• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      泛連接蛋白1參與炎癥調(diào)控及細(xì)胞焦亡的研究進(jìn)展*

      2023-09-12 11:03:49馬源段倩雯董旭鵬劉澈馬玉清
      中國病理生理雜志 2023年7期
      關(guān)鍵詞:焦亡酪氨酸細(xì)胞膜

      馬源, 段倩雯, 董旭鵬, 劉澈, 馬玉清

      泛連接蛋白1參與炎癥調(diào)控及細(xì)胞焦亡的研究進(jìn)展*

      馬源1, 段倩雯1, 董旭鵬1, 劉澈1, 馬玉清2△

      (1蘭州大學(xué)第一臨床醫(yī)學(xué)院,甘肅 蘭州 730000;2蘭州大學(xué)第一醫(yī)院麻醉科,甘肅 蘭州 730000)

      泛連接蛋白1;炎癥;細(xì)胞焦亡;胱天蛋白酶;白細(xì)胞介素1β

      1 泛連接蛋白1(pannexin 1, Panx1)通道及其調(diào)控

      1.1Panx1概況Panx1作為泛連接蛋白家族成員之一,激活后可在細(xì)胞膜上形成通道,釋放10 kD以內(nèi)的物質(zhì)于細(xì)胞外,如腺苷三磷酸(adenosine triphosphate, ATP)、尿苷三磷酸(uridine triphosphate, UTP)、K+和Ca2+等。細(xì)胞內(nèi)物質(zhì)作為炎癥介質(zhì),經(jīng)Panx1釋放到細(xì)胞外,誘導(dǎo)失控性炎癥反應(yīng)發(fā)生[1]。

      Panx1是同源七聚體,其亞基由三部分構(gòu)成:細(xì)胞外結(jié)構(gòu)域、跨膜結(jié)構(gòu)域和細(xì)胞內(nèi)C端結(jié)構(gòu)域,C端結(jié)構(gòu)域存在酶切位點(diǎn)。Panx1通道隨C端結(jié)構(gòu)域剪切后打開,釋放ATP、離子及其他炎癥介質(zhì)到細(xì)胞外,激活相應(yīng)的炎癥反應(yīng)。生理狀態(tài)下,C端結(jié)構(gòu)域阻礙Panx1通道開放,僅允許小離子在Panx1縫隙流動(dòng)。泛連蛋白有三種亞型,Panx1、Panx2和Panx3,三者拓?fù)浣Y(jié)構(gòu)相似,但分布不同。Panx1廣泛存在于哺乳動(dòng)物組織,Panx2在神經(jīng)元和膠質(zhì)細(xì)胞中豐富表達(dá),Panx3參與皮膚發(fā)育和骨骼形成[2]。Panx1和細(xì)胞間縫隙連接蛋白(connexin)作為連接細(xì)胞內(nèi)外環(huán)境的通道,釋放炎癥介質(zhì)和ATP,啟動(dòng)細(xì)胞炎癥。與connexin不同,Panx1通道的開啟更直接,Panx1的N端結(jié)構(gòu)域可以被細(xì)胞膜外糖蛋白糖基化,這是Panx1無需形成細(xì)胞-細(xì)胞間通道即可激活的主要原因,因此,Panx1有利于誘導(dǎo)失控性炎癥反應(yīng)[3]。

      1.2Panx1通道的激活Panx1缺乏特異性激活劑,但Panx1通道可通過多種途徑被激活。

      1.2.1高濃度離子激活Panx1細(xì)胞外高濃度K+激活Panx1通道。Santiago等[4]將海馬切片置于含有高濃度K+的人工腦脊液,Western blot檢測(cè),Panx1蛋白豐富表達(dá)。Dahl等[5]染色細(xì)胞膜,掃描電鏡觀察到細(xì)胞外高濃度K+可使Panx1通道直徑擴(kuò)大10倍。Silverman等[3]發(fā)現(xiàn),細(xì)胞外K+濃度達(dá)100 mmol/L可以激活、打開Panx1通道。

      細(xì)胞內(nèi)高濃度Ca2+激活Panx1通道。López等[6]拉伸HeLa細(xì)胞膜,膜片鉗技術(shù)檢測(cè)Panx1通道電流變化,電鏡觀察Panx1通道對(duì)熒光染料DAPI的攝取情況,提出Panx1激活的可能機(jī)制:細(xì)胞內(nèi)Ca2+濃度驟升,激活鈣調(diào)蛋白和鈣/鈣調(diào)素蛋白依賴的蛋白激酶II(Ca2+/calmodulin-dependent protein kinase II, CaMKII),CaMKII磷酸化Panx1,Panx1通道選擇性釋放細(xì)胞內(nèi)物質(zhì),加重HeLa細(xì)胞炎癥反應(yīng)。

