• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      長(zhǎng)鏈非編碼RNA H19在肝臟疾病中作用的研究進(jìn)展*

      2023-08-07 06:58:34侯夢(mèng)貞余蕓王建青
      中國(guó)病理生理雜志 2023年7期
      關(guān)鍵詞:淤積膽汁膽管

      侯夢(mèng)貞, 余蕓, 王建青△

      · 綜述 ·

      長(zhǎng)鏈非編碼RNA H19在肝臟疾病中作用的研究進(jìn)展*

      侯夢(mèng)貞1,2, 余蕓1, 王建青1,2△

      (1安徽醫(yī)科大學(xué)第一附屬醫(yī)院,安徽省公共衛(wèi)生臨床中心,安徽 合肥 230012;2安徽醫(yī)科大學(xué)藥學(xué)院,安徽 合肥 230032)

      長(zhǎng)鏈非編碼RNA H19;膽汁淤積;肝細(xì)胞癌;非酒精性脂肪性肝病

      人類基因組計(jì)劃發(fā)現(xiàn),僅有不到2%的基因組編碼蛋白質(zhì),而近70%的基因組轉(zhuǎn)錄成非編碼RNA[1]。非編碼RNA是指不具備蛋白質(zhì)編碼能力的RNA,包括轉(zhuǎn)運(yùn)RNA、核糖體RNA、小核仁RNA和長(zhǎng)鏈非編碼RNA(long noncoding RNA, lncRNA)。其中,lncRNA是一類長(zhǎng)度大于200個(gè)核苷酸、沒有開放閱讀框而不具備蛋白編碼能力的特殊RNA[2]。lncRNA過(guò)去被認(rèn)為是RNA聚合酶II轉(zhuǎn)錄產(chǎn)生的副產(chǎn)物,因不具備生物學(xué)功能而僅被當(dāng)作是轉(zhuǎn)錄“噪音”[3]。但越來(lái)越多的研究顯示,lncRNA可通過(guò)表觀遺傳學(xué)、轉(zhuǎn)錄和轉(zhuǎn)錄后調(diào)控等多個(gè)層面調(diào)控基因表達(dá)水平,在多種生命過(guò)程中發(fā)揮重要作用[4]。H19是lncRNA中第一個(gè)被鑒定的印跡基因,在出生后表達(dá)顯著減少。研究發(fā)現(xiàn),H19在膽汁淤積[5]、肝細(xì)胞癌(hepatocellular carcinoma, HCC)[6]和非酒精性脂肪性肝?。╪on-alcoholic fatty liver disease, NAFLD)[7]等肝臟疾病中異常表達(dá),參與了疾病的發(fā)生發(fā)展。但是H19在不同肝臟疾病中的作用不同,具體的作用機(jī)制也有差異,其自身表達(dá)也受多種因素的調(diào)控。因此,本文就H19在膽汁淤積、HCC和NAFLD等肝臟疾病中的作用和分子機(jī)制進(jìn)行綜述,為肝臟疾病的診斷以及開發(fā)新的治療方法提供理論依據(jù)。

      1 H19概述

      基因位于人染色體11p15.5和鼠7號(hào)染色體,含5個(gè)外顯子和4個(gè)內(nèi)含子,剪接加工后的轉(zhuǎn)錄本H19長(zhǎng)度為2.3 kb。H19具有mRNA的經(jīng)典特征,如由RNA聚合酶II轉(zhuǎn)錄,由RNA剪接加工,并被多聚腺苷酸化,但不能編碼蛋白質(zhì),而是作為一種特殊的RNA分子發(fā)揮作用[8]。的第一個(gè)外顯子可編碼一個(gè)微小RNA,miR-675[9]。基因位點(diǎn)還可轉(zhuǎn)錄出兩個(gè)反義RNA分子即91H[10]和HOTS (H19 opposite tumor suppressor)[11]。作為母源性印跡基因,與相鄰的父源性印跡基因胰島素樣生長(zhǎng)因子2(insulin-like growth factor 2,)均受其啟動(dòng)子上游4 kb處差異甲基化區(qū)或印記調(diào)控區(qū)調(diào)控[12]。在胚胎發(fā)育過(guò)程中H19高表達(dá),但出生后在大多數(shù)組織中表達(dá)迅速降低[13]。作為肝臟發(fā)育的重要調(diào)節(jié)因子,H19在肝臟病理狀態(tài)下顯著上調(diào),并參與肝臟疾病中肝細(xì)胞和膽管細(xì)胞的增殖和凋亡、巨噬細(xì)胞和肝星狀細(xì)胞的激活、炎癥、纖維化、物質(zhì)能量代謝等多種病理生理過(guò)程[14]。

