。
Figure 4. Effect of Nrf2 knockdown on the expression of downstream antioxidant genes in response to LPS treatment. A: RT-qPCR was used to detect the mRNA levels of NQO1, GCLC, GST-pi and HO-1;B: Western blot was used to detect the protein levels of NQO1, GCLC, GST-pi and HO-1. Mean±SD. n=3. #P<0.05 vs LPS+NC-siRNA group.
與轉(zhuǎn)染陰性對照質(zhì)粒的A549細(xì)胞相比,轉(zhuǎn)染pcDNA3-Myc3-的A549細(xì)胞中Nrf2的mRNA和蛋白表達(dá)均顯著增強(<0.05),見圖5。這說明pcDNA3-Myc3-成功轉(zhuǎn)入細(xì)胞,且能顯著增強A549細(xì)胞Nrf2的表達(dá)。
Figure 5. Overexpression of Nrf2 suppressed LPS-induced MUC5AC production in A549 cells. After transfection with pcDNA3-Myc3-Nrf2, the mRNA (A) and protein (B) expression of Nrf2, Keap1 and MUC5AC were detected. Mean±SD. n=3. *P<0.05 NC-pcDNA3 group; #P<0.05 vs LPS+NC-pcDNA3 group.
與陰性對照質(zhì)粒組相比,pcDNA3-Myc3-轉(zhuǎn)染明顯抑制LPS對A549細(xì)胞MUC5AC mRNA及蛋白表達(dá)的上調(diào)作用(<0.05),見圖5。但pcDNA3-Myc3-轉(zhuǎn)染對LPS干預(yù)后A549細(xì)胞Nrf2下游抗氧化因子表達(dá)的影響無統(tǒng)計學(xué)意義,見圖6。
Figure 6. Effect of Nrf2 overexpression on the expression of downstream antioxidant genes in response to LPS treatment. A: RT-qPCR was used to detect the mRNA levels of NQO1, GCLC, GST-pi and HO-1; B: Western blot was used to detect the protein levels of NQO1, GCLC, GST-pi and HO-1. Mean±SD. n=3.
氣道黏液高分泌是COPD、支氣管哮喘和急性肺損傷等呼吸系統(tǒng)常見疾病重要的病理生理改變和臨床表現(xiàn),大量研究顯示炎癥反應(yīng)、氧化應(yīng)激、蛋白酶失衡和膽堿能神經(jīng)功能紊亂等病理生理過程參與其中[1-6]。研究發(fā)現(xiàn)氧化應(yīng)激在誘導(dǎo)黏蛋白MUC5AC高表達(dá)中發(fā)揮重要作用。不可分型流感嗜血桿菌誘導(dǎo)氣道上皮細(xì)胞產(chǎn)生ROS,通過煙酰胺腺嘌呤二核苷酸磷酸氧化酶/ROS/基質(zhì)金屬蛋白酶9通路誘導(dǎo)NCI-H292細(xì)胞產(chǎn)生MUC5AC[23];LPS通過蛋白激酶C/煙酰胺腺嘌呤二核苷酸磷酸/ROS通路上調(diào)人膽道上皮細(xì)胞MUC5AC表達(dá)[15];ROS還參與調(diào)控LPS誘導(dǎo)氣道上皮細(xì)胞A549黏蛋白MUC5AC表達(dá)[13-14]。