      1.2.2胱天蛋白酶(caspase)切割激活Panx1caspase作為保守的蛋白酶分子,是細(xì)胞焦亡的關(guān)鍵調(diào)節(jié)因子。caspase-3、-7和-11可剪切Panx1的C端結(jié)構(gòu)域。Chekeni等[7]通過caspase-Panx1免疫共沉淀發(fā)現(xiàn),caspase-3和caspase-7裂解Panx1的能力最強(qiáng)。Ruan等[8]發(fā)現(xiàn),caspase-7可以剪切Panx1孔道尾部C端,解除Panx1 C端對(duì)Panx1通道的阻塞,Panx1抑制劑可逆轉(zhuǎn)該過程。Yang等[9]發(fā)現(xiàn)caspase-11可直接切割并激活Panx1通道,細(xì)胞內(nèi)的細(xì)菌內(nèi)毒素脂多糖(lipopolysaccharide, LPS)激活caspase-11,caspase-11裂解Panx1的C端結(jié)構(gòu)域,Panx1通道打開,釋放ATP到細(xì)胞外。敲除-基因可以抑制細(xì)胞焦亡,降低膿毒癥大鼠的死亡率。

      1.2.3酪氨酸磷酸化激活Panx1酪氨酸磷酸化可以增強(qiáng)Panx1活性。Weilinger等[10-11]發(fā)現(xiàn),海馬錐體神經(jīng)元Panx1的電流活動(dòng)與-甲基-D-天冬氨酸-酪氨酸激酶相關(guān),抑制酪氨酸激酶,細(xì)胞膜表面Panx1電流活動(dòng)減弱;免疫共沉淀檢測(cè)到大量磷酸化酪氨酸-Panx1復(fù)合體,二者呈正相關(guān),因此,酪氨酸磷酸化提升Panx1通道活性。酪氨酸磷酸化激活Panx1具有靜脈選擇性,Ruan等[4]磷酸化血管內(nèi)皮酪氨酸位點(diǎn),結(jié)果發(fā)現(xiàn),Panx1在腸系膜靜脈內(nèi)皮豐富表達(dá),但胸背動(dòng)脈內(nèi)皮Panx1無明顯表達(dá)[12]。López等[6]發(fā)現(xiàn),瞬時(shí)Ca2+內(nèi)流激活鈣調(diào)蛋白磷酸酶,CaMKII位點(diǎn)磷酸化,CaMKII磷酸化位點(diǎn)可能是Panx1的酪氨酸殘基394。Metz等[13]發(fā)現(xiàn),免疫受體酪氨酸活化基序(immunorecepter tyrosine-based activation motif, ITAM)和G蛋白偶聯(lián)受體(G protein-coupled receptor, GPCR)可以磷酸化血小板Panx1的酪氨酸殘基198和酪氨酸殘基308,因此ITAM和GPCR可能是酪氨酸磷酸化激活Panx1的重要條件。

      1.2.4機(jī)械拉伸激活Panx1Panx1可經(jīng)細(xì)胞膜機(jī)械拉伸激活。韋中亞等[14]下調(diào)培養(yǎng)液濃度,支氣管上皮細(xì)胞不斷吸水膨脹,細(xì)胞膜逐漸拉伸,Panx1通道大量開放。Oishi等[15]拉伸小鼠心肌細(xì)胞膜,Panx1激活,釋放ATP到心肌間質(zhì),心肌炎癥反應(yīng)進(jìn)行性加重。敲除基因,或使用Panx1抑制劑和模擬抑制肽后再次拉伸小鼠心肌細(xì)胞,Panx1通道開放及其釋放ATP的數(shù)量明顯下降,心肌細(xì)胞得到保護(hù)[16]。

      1.3Panx1通道的抑制Panx1的抑制可通過Panx1抑制劑和基因敲除技術(shù)實(shí)現(xiàn)。Panx1抑制劑主要有生胃酮(carbenoxolone, CBX)、丙磺舒和Panx1模擬抑制肽(10Panx1)。CBX是connexin抑制劑,臨床用于胃黏膜保護(hù)。Panx1通道和connexin通道具有相似性,Lohman等[12]發(fā)現(xiàn),CBX可部分抑制Panx1活性,因此,CBX對(duì)于Panx1通道的封閉不具有特異性。丙磺舒可以調(diào)控腎小管對(duì)尿酸的重吸收,間接治療痛風(fēng)[17]。小鼠海馬體豐富表達(dá)Panx1,Zhang等[18]腹腔注射丙磺舒,海馬體Panx1通道的開放和ATP釋放的含量均減少,神經(jīng)元炎癥反應(yīng)減弱,膿毒癥小鼠腦病相關(guān)行為和認(rèn)知功能好轉(zhuǎn)。人工合成的Panx1特異性抑制肽10Panx1可以封閉Panx1孔道的空間位置[19]。Grimmer等[20]應(yīng)用10Panx1到急性缺氧的肺動(dòng)脈平滑肌細(xì)胞培養(yǎng)基,Panx1活性抑制,平滑肌細(xì)胞收縮反應(yīng)改善,但10Panx1對(duì)慢性缺氧的肺動(dòng)脈平滑肌細(xì)胞的收縮無效,因此,10Panx1對(duì)于Panx1通道的封閉具有特異性。除上述藥物,抗瘧藥甲氟喹、氯離子通道抑制劑、甘草提取物甘草次酸和非甾體抗炎藥中間體氟芬那酸都可以減弱Panx1通道產(chǎn)生的電流,盡管效果不佳[21-22]。除藥物抑制Panx1通道活性,基因敲除也可以緩解Panx1引起的炎癥反應(yīng)。Su等[23]敲除腎臟近曲小管細(xì)胞的基因,細(xì)胞中鐵死亡相關(guān)蛋白表達(dá)量減少;沉默缺血再灌注小鼠基因,血漿肌酐和腎組織丙二醛(malondialdehyde, MDA)含量降低,腎組織病理性損傷減輕。