      2 H19與膽汁淤積

      膽汁淤積主要是由多種因素導(dǎo)致膽汁生成、分泌和排泄障礙的一種疾病。長(zhǎng)時(shí)間的膽汁淤積可導(dǎo)致嚴(yán)重的肝膽損傷、炎癥、纖維化甚至肝硬化,最終發(fā)展為惡性腫瘤[15]。膽道閉鎖患者肝和血清外泌體H19水平與膽汁淤積性肝損傷和肝纖維化嚴(yán)重程度呈正相關(guān)[16]。而敲除可顯著緩解膽管結(jié)扎和(multidrug resistance 2)-/-模型小鼠肝纖維化癥狀[17]。這些研究表明,H19在膽汁淤積性肝損傷中發(fā)揮了重要作用(圖1)。

      Figure 1. Regulatory mechanisms of H19 in cholestasis. E2: 17β-estradiol; TCA: taurocholate; ERK1/2: extracellular signal-regulated kinase 1/2; S1PR2: sphingosine-1-phosphate receptor 2; SphK2: sphingosine kinase 2; AMPK: AMP-activated protein kinase; FXR: farnesoid X receptor; SHP: small heterodimer partner; CYP7A1: cytochrome P450 family 7 subfamily A member 1/cholesterol 7α-hydroxylase; CYP8B1: cytochrome P450 family 8 subfamily B member 1/sterol 12α-hydroxylase; NTCP: sodium-taurocholate cotransporting polypeptide; PTBP1: polypyrimidine tract-binding protein 1; ZEB1: zinc finger E-box-binding protein 1; EpCAM: epithelial cell adhesion molecule; HMGA2: high mobility group A2.

      2.1相關(guān)分子機(jī)制目前,膽汁酸合成與轉(zhuǎn)運(yùn)障礙被認(rèn)為是導(dǎo)致膽汁淤積的重要因素之一。當(dāng)肝細(xì)胞內(nèi)膽汁酸水平升高時(shí),法尼醇X受體被激活,繼而誘導(dǎo)肝臟小異源二聚體伴侶(small heterodimer partner, SHP)表達(dá)上調(diào),SHP一方面通過(guò)抑制兩種關(guān)鍵酶即膽固醇7α-羥化酶和固醇12α-羥化酶的表達(dá),從而抑制膽汁酸合成;另一方面通過(guò)下調(diào)Na+-?;悄懰峁厕D(zhuǎn)運(yùn)多肽,進(jìn)而抑制肝細(xì)胞對(duì)膽汁酸的攝?。?8-19]。有趣的是,在腺病毒介導(dǎo)的Bcl-2過(guò)表達(dá)小鼠模型中,肝細(xì)胞SHP蛋白水平與膽管來(lái)源的H19表達(dá)水平呈負(fù)相關(guān)[20]。進(jìn)一步的深入研究發(fā)現(xiàn),膽管細(xì)胞來(lái)源的外泌體可介導(dǎo)H19轉(zhuǎn)移到肝細(xì)胞,通過(guò)降低啟動(dòng)子活性和SHP mRNA穩(wěn)定性而抑制SHP表達(dá)[21-22]。