Nrf2是細(xì)胞抗氧化應(yīng)激反應(yīng)的調(diào)節(jié)中樞,在抗炎、抗氧化應(yīng)激、抗細(xì)胞凋亡和免疫調(diào)節(jié)等發(fā)揮重要作用[16-19]。近期研究發(fā)現(xiàn)Nrf2信號通路也參與調(diào)控氣道黏液高分泌。有研究顯示Nrf2通過抑制ROS產(chǎn)生和增加蛋白酶抑制劑來調(diào)控中性粒細(xì)胞彈性蛋白酶誘導(dǎo)的人氣道上皮細(xì)胞MUC5AC表達(dá)[24]。本實驗室[25]和Kojima等[26]的研究顯示Nrf2信號通路參與調(diào)控香煙煙霧誘導(dǎo)氣道黏蛋白MUC5AC表達(dá)。我們研究發(fā)現(xiàn)姜黃素通過Nrf2信號通路發(fā)揮調(diào)控氣道黏蛋白MUC5AC表達(dá)的作用[27]。韓國學(xué)者發(fā)現(xiàn)薩潘草通過上調(diào)Keap1/Nrf2/HO-1通路抑制變應(yīng)性鼻炎小鼠模型和鼻上皮細(xì)胞炎癥及黏液分泌[28]。但對于Nrf2信號通路在LPS誘導(dǎo)氣道黏蛋白MUC5AC表達(dá)中的作用機制還未見報道。本實驗第一部分研究結(jié)果顯示LPS增加A549細(xì)胞MUC5AC表達(dá),同時可調(diào)控Nrf2及其下游抗氧化因子NQO1、GCLC、GST-pi和HO-1的表達(dá),所以我們推斷Nrf2信號通路參與調(diào)控LPS誘導(dǎo)MUC5AC表達(dá)。
為進一步闡述Nrf2信號通路參與調(diào)控LPS誘導(dǎo)氣道上皮細(xì)胞黏蛋白MUC5AC表達(dá),本研究不僅采用經(jīng)典的siRNA轉(zhuǎn)染技術(shù)敲減,檢測對MUC5AC、Nrf2及其下游抗氧化因子表達(dá)的影響。同時創(chuàng)新性地使用過表達(dá)質(zhì)粒pcDNA3-Myc-增強氣道上皮細(xì)胞Nrf2表達(dá),從兩方面證實Nrf2信號通路在LPS誘導(dǎo)氣道上皮細(xì)胞黏蛋白MUC5AC表達(dá)中的作用。研究結(jié)果顯示,與陰性對照組相比,敲減顯著增強LPS上調(diào)MUC5AC 表達(dá)的效應(yīng),而過表達(dá)明顯抑制LPS誘導(dǎo)MUC5AC表達(dá)。而且,敲減抑制LPS上調(diào)抗氧化基因和表達(dá)。
以上結(jié)果表明Nrf2信號通路參與LPS上調(diào)氣道上皮細(xì)胞MUC5AC表達(dá),闡明了脂多糖引起氣道黏液高分泌的分子機制,為開發(fā)新型抑制氣道黏液高分泌藥物提供新的靶點。
[1] Ridley C, Thornton DJ. Mucins: the frontline defence of the lung[J]. Biochem Soc Trans, 2018, 46(5):1099-1106.
[2] Ma J, Rubin BK, Voynow JA. Mucins, mucus, and goblet cells[J]. Chest, 2018, 154(1):169-176.
[3] Fahy JV, Dickey BF. Airway?mucus?function and dysfunction[J]. N Engl J Med, 2010, 363(23):2233-2247.
[4] Hill DB, Button B, Rubinstein M, et al. Physiology and pathophysiology of human airway mucus[J]. Physiol Rev, 2022, 102(4):1757-1836.
[5] Li J, Ye Z. The potential role and regulatory mechanisms of MUC5AC in chronic obstructive pulmonary disease[J]. Molecules, 2020, 25(19):4437.
[6] Okuda K, Shaffer KM, Ehre C. Mucins and CFTR: their close relationship[J]. Int J Mol Sci, 2022, 23(18):10232.
[7] Dickey BF, Lai Y, Frick M, et al. Discovery of a drug to treat airway mucus hypersecretion[J]. Clin Transl Med, 2022, 12(8):e972.
[8] Li X, Jin F, Lee HJ, et al. Recent advances in the development of novel drug candidates for regulating the secretion of pulmonary mucus[J]. Biomol Ther (Seoul), 2020, 28(4):293-301.