      Grimmer等[20]發(fā)現(xiàn),丙磺舒抑制Panx1的方式與其它藥物不同。丙磺舒通過脂質(zhì)疏水門控[24]途徑,誘導(dǎo)Panx1構(gòu)象改變,丙磺舒使Panx1亞基N端發(fā)生螺旋,定向到細(xì)胞質(zhì),脂質(zhì)遷移至Panx1亞基之間,封閉Panx1通道。因此,Panx1拮抗劑具有不同的作用模式。

      目前,Panx1抑制劑特異性較低,需要開發(fā)特異性較高的藥物,可以針對(duì)基因表達(dá)或Panx1上下游轉(zhuǎn)運(yùn)途徑,設(shè)計(jì)理想的藥物,減弱Panx1相關(guān)的炎癥反應(yīng)。

      2 Panx1與炎癥反應(yīng)和細(xì)胞焦亡

      Panx1在嗜中性粒細(xì)胞、樹突狀細(xì)胞、單核巨噬細(xì)胞和T細(xì)胞等免疫細(xì)胞中表達(dá)[3]。Panx1通道以自分泌或旁分泌方式,釋放炎癥介質(zhì)和ATP,刺激中性粒細(xì)胞和巨噬細(xì)胞趨化[25]以及單核巨噬細(xì)胞焦亡[26]啟動(dòng),細(xì)胞焦亡再次釋放大量炎癥介質(zhì),形成失控性炎癥反應(yīng)。

      2.1Panx1參與炎癥反應(yīng)

      2.1.1Panx1釋放ATPATP作為維持機(jī)體生長代謝的重要能量來源,生理狀態(tài)下,僅少量通過胞吐轉(zhuǎn)運(yùn)到細(xì)胞外。ATP作為炎癥“find-me”與“eat-me”信號(hào)分子[27],誘導(dǎo)單核巨噬細(xì)胞分化,巨噬細(xì)胞分泌白細(xì)胞介素1(interleukin-1, IL-1)、IL-6和腫瘤壞死因子α(tumor necrosis factor-α, TNF-α)等炎癥因子,吞噬凋亡壞死的細(xì)胞、細(xì)胞碎片、細(xì)菌和其它有害物質(zhì),提高機(jī)體抗感染能力。但細(xì)胞外高濃度ATP引發(fā)失控性炎癥反應(yīng),甚至炎癥風(fēng)暴[28]。在高濃度K+、Ca2+等激活條件下,Panx1通道廣泛打開,大量ATP被釋放到細(xì)胞外,破壞細(xì)胞內(nèi)環(huán)境,細(xì)胞發(fā)生水腫,細(xì)胞膜通透性增加以及ATP滲出,形成ATP-細(xì)胞破壞的惡性循環(huán)[6]。炎癥介質(zhì)激活caspase-8,caspase-8相繼激活caspase-1/-3/-7[29]。Panx1通道經(jīng)caspase-3[7]、caspase-7[8, 30]和caspase-11[9]剪切修飾后激活、打開。因此,caspase激活Panx1通道,釋放ATP到細(xì)胞外是失控性炎癥反應(yīng)的關(guān)鍵通路之一。

      2.1.2Panx1激活NLRP3炎癥小體嘌呤能P2X7受體(purinergic P2X7 receptor, P2X7R)具有抗炎、抗氧化、介導(dǎo)細(xì)胞凋亡等功能[31]。核苷酸結(jié)合寡聚化結(jié)構(gòu)域樣受體蛋白3(nucleotide-binding oligomerization domain-like receptor protein 3, NLRP3)炎癥小體是介導(dǎo)細(xì)胞焦亡的關(guān)鍵蛋白[32]。目前關(guān)于Panx1/P2X7R與NLRP3炎癥小體、細(xì)胞焦亡的研究不斷增加。

      P2X7R是ATP門控離子通道,ATP作為配體與P2X7R特異性結(jié)合,P2X7離子通道開啟,釋放K+到細(xì)胞外是核因子κB(nuclear factor-κB, NF-κB)和NLRP3炎癥小體激活的必要條件[32]。體外實(shí)驗(yàn)發(fā)現(xiàn),細(xì)胞培養(yǎng)基ATP濃度≥1.0 mmol/L,P2X7R特異性激活[33-35]。Yue等[36]觀察大鼠抑郁癥模型,大鼠海馬體的小膠質(zhì)細(xì)胞數(shù)量和炎癥因子表達(dá)明顯增加,ATP、P2X7R、NLRP3炎癥小體、caspase-1及其前體均豐富表達(dá);敲除大鼠基因,抑郁和焦慮的癥狀明顯好轉(zhuǎn),NLRP3炎癥小體、caspase-1和IL-1炎癥因子明顯減少。Panx1是ATP釋放到細(xì)胞外的主要通道。李娜等[37]在膿毒癥大鼠急性肺損傷模型中發(fā)現(xiàn),Panx1和P2X7R在肺泡上皮細(xì)胞豐富表達(dá),肺泡灌洗液存在大量ATP,抑制Panx1[37]或P2X7R[38],灌洗液ATP和細(xì)胞焦亡關(guān)鍵蛋白NLRP3、caspase-1和gasdermin D (GSDMD)表達(dá)量都減少,肺組織病理評(píng)分和IL-1相關(guān)炎癥因子(IL-1β和IL-18)含量恢復(fù)正常。Panx1通過P2X7R影響NLRP3炎癥小體合成,NLRP3炎癥小體效應(yīng)蛋白caspase-1促使IL-1β和IL-18成熟;IL-1β是一種有效的促炎細(xì)胞因子,誘導(dǎo)炎癥信號(hào)級(jí)聯(lián),炎癥介質(zhì)大量釋放,誘導(dǎo)失控性炎癥反應(yīng)[39]。因此,Panx1作為P2X7R/NLRP3上游的關(guān)鍵信號(hào)蛋白,激活NLRP3炎癥小體,加重炎癥反應(yīng)。