      除分泌膽汁外,膽管細(xì)胞還可對(duì)肝細(xì)胞生成的膽汁進(jìn)行加工修飾,并輸送至膽囊和腸道。膽汁淤積誘發(fā)膽管細(xì)胞增殖活化,不僅會(huì)影響膽汁的分泌與排泄,還可通過(guò)各種調(diào)節(jié)因子激活肌成纖維細(xì)胞使細(xì)胞外基質(zhì)沉積,從而導(dǎo)致肝纖維化[23]。Xiao等[16]發(fā)現(xiàn),H19一方面上調(diào)膽汁酸誘導(dǎo)的1-磷酸-鞘氨醇受體2/鞘氨醇激酶2(sphingosine kinase 2, SphK2)軸的表達(dá);另一方面,作為分子海綿作用于miRNA let-7家族使高遷移率族蛋白A2上調(diào),進(jìn)而促進(jìn)膽道閉鎖患者的膽管細(xì)胞增殖和肝纖維化。此外,H19還可通過(guò)降低膽汁淤積小鼠肝臟中多聚嘧啶區(qū)結(jié)合蛋白1(polypyrimidine tract binding protein 1, PTBP1)的表達(dá)水平,促進(jìn)miRNA let-7的成熟,并且降低miRNA let-7對(duì)其靶點(diǎn)的生物利用度,提示H19可增加miRNA let-7的炎癥相關(guān)靶基因表達(dá)進(jìn)而加劇肝臟炎癥反應(yīng)[24]。據(jù)報(bào)道,E盒結(jié)合鋅指蛋白1(zinc finger E-box-binding protein 1, ZEB1)作為調(diào)控上皮-間充質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition, EMT)的重要蛋白,可與H19相互作用,進(jìn)而抑制ZEB1與上皮細(xì)胞黏附分子(epithelial cell adhesion molecule,)啟動(dòng)子結(jié)合,減弱ZEB1對(duì)EpCAM的抑制作用,導(dǎo)致膽管增生和肝纖維化[5]。其次,有研究發(fā)現(xiàn),H19可通過(guò)單核細(xì)胞趨化蛋白1[25]和Rho家族GTP酶[26]促進(jìn)巨噬細(xì)胞募集、激活和分化,而選擇性清除巨噬細(xì)胞可抑制膽管增殖和肝纖維化。

      研究發(fā)現(xiàn),-/-模型小鼠的膽汁淤積性肝損傷和纖維化發(fā)生程度存在性別差異,這可能與雌激素和?;悄懰岬脑黾佑嘘P(guān)[27]。進(jìn)一步研究表明,雌激素和?;悄懰峥煞謩e激活雌激素受體和SIPR2并進(jìn)一步誘導(dǎo)細(xì)胞外信號(hào)調(diào)節(jié)激酶1/2(extracellular signal-regulated kinases 1/2, ERK1/2)信號(hào)通路的激活,上調(diào)膽管細(xì)胞H19的表達(dá),而高表達(dá)的H19可能是促進(jìn)雌性-/-小鼠發(fā)生膽汁淤積性肝損傷的因素之一[22]。以上研究表明,H19不僅在膽汁淤積的發(fā)生發(fā)展中發(fā)揮重要作用,并且可能是導(dǎo)致膽汁淤積性肝損傷性別差異的關(guān)鍵因素。

      3 H19與HCC

      HCC是原發(fā)性肝癌的主要類型,每年因HCC死亡的人數(shù)高居世界癌癥死亡人數(shù)的第4位[28]。由于早期無(wú)明顯癥狀,發(fā)現(xiàn)時(shí)多為晚期,故早期診斷和早期治療是提高患者生存率的關(guān)鍵。甲胎蛋白(alpha-fetoprotein, AFP)是HCC最主要的血清學(xué)診斷指標(biāo),但易誤診或漏診,缺乏足夠的靈敏度與特異性。Hernandez等[29]發(fā)現(xiàn),HCC患者中H19表達(dá)水平升高,且與AFP有顯著相關(guān)性,提示與AFP聯(lián)合檢測(cè)可提高早期診斷的準(zhǔn)確率。近年來(lái)多項(xiàng)研究表明,H19與HCC的發(fā)生、發(fā)展及預(yù)后密切相關(guān),有望成為HCC新的診斷標(biāo)志物和治療靶點(diǎn)[30]。見圖2。