[9] Dohrman A, Miyata S, Gallup M, et al. Mucin gene (and) upregulation by Gram-positive and Gram-negative bacteria[J]. Biochim Biophys Acta, 1998, 1406(3):251-259.
[10] Lau GW, Hassett DJ, Britigan BE. Modulation of lung epithelial functions by[J]. Trends Microbiol, 2005, 13(8):389-397.
[11] Yanagihara K, Seki M, Cheng PW. Lipopolysaccharide induces mucus cell metaplasia in mouse lung[J]. Am J Respir Cell Mol Biol, 2001, 24(1):66-73.
[12] Hoffman CL, Lalsiamthara J, Aballay A. Host mucin is exploited byto provide monosaccharides required for a successful infection[J]. mBio, 2020, 11(2):e00060-20.
[13] Li W, Yan FG, Zhou HB, et al.lipopolysaccharide-induced MUC5AC and CLCA3 expression is partly through Duox1and[J]. PLoS One, 2013, 8(5):e63945.
[14] Yan FG, Li W, Jono H, et al. Reactive oxygen species regulate Pseudomonas aeruginosa lipopolysaccharide-induced MUC5AC mucin expression via PKC-NADPH oxidase-ROS-TGF-α signaling pathways in human airway epithelial cells[J]. Biochem Biophys Res Commun, 2008, 366(2):513-519.
[15] Li M, Tian Y, Wu SD, et al. LPS stimulates MUC5AC expression in human biliary epithelial cells: whether there exists a possible pathway of PKC/NADPH/ROS?[J]. Mol Cell Biochem, 2014, 385(1/2):87-93.
[16] Bellezza I, Giambanco I, Minelli A, et al. Nrf2-Keap1?signaling?in oxidative and reductive stress[J]. Biochim Biophys Acta Mol Cell Res, 2018, 1865(5):721-733.
[17] Ulasov AV, Rosenkranz AA, Georgiev GP, et al. Nrf2/Keap1/ARE?signaling: towards specific regulation[J]. Life Sci, 2022, 291:120111.
[18] Lu MC, Ji JA, Jiang ZY, et al. The Keap1-Nrf2-ARE pathway as a potential preventive and therapeutic target: an update[J]. Med Res Rev, 2016, 36(5):924-963.
[19] 林曉萍, 李雯, 沈華浩. 抗氧化應(yīng)激轉(zhuǎn)錄因子-Nrf2的研究進展[J]. 中國病理生理雜志, 2011, 27(6):1234-1239.
Lin XP, Li W, Shen HH. Progress on antioxidant transcription factor-Nrf2[J]. Chin J Pathophysiol, 2011, 27(6):1234-1239.
[20] Thimmulappa RK, Lee H, Rangasamy T, et al. Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis[J]. J Clin Invest, 2006, 116(4):984-995.
[21] Hou L, Zhang JY, Liu YJ, et al. MitoQ alleviates LPS-mediated acute lung injury through regulating Nrf2/Drp1 pathway[J]. Free Radic Biol Med, 2021, 165:219-228.
[22] Li JC, Lu KM, Sun FL, et al. Panaxydol attenuates ferroptosis against LPS-induced acute lung injury in mice by Keap1-Nrf2/HO-1 pathway[J]. J Transl Med, 2021, 19(1):96.
[23] 陽帆, 周麗麗, 曹艷華, 等. 不可分型流感嗜血桿菌誘導(dǎo)NCI-H292細(xì)胞產(chǎn)生MUC5AC的分子機制[J]. 中國病理生理雜志, 2015, 31(9):1642-1646.
Yang F, Zhou LL, Cao Y, et al. Molecular mechanism of nontypeablestimulated MUC5AC production in NCI-H292 cells[J]. Chin J Pathophysiol, 2015, 31(9):1642-1646.