      2.2Panx1與細(xì)胞焦亡細(xì)胞死亡是限制感染的有效策略,如凋亡、鐵死亡和焦亡等。細(xì)胞焦亡是caspase-1和鼠源caspase-11(人源caspase-4、-5)驅(qū)動(dòng)的溶解性、炎癥的細(xì)胞死亡[40]。細(xì)胞焦亡是GSDMD蛋白介導(dǎo)的細(xì)胞程序性死亡,形態(tài)上表現(xiàn)為細(xì)胞持續(xù)腫脹,細(xì)胞膜破裂,細(xì)胞內(nèi)容物釋放到細(xì)胞外,誘發(fā)炎癥因子風(fēng)暴[41]。Panx1通道及其下游與細(xì)胞焦亡密切相關(guān)。

      2.2.1Panx1與經(jīng)典細(xì)胞焦亡caspase-1介導(dǎo)的細(xì)胞焦亡屬于經(jīng)典型細(xì)胞焦亡[40]。Panx1激活P2X7R/NF-κB/NLRP3/Caspase-1信號(hào)通路。Qu等[42]使用基因敲除技術(shù)沉默原代巨噬細(xì)胞的和表達(dá),結(jié)果發(fā)現(xiàn),Panx1對(duì)于細(xì)胞內(nèi)ATP釋放、P2X7R和caspase-1激活不可或缺。在應(yīng)激大鼠的腎小管上皮細(xì)胞中,楊昊天[43]發(fā)現(xiàn),P2X7R與NLRP3炎癥小體豐富表達(dá),敲除或抑制,NLRP3炎癥小體蛋白表達(dá)量減少。因此,Panx1和P2X7R是經(jīng)典型細(xì)胞焦亡的關(guān)鍵信號(hào)蛋白。

      Panx1作為ATP激活P2X7R的上游通路蛋白,與P2X7R共同允許胞內(nèi)鉀離子外流,鉀離子外流是NF-κB激活的核心條件[44]。NF-κB參與NLRP3炎癥小體的轉(zhuǎn)錄,NLRP3炎癥小體由感受器蛋白NLRP3、銜接蛋白ASC (apoptosis-associated speckle-like protein containing a caspase recruitment domain)和效應(yīng)蛋白caspase-1組裝而成[45-46]。Panx1及其下游產(chǎn)物活化caspase-1,caspase-1裂解GSDMD蛋白,經(jīng)典細(xì)胞焦亡發(fā)生。生理狀態(tài)下,GSDMD的C端蛋白限制其活性,caspase-1剪切GSDMD的C端和N端,GSDMD-N端相互聚合,插入細(xì)胞膜,形成細(xì)胞膜非選擇性孔道,細(xì)胞內(nèi)物質(zhì)如IL-1β和IL-18經(jīng)該孔道大量釋放,激活強(qiáng)烈的炎癥反應(yīng),細(xì)胞內(nèi)外滲透壓失衡,細(xì)胞膜腫脹破裂,細(xì)胞核固縮[47]。楊佳樂[48]與王重陽等[49]發(fā)現(xiàn),抑制NLRP3與caspase-1可以有效緩解大鼠肺毛細(xì)血管內(nèi)皮細(xì)胞焦亡和炎癥損傷。Seo等[50]發(fā)現(xiàn),抑制Panx1可以減弱創(chuàng)傷性腦損傷引起的神經(jīng)炎癥,Panx1抑制劑可降低小膠質(zhì)細(xì)胞和單核細(xì)胞浸潤,經(jīng)典細(xì)胞焦亡關(guān)鍵蛋白NLRP3、caspase-1和GSDMD表達(dá)下降,神經(jīng)元焦亡受到抑制。Zhang等[51]敲除髓系白血病細(xì)胞單核細(xì)胞THP-1的基因,再次用LPS和ATP刺激THP-1,NLRP3炎癥小體的表達(dá)及IL-1β和IL-18的分泌顯著下降,THP-1細(xì)胞的經(jīng)典焦亡得到有效控制。