      Figure 2. Regulatory mechanisms of H19 in hepatocellular carcinoma (HCC). AFB1: aflatoxin B1; E2F1: E2F transcription factor 1; NSUN2: NOP2/Sun domain family, member 2; G3BP1: Ras-GTPase-activating protein SH3 domain binding protein 1; CDC42: cell division cycle 42; PAK1: p21-activated kinase 1; LIMK1: LIM kinase 1; PTEN: phosphatase and tensin homolog; EGFR: epidermal growth factor receptor; IGF1R: insulin-like growth factor 1 receptor; MAPK: mitogen-activated protein kinase; Rb: retinoblastoma protein; HP1α: heterochromatin protein 1α; ZEB1/2: zinc finger E-box-binding protein 1/2; hnRNP U: heterogeneous nuclear ribonucleoprotein U; PCAF: p300/CBP associated factor; Pol II: RNA polymerase II; ERK: extracellular signal-regulated kinase; MDR1: multidrug resistance 1; GST-π: glutathione S-transferase-π; EMT: epithelial-mesenchymal transition; TAM: tumor-associated macrophages.

      3.1相關(guān)分子機(jī)制研究發(fā)現(xiàn),化學(xué)致癌物黃曲霉素B1可增加細(xì)胞周期相關(guān)轉(zhuǎn)錄因子E2F1 (E2F transcription factor 1)和H19表達(dá)水平進(jìn)而促進(jìn)肝癌HepG2細(xì)胞增殖和侵襲,其中E2F1可與的啟動(dòng)子結(jié)合并激活H19[31]。此外,NSUN2 (NOP2/Sun RNA methyltransferase 2)對(duì)H19進(jìn)行m5C修飾后可增加H19穩(wěn)定性進(jìn)而提高H19表達(dá)水平;而m5C修飾的H19可通過(guò)招募G3BP1 (Ras-GTPase-activating protein SH3 domain binding protein 1)導(dǎo)致MYC積累,促進(jìn)HCC的發(fā)生發(fā)展[32]。

      H19可作為“miRNA海綿”,解除miRNA對(duì)下游靶基因的抑制作用,從而促進(jìn)HCC細(xì)胞生長(zhǎng)、侵襲和轉(zhuǎn)移。例如,H19可競(jìng)爭(zhēng)性結(jié)合miR-15b、miR-326和miR‐520a‐3p,分別激活細(xì)胞分裂周期蛋白42/p21活化激酶1、Twist1轉(zhuǎn)錄因子及LIM激酶1[30, 33-34]。此外,作為miR-675的前體,H19還可通過(guò)其轉(zhuǎn)錄產(chǎn)物miR-675發(fā)揮作用且二者多協(xié)同過(guò)表達(dá)。miR-675下調(diào)Rb (retinoblastoma protein),可減輕對(duì)E2F1的抑制作用并上調(diào)H19表達(dá)[29]。研究發(fā)現(xiàn),miR-675還可通過(guò)調(diào)控異染色質(zhì)蛋白1α和早期生長(zhǎng)反應(yīng)蛋白1,上調(diào)H19表達(dá)水平,進(jìn)而激活丙酮酸激酶M2的表達(dá),促進(jìn)HCC發(fā)生發(fā)展[35]。此外,miR-675還能通過(guò)增強(qiáng)EMT促進(jìn)HCC對(duì)索拉非尼的耐藥性[36]。