[24] Li Q, Lei RX, Zhou XD, et al. Regulation of PMA-induced MUC5AC expression by heparin in human bronchial epithelial cells[J]. Mol Cell Biochem, 2012, 360(1/2):383-391.
[25] Ying YH, Lin XP, Zhou HB, et al. Nuclear erythroid 2 p45-related factor-2?Nrf2?ameliorates cigarette smoking-induced mucus overproduction in airway epithelium and mouse lungs[J]. Microbes Infect, 2014, 16(10):855-863.
[26] Kojima T, Dogru M, Higuchi A, et al. The effect ofknockout on ocular surface protection from acute tobacco smoke exposure: evidence fromknockout mice[J]. Am J Pathol, 2015, 185(3):776-785.
[27] Lin XP, Xue C, Zhang JM, et al. Curcumin inhibits lipopolysaccharide-induced mucin 5AC hypersecretion and airway inflammation via nuclear factor erythroid 2-related factor 2[J]. Chin Med J (Engl), 2018, 131(14):1686-1693.
[28] Pyun BJ, Jo K, Lee JY, et al.Linn. ameliorates allergic nasal inflammation by upregulating the Keap1/Nrf2/HO-1 pathway in an allergic rhinitis mouse model and nasal epithelial cells[J]. Antioxidants (Basel), 2022, 11(11):2256.
Lipopolysaccharide induces expression of MUC5AC in human airway epithelial cellsNrf2 signaling pathway
LIN Xiaoping△, XIE Liutian▲, SU Xiaoshan, WU Weijing
(,,,362000,)
To investigate the role of nuclear factor E2-related factor 2 (Nrf2) signaling pathway in lipolysaccharide (LPS)-induced mucin 5AC (MUC5AC) expression in human airway epithelial cells (A549 cells).The A549 cells were stimulated with LPS to induce MUC5AC expression. Furthermore, the A549 cells were transfected withsiRNA, pcDNA3-Myc3-or negative control for 24 h, and then were harvested for Nrf2 mRNA and protein assay to estimate the knockdown and overexpression effects. After transfection, the cells were stimulated with LPS, and the mRNA and protein expression levels of MUC5AC, Kelch-like ECH-associated protein 1 (Keap1), Nrf2 and downstream antioxidant factors, such as NAD(P)H:quinone oxidoreductase 1 (NQO1), glutamate-cysteine ligase catalytic subunit (GCLC), glutathione-transferase-pi (GST-pi) and heme oxygenase-1 (HO-1), were detected by RT-qPCR and Western blot.(1) After stimulation with LPS for 24 h, the mRNA and protein expression levels of MUC5AC, Nrf2 and downstream antioxidant factors, such as NQO1, GCLC and GST-pi, in A549 cells were all increased significantly (<0.01). However, the mRNA and protein expression of HO-1 was down-regulated (<0.05). (2) After transfection withsiRNA, theexpression in A549 cells was knocked down, and the MUC5AC expression induced by LPS was significantly augmented (<0.05). (3) On the other hand, after transfection with pcDNA3-Myc3-, the Nrf2 expression of A549 cells were up-regulated, and the MUC5AC expression induced by LPS was suppressed (<0.05).This study suggested that Nrf2 signaling pathway is involved in the regulation of LPS-induced MUC5AC expression in human airway epithelial cells.
lipopolysaccharide; nuclear factor E2-related factor 2; mucin 5AC; airway epithelial cells
1000-4718(2023)07-1273-09
2023-03-02
2023-06-03
15060614026; E-mail: shoppinglin2022@163.com
R363.2; R562.1
A
10.3969/j.issn.1000-4718.2023.07.014
[基金項目]福建省自然科學(xué)基金資助項目(No. 2019J01169);泉州市科技計劃項目(No. 2022NS087)
▲共同第一作者:并列第一作者
(責(zé)任編輯:宋延君,李淑媛)