      2.2.2Panx1與非經(jīng)典細(xì)胞焦亡Kayagaki等[52]發(fā)現(xiàn),除caspase-1裂解GSDMD,還存在caspase-11直接裂解GSDMD誘導(dǎo)細(xì)胞焦亡發(fā)生,并將caspase-11介導(dǎo)的細(xì)胞焦亡定義為非經(jīng)典焦亡途徑。caspase-11經(jīng)LPS[53]和caspase-11[29]激活,LPS可通過細(xì)菌分泌的液泡、宿主細(xì)胞膜孔道和宿主巨噬細(xì)胞胞吞等途徑進(jìn)入細(xì)胞質(zhì)[54]。caspase-11介導(dǎo)的非經(jīng)典焦亡途徑獨(dú)立于caspase-1,caspase-11激活后裂解GSDMD,細(xì)胞膜非選擇性孔道形成[29]。劉木子櫻[55]發(fā)現(xiàn),GSDMD-N端含量與LPS處理后的caspase-11表達(dá)量正相關(guān),Western blot檢測(cè)到GSDMD-N端蛋白含量隨caspase-11表達(dá)減少而下降。

      caspase-11剪切Panx1激活細(xì)胞焦亡。Yang等[9]證實(shí)Panx1是caspase-11介導(dǎo)非經(jīng)典細(xì)胞焦亡的關(guān)鍵信號(hào)蛋白,體內(nèi)實(shí)驗(yàn)發(fā)現(xiàn),抑制或基因敲除、和,膿毒癥小鼠早期存活率提升。體外實(shí)驗(yàn)發(fā)現(xiàn),Panx1通道的開放和caspase-11的表達(dá)高度一致。Yin等[56]發(fā)現(xiàn),caspase-11和caspase-3/-7都有切割Panx1 C端結(jié)構(gòu)域的功能。反之,敲除小鼠-基因,Panx1通道和NLRP3炎癥小體表達(dá)下降,caspase-1、GSDMD和IL-1相關(guān)炎癥因子的表達(dá)以及細(xì)胞外ATP含量都減少。

      綜上所述,Panx1參與caspase-1介導(dǎo)的經(jīng)典和caspase-11介導(dǎo)的非經(jīng)典細(xì)胞焦亡。靶向調(diào)控Panx1可有效抑制細(xì)胞焦亡,減少炎癥因子的產(chǎn)生與釋放,減輕炎癥反應(yīng)對(duì)細(xì)胞、組織和器官的損害。因此,Panx1作為炎癥新靶點(diǎn),具有潛在的治療價(jià)值。

      3 小結(jié)與展望

      Panx1在哺乳動(dòng)物細(xì)胞中廣泛存在,與各類炎癥性疾病密切相關(guān)[3]。Panx1作為炎性疾病治療的有效靶點(diǎn),調(diào)控Panx1或許可以預(yù)防、減緩或逆轉(zhuǎn)膿毒癥、缺血性器官和其它炎癥性疾病中Panx1過表達(dá)導(dǎo)致的損害。關(guān)于Panx1的研究已有20余年,但其作用機(jī)制尚未完全明確:Panx1在復(fù)雜的生物學(xué)效應(yīng)中如何雙向調(diào)控炎癥[57-58];與connexin相比,Panx1對(duì)生物屏障作用的研究少見;缺乏Panx1特異激活劑;10Panx1能夠特異性地抑制Panx1,但未見其對(duì)人體毒副作用的相關(guān)報(bào)道;Panx1抑制劑CBX和丙磺舒在動(dòng)物模型中具有一定效果,臨床中除保護(hù)胃黏膜和治療痛風(fēng),如何轉(zhuǎn)換治療其它炎癥性疾病尚不可知。因此,Panx1相關(guān)機(jī)制、特異性激活劑和抑制劑的開發(fā)仍需進(jìn)一步探索。

      [1] Acosta ML, Mat Nor MN, Guo CX, et al. Connexin therapeutics: blocking connexin hemichannel pores is distinct from blocking pannexin channels or gap junctions[J]. Neural Regener Res, 2021, 16(3):482-488.

      [2]牟妍希, 汪令偉, 王林. Pannexin與腫瘤相關(guān)性的研究進(jìn)展[J]. 中國病理生理雜志, 2017, 33(11):2110-2112.

      Mu YX, Wang LW, Wang L. Progress in relationship between pannexin and tumors[J]. Chin J Pathophysiol, 2017, 33(11):2110-2112.

      [3] Silverman WR, De Rivero Vaccari JP, Locovei S, et al. The pannexin 1 channel activates the inflammasome in neurons and astrocytes[J]. J Biol Chem, 2009, 284(27):18143-18151.

      [4] Santiago MF, Veliskova J, Patel NK, et al. Targeting Pannexin1 improves seizure outcome[J]. PLoS One, 2011, 6(9):e25178.

      [5] Dahl G. ATP release through pannexon channels[J]. Philos Trans R Soc Lond B Biol Sci, 2015, 370(1672):20140191.

      [6] López X, Palacios-Prado N, Güiza J, et al.A physiologic rise in cytoplasmic calcium ion signal increases pannexin1 channel activity via a C-terminus phosphorylation by CaMKII[J]. Proc Natl Acad Sci U S A, 2021, 118(32):e2108967118.

      [7] Chekeni FB, Elliott MR, Sandilos JK, et al. Pannexin 1 channels mediate 'find-me' signal release and membrane permeability during apoptosis[J]. Nature, 2010, 467(7317):863-867.

      [8] Ruan Z, Orozco IJ, Du J, et al. Structures of human pannexin 1 reveal ion pathways and mechanism of gating[J]. Nature, 2020, 584(7822):646-651.