      作為腫瘤微環(huán)境的重要組成部分,腫瘤相關(guān)巨噬細(xì)胞(tumor-associated macrophages, TAMs)在促進(jìn)腫瘤干細(xì)胞(cancer stem cell, CSC;或稱腫瘤起始細(xì)胞,tumor initiating cell, TIC)的維持和自我更新上發(fā)揮重要作用。研究表明,TAMs可誘導(dǎo)肝癌細(xì)胞HepG2和Hep3B中H19表達(dá)并與miR-193b競(jìng)爭(zhēng)性結(jié)合,減弱其對(duì)下游多種癌癥驅(qū)動(dòng)基因(磷酸酶及張力蛋白同源物、表皮生長(zhǎng)因子受體和胰島素樣生長(zhǎng)因子1受體)和絲裂酶原活化蛋白激酶1(mitogen-activated protein kinase 1, MAPK1)的抑制作用,進(jìn)而促進(jìn)EMT和干細(xì)胞轉(zhuǎn)化,最終導(dǎo)致HCC侵襲和轉(zhuǎn)移[37]。CSC或TIC在HCC發(fā)生、轉(zhuǎn)移、復(fù)發(fā)及耐藥中起著關(guān)鍵作用。研究發(fā)現(xiàn),轉(zhuǎn)化生長(zhǎng)因子β受體2失活的TIC中,H19是表達(dá)上調(diào)最多的lncRNA之一,在TIC中敲低會(huì)減弱轉(zhuǎn)化生長(zhǎng)因子β受體2失活誘導(dǎo)的成瘤性,提示H19可參與調(diào)控TIC[38]。Conigliaro等[39]發(fā)現(xiàn),CD90+CSC可釋放含H19的外泌體,調(diào)節(jié)血管內(nèi)皮細(xì)胞表型,促進(jìn)HCC血管生成,從而促進(jìn)轉(zhuǎn)移。Ding等[40]報(bào)道,下調(diào)H19可通過(guò)阻斷MAPK/ERK信號(hào)通路下調(diào)MDR1和谷胱甘肽-轉(zhuǎn)移酶π的表達(dá),從而逆轉(zhuǎn)CD133+CSC的耐藥性。上述研究表明,H19與HCC增殖、轉(zhuǎn)移、耐藥以及預(yù)后密切相關(guān),主要在HCC中起到促癌作用。

      然而,Zhang等[41]發(fā)現(xiàn),H19可與蛋白復(fù)合物核異質(zhì)核糖核蛋白U-p300/CBP相關(guān)因子-RNA聚合酶II相結(jié)合,通過(guò)增加組蛋白乙酰化激活miR-200家族,繼而抑制其靶點(diǎn)ZEB1/2,逆轉(zhuǎn)EMT進(jìn)程,最終抑制HCC轉(zhuǎn)移。Schultheiss等[42]也報(bào)道,H19可抑制HCC生長(zhǎng)與化療耐藥。出現(xiàn)這種不一致的結(jié)果,可能與實(shí)驗(yàn)條件不同(細(xì)胞系的選擇、體內(nèi)動(dòng)物模型的多樣性和人類HCC樣本含量不同)以及H19的特點(diǎn)(基因多態(tài)性和細(xì)胞特異性表達(dá))有關(guān),可加大樣本含量尤其是體內(nèi)實(shí)驗(yàn),進(jìn)一步明確H19在HCC中發(fā)揮的作用。

      4 H19與NAFLD

      NAFLD已成為全球最常見肝病之一,是一類包含單純性脂肪肝、非酒精性脂肪性肝炎(nonalcoholic steatohepatitis, NASH)等的臨床病理綜合征,并可能進(jìn)一步發(fā)展為肝硬化、肝衰竭和肝癌[43]。研究發(fā)現(xiàn),與無(wú)脂肪變性和脂肪性肝的其他肝病患者相比,H19在NAFLD患者血清中表達(dá)水平顯著升高,且隨肝臟脂肪變性程度的加重而增加;相關(guān)性分析顯示,NAFLD患者血清H19與甘油三酯、低密度脂蛋白膽固醇和胰島素抵抗指數(shù)呈正相關(guān),提示H19在調(diào)節(jié)肝臟脂質(zhì)代謝中發(fā)揮重要作用,有望成為預(yù)測(cè)NAFLD的潛在標(biāo)志物和治療靶點(diǎn)[44]。見圖3。

      Figure 3. Regulatory mechanisms of H19 in non-alcoholic fatty liver disease. FFA: free fatty acids; HFD: high-fat diet; PPARγ: peroxisome proliferator-activated receptor γ; mTOR: mammalian target of rapamycin; S6K: S6 kinase; PTBP1: polypyrimidine tract-binding protein 1; SREBP1c: sterol regulatory element-binding protein 1c; MLXIPL: MLX interacting protein-like; Fasn: fatty acid synthase; Gpam: glycerol-3-phosphate acyltransferase; Acaca: acetyl-CoA carboxylases alpha; Scd1: stearoyl-CoA desaturase 1; HuR: human antigen R; SAHH: S-adenosylhomocysteine hydrolase; SAH: S-adenosylhomocysteine; HNF4α: hepatocyte nuclear factor 4 α; G6PC: glucose-6-phosphatase; PCK1: phosphoenolpyruvate carboxykinase 1.