      [9] Yang D, He Y, Mu?oz-Planillo R, et al. Caspase-11 requires the Pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock[J]. Immunity, 2015, 43(5):923-932.

      [10] Weilinger NL, Lohman AW, Rakai BD, et al. Metabotropic NMDA receptor signaling couples Src family kinases to pannexin-1 during excitotoxicity[J]. Nat Neurosci, 2016, 19(3):432-442.

      [11] Weilinger NL, Tang PL, Thompson RJ. Anoxia-induced NMDA receptor activation opens pannexin channels via Src family kinases[J]. J Neurosci, 2012, 32(36):12579-12588.

      [12] Lohman AW, Leskov IL, Butcher JT, et al. Pannexin 1 channels regulate leukocyte emigration through the venous endothelium during acute inflammation[J]. Nat Commun, 2015, 6:7965.

      [13] Metz LM, Elvers M. Pannexin-1 activation by phosphorylation is crucial for platelet aggregation and thrombus formation[J]. Int J Mol Sci, 2022, 23(9):5059.

      [14] Wei ZY, Qu HL, Dai YJ, et al. Pannexin 1, a large-pore membrane channel, contributes to hypotonicity-induced ATP release in Schwann cells[J]. Neural Regener Res, 2021, 16(5):899-904.

      [15] Oishi S, Sasano T, Tateishi Y, et al. Stretch of atrial myocytes stimulates recruitment of macrophages via ATP released through gap-junction channels[J]. J Pharmacol Sci, 2012, 120(4):296-304.

      [16] Jorquera G, Meneses-Valdés R, Rosales-Soto G, et al. High extracellular ATP levels released through pannexin-1 channels mediate inflammation and insulin resistance in skeletal muscle fibres of diet-induced obese mice[J]. Diabetologia, 2021, 64(6):1389-1401.

      [17] Tunstall BJ, Lorrai I, McConnell SA, et al. Probenecid reduces alcohol drinking in rodents. Is pannexin1 a novel therapeutic target for alcohol use disorder?[J]. Alcohol Alcohol, 2019, 54(5):497-502.

      [18] Zhang Z, Lei Y, Yan C, et al. Probenecid relieves cerebral dysfunction of sepsis by inhibiting Pannexin 1-dependent ATP release[J]. Inflammation, 2019, 42(3):1082-1092.

      [19] Wei R, Bao W, He F, et al. Pannexin1 channel inhibitor (10panx) protects against transient focal cerebral ischemic injury by inhibiting RIP3 expression and inflammatory response in rats[J]. Neuroscience, 2020, 437:23-33.

      [20] Grimmer B, Krauszman A, Hu X, et al. Pannexin 1: a novel regulator of acute hypoxic pulmonary vasoconstriction[J]. Cardiovasc Res, 2022, 118(11):2535-2547.

      [21] Dahl G, Qiu F, Wang J. The bizarre pharmacology of the ATP release channel pannexin1[J]. Neuropharmacology, 2013, 75:583-593.

      [22] Iglesias R, Spray DC, Scemes E. Mefloquine blockade of Pannexin1 currents: resolution of a conflict[J]. Cell Communi Adhes, 2009, 16(5/6):131-137.

      [23] Su L, Jiang X, Yang C, et al. Pannexin 1 mediates ferroptosis that contributes to renal ischemia/reperfusion injury[J]. J Biol Chem, 2019, 294(50):19395-19404.

      [24] Anderson CL, Thompson RJ. Intrapore lipids hydrophobically gate pannexin-1 channels[J]. Sci Signal, 2022, 15(720):eabn2081.

      [25] Scemes E, Veliskova J. Exciting and not so exciting roles of pannexins[J]. Neurosci Lett, 2019, 695:25-31.

      [26] Kameritsch P, Pogoda K. The role of connexin 43 and pannexin 1 during acute inflammation[J]. Front Physiol, 2020, 11:594097.

      [27] Linden J, Koch-Nolte F, Dahl G. Purine release, metabolism, and signaling in the inflammatory response[J]. Annu Rev Immunol, 2019, 37:325-347.

      [28] Das R, Chinnathambi S. Actin-mediated microglial chemotaxis via G-protein coupled purinergic receptor in Alzheimer's disease[J]. Neuroscience, 2020, 448:325-336.

      [29] Zhang C, Ye B, Wei J, et al. MiR-199a-5p regulates rat liver regeneration and hepatocyte proliferation by targeting TNF-α TNFR1/TRADD/CASPASE8/CASPASE3 signalling pathway[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1):4110-4118.

      [30] Thompson RJ, Jackson MF, Olah ME, et al. Activation of pannexin-1 hemichannels augments aberrant bursting in the hippocampus[J]. Science, 2008, 322(5907):1555-1559.

      [31] Chen K W, Demarco B, Heilig R, et al. Extrinsic and intrinsic apoptosis activate pannexin-1 to drive NLRP3 inflammasome assembly[J]. EMBO J, 2019, 38(10):e101638.

      [32] Adinolfi E, Giuliani AL, De Marchi E, et al. The P2X7 receptor: a main player in inflammation[J]. Biochem Pharmacol, 2018, 151:234-244.