      4.1相關(guān)分子機(jī)制NAFLD的主要特征是脂肪變性,即肝臟中甘油三酯的異常積累[45]。研究發(fā)現(xiàn),在油酸誘導(dǎo)的脂肪變性和高脂飲食誘導(dǎo)的NAFLD小鼠中H19上調(diào)并通過(guò)激活肝細(xì)胞中哺乳動(dòng)物雷帕霉素靶蛋白復(fù)合體1信號(hào)軸和MLX相互作用蛋白樣蛋白轉(zhuǎn)錄網(wǎng)絡(luò)來(lái)上調(diào)多個(gè)脂質(zhì)代謝相關(guān)基因,進(jìn)而誘導(dǎo)肝臟脂肪變性[7]。有研究報(bào)道,H19還能直接下調(diào)miR-130a的表達(dá),進(jìn)而激活肝臟過(guò)氧化物酶體增殖物激活受體γ,促進(jìn)肝臟脂肪生成[46]。固醇調(diào)節(jié)元件結(jié)合蛋白1c(sterol regulatory element-binding protein 1c, SREBP1c)作為一種轉(zhuǎn)錄因子,通過(guò)調(diào)節(jié)膽固醇和脂肪酸代謝在調(diào)節(jié)脂質(zhì)穩(wěn)態(tài)中發(fā)揮重要作用[47]。研究發(fā)現(xiàn),H19可與PTBP1相互作用,增加其下游靶點(diǎn)SREBP1c的穩(wěn)定性和核轉(zhuǎn)錄活性,誘導(dǎo)脂質(zhì)累積[48]。最近的一項(xiàng)研究表明,肝細(xì)胞特異性人類抗原R缺失可顯著上調(diào)NASH患者和西方飲食加糖水誘導(dǎo)的NASH小鼠肝臟中H19的表達(dá),而高表達(dá)的H19通過(guò)調(diào)控SphK2從細(xì)胞質(zhì)轉(zhuǎn)移至細(xì)胞核,降低SphK2的核蛋白水平而促進(jìn)肝臟脂質(zhì)累積[49]。

      糖代謝紊亂和炎癥反應(yīng)參與了NAFLD發(fā)生發(fā)展的全過(guò)程,是加速NAFLD惡性進(jìn)展的重要機(jī)制。據(jù)報(bào)道,高脂飲食小鼠肝臟中H19表達(dá)增加,而肝臟特異性過(guò)表達(dá)H19可促進(jìn)高血糖和胰島素抵抗,敲除則可以增加胰島素對(duì)肝葡萄糖產(chǎn)生的抑制作用[50]。進(jìn)一步機(jī)制研究表明,H19可與?腺苷同型半胱氨酸水解酶結(jié)合并抑制其活性,造成?腺苷同型半胱氨酸累積,使肝細(xì)胞核因子4α(hepatocyte nuclear factor 4α,)啟動(dòng)子甲基化程度降低而促進(jìn)HNF4α表達(dá),從而使磷酸烯醇式丙酮酸羧激酶1和葡萄糖-6-磷酸酶催化亞基這兩種糖異生反應(yīng)的關(guān)鍵酶表達(dá)增加。此外,Cheng等[51]發(fā)現(xiàn),抑制H19可通過(guò)上調(diào)miR-29b抑制血管內(nèi)皮生長(zhǎng)因子A的表達(dá),最終激活蛋白激酶B/內(nèi)皮型一氧化氮合酶信號(hào)通路而使內(nèi)皮細(xì)胞免受高糖誘導(dǎo)的氧化應(yīng)激和炎癥,減少NAFLD并發(fā)癥的發(fā)生。

      5 小結(jié)和展望

      綜上所述,lncRNA H19作為最早被鑒