      [33] Dias L, Lopes CR, Gon?alves FQ, et al. Crosstalk between ATP-P2X7and adenosine A2Areceptors controlling neuroinflammation in rats subject to repeated restraint stress[J]. Front Cell Neurosci, 2021, 15:639322.

      [34] Asatryan L, Ostrovskaya O, Lieu D, et al. Ethanol differentially modulates P2X4 and P2X7 receptor activity and function in BV2 microglial cells[J]. Neuropharmacology, 2018, 128:11-21.

      [35] Wiley JS, Sluyter R, Gu BJ, et al. The human P2X7 receptor and its role in innate immunity[J]. Tissue Antigens, 2011, 78(5):321-332.

      [36] Yue N, Huang H, Zhu X, et al. Activation of P2X7 receptor and NLRP3 inflammasome assembly in hippocampal glial cells mediates chronic stress-induced depressive-like behaviors[J]. J Neuroinflammation, 2017, 14:102.

      [37] Li N, Jia J, Wu X, et al. Regulatory effect of hemichannels protein Pannexin-1 on P2X7 receptor activity in the lungs of mice with lung injury[J]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2018, 30(11):1071-1076.

      [38] Zhang Y, Li F, Wang L, et al. A438079 affects colorectal cancer cell proliferation, migration, apoptosis, and pyroptosis by inhibiting the P2X7 receptor[J]. Biochem and Biophys Res Commun, 2021, 558:147-153.

      [39] Solle M, Labasi J, Perregaux DG, et al. Altered cytokine production in mice lacking P2X7 receptors[J]. J Biol Chem, 2001, 276(1):125-132.

      [40] Chen KW, Demarco B, Heilig R, et al.Extrinsic and intrinsic apoptosis activate pannexin‐1 to drive NLRP3 inflammasome assembly[J]. EMBO J, 2019, 38(10):e101638.

      [41] 于百瑩, 惠雪, 趙曙, 等. 細(xì)胞焦亡及其與癌癥的關(guān)系[J]. 現(xiàn)代腫瘤醫(yī)學(xué), 2022, 30(13):2471-2475.

      Yu BY, Hui X, Zhao S, et al. Pyrolysis and its relationship with cancer[J]. J Mod Oncol, 2022, 30(13):2471-2475.

      [42] Qu Y, Misaghi S, Newton K, et al. Pannexin-1 is required for atp release during apoptosis but not for inflammasome activation[J]. J Immunol, 2011, 186(11):6553-6561.

      [43] 楊昊天. 基于P2X7R/NF-κB/NLRP3通路探究右美托咪定對(duì)急性應(yīng)激致大鼠腎損傷的保護(hù)作用機(jī)制[D]. 哈爾濱: 東北農(nóng)業(yè)大學(xué), 2021.

      Yang HT. Protective mechanism of dexmedetomidine on acute stress induced renal injury in rats via the regulation of P2X7R/NF-κB/NLRP3 pathway[D]. Harbin: Northeast Agricultural University, 2021.

      [44] Li Z, Huang Z, Zhang H, et al. P2X7 receptor induces pyroptotic inflammation and cartilage degradation in osteoarthritis via NF-κB/NLRP3 crosstalk[J]. Oxid Med Cell Longev, 2021, 2021:8868361.

      [45]楊一凡, 劉立麗, 聶作明, 等. NLRP3炎癥小體在MS/EAE發(fā)病機(jī)制中的作用及其靶向治療[J]. 中國病理生理雜志, 2020, 36(1):181-187.

      Yang YF, Liu LL, Nie ZM, et al. NLRP3 inflammasome in pathogenesis of MS/EAE and its targeted therapy[J]. Chin J Pathophysiol, 2020, 36(1):181-187.

      [46] He R, Li Y, Han C, et al. L-Fucose ameliorates DSS-induced acute colitis via inhibiting macrophage M1 polarization and inhibiting NLRP3 inflammasome and NF-kB activation[J]. Int Immunopharmacol, 2019, 73:379-388.

      [47] Moretti J. Caspase-11 interaction with NLRP3 potentiates the noncanonical activation of the NLRP3 inflammasome[J]. Nat Immunol, 2022, 23(5):705-717.

      [48] 楊佳樂, 沈祥春. 燈盞花乙素通過抑制NLRP3/caspase-1信號(hào)通路改善LPS+ATP誘導(dǎo)內(nèi)皮細(xì)胞炎癥反應(yīng)和細(xì)胞焦亡[J]. 中國藥理學(xué)通報(bào), 2022, 38(8):1196-1201.

      Yang JL, Shen XC. Scutellarin improves LPS+ATP induced inflammation and pyroptosis of endothelial cells by inhibitingNLRP3/caspase-1 signaling pathway[J]. Chin Pharmacol Bull, 2022, 38(8):1196-1201.

      [49] 王重陽. 虎杖苷通過抑制P2X7R-NLRP3介導(dǎo)的自噬緩解哮喘氣道炎癥以及氣道重塑[D]. 延吉: 延邊大學(xué), 2020.

      Wang CY. Polydatin relieves airway inflammation and remodeling by inhibiting P2X7R-NLRP3-mediated autophagy in asthma[D].Yanji: Yanbian University, 2020.

      [50] Seo JH, Dalal MS, Calderon F, et al. Myeloid Pannexin-1 mediates acute leukocyte infiltration and leads to worse outcomes after brain trauma[J]. J Neuroinflammation, 2020, 17(1):245.

      [51] Zhang S, Yuan B, Lam JH, et al. Structure of the full-length human Pannexin1 channel and insights into its role in pyroptosis[J]. Cell Discov, 2021, 7:30.

      [52] Kayagaki N, Warming S, Lamkanfi M, et al. Non-canonical inflammasome activation targets caspase-11[J]. Nature, 2011, 479(7371):117-121.

      [53] Hagar JA, Powell DA, Aachoui Y, et al. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock[J]. Science, 2013, 341(6151):1250-1253.

      [54] Finethy R, Luoma S, Orench-Rivera N, et al. Inflammasome activation by bacterial outer membrane vesicles requires guanylate binding proteins[J]. mBio, 2017, 8(5):e01188-17.

      [55] 劉木子櫻. caspase-11炎癥小體激活的結(jié)構(gòu)基礎(chǔ)以及活化機(jī)制[D]. 合肥: 中國科學(xué)技術(shù)大學(xué), 2020.

      Liu MZY. The structural basis of caspase-11 inflammasome signal activation[D]. Heifei: University of Science and Technology of China , 2020.

      [56] Yin F, Zheng P, Zhao L, et al. Caspase-11 promotes NLRP3 inflammasome activation via the cleavage of pannexin1 in acute kidney disease[J]. Acta Pharmacol Sin, 2022, 43(1):86-95.

      [57] Koval M, Cwiek A, Carr T, et al. Pannexin 1 as a driver of inflammation and ischemia-reperfusion injury[J]. Purinergic Signal, 2021, 17(4):521-531.

      [58] Lucas CD, Medina CB, Bruton FA, et al. Pannexin 1 drives efficient epithelial repair after tissue injury[J]. Sci Immunol, 2022, 7(71):eabm4032.

      Progress in pannexin 1 involved in inflammation regulation and pyroptosis

      MA Yuan1, DUAN Qianwen1, DONG Xupeng1, LIU Che1, MA Yuqing2△

      (1,730000,;2,,730000,)

      Pannexin 1 (Panx1), a member of the ubiquitin family, is widely expressed in mammalian tissues. When the body is in an inflammatory state, Panx1 channel is activated and opened by high concentration of ion stimulation, caspase shearing, tyrosine phosphorylation and mechanical stretching pathway, which allows intracellular ATP to be released outside the cell and aggravates inflammatory response. Panx1 is also involved in the occurrence of pyroptosis in inflammatory response, and activates and releases a large number of interleukin-1-related inflammatory factors. Inflammatory response is the body's defense response to infection, but overexpression of Panx1 leads to uncontrolled inflammatory response. Therefore, Panx1, as a new intervention target of inflammation, has certain research value and application prospect.

      pannexin 1; inflammation; pyroptosis; caspase; interleukin-1β

      1000-4718(2023)07-1318-06

      2022-10-08

      2023-04-03

      13369456727; E-mail: myq2392466@163.com

      R363; R329.2+8

      A

      10.3969/j.issn.1000-4718.2023.07.020

      [基金項(xiàng)目]甘肅省自然科學(xué)基金資助項(xiàng)目(No. 21JRIRA077)

      (責(zé)任編輯:宋延君,羅森)

      猜你喜歡
      焦亡酪氨酸細(xì)胞膜
      針刺對(duì)腦缺血再灌注損傷大鼠大腦皮質(zhì)細(xì)胞焦亡的影響
      miRNA調(diào)控細(xì)胞焦亡及參與糖尿病腎病作用機(jī)制的研究進(jìn)展
      缺血再灌注損傷與細(xì)胞焦亡的相關(guān)性研究進(jìn)展
      電針對(duì)腦缺血再灌注損傷大鼠海馬區(qū)細(xì)胞焦亡相關(guān)蛋白酶Caspase-1的影響
      枸骨葉提取物對(duì)酪氨酸酶的抑制與抗氧化作用
      薔薇花總黃酮對(duì)酪氨酸酶的抑制作用及其動(dòng)力學(xué)行為
      中成藥(2018年1期)2018-02-02 07:19:57
      PVC用酪氨酸鑭的合成、復(fù)配及熱穩(wěn)定性能研究
      中國塑料(2016年7期)2016-04-16 05:25:52
      皮膚磨削術(shù)聯(lián)合表皮細(xì)胞膜片治療穩(wěn)定期白癜風(fēng)療效觀察
      宮永寬:給生物醫(yī)用材料穿上仿細(xì)胞膜外衣
      香芹酚對(duì)大腸桿菌和金黃色葡萄球菌細(xì)胞膜的影響
      昌邑市| 郓城县| 全州县| 岱山县| 德阳市| 石渠县| 策勒县| 云和县| 广元市| 九寨沟县| 庆云县| 务川| 积石山| 沽源县| 泾源县| 汽车| 太保市| 夏河县| 马关县| 类乌齐县| 依安县| 东乌珠穆沁旗| 上栗县| 蓬莱市| 新建县| 无棣县| 临漳县| 博野县| 马公市| 桐城市| 大安市| 军事| 合川市| 绥滨县| 垣曲县| 申扎县| 盱眙县| 比如县| 明水县| 昌都县| 偏关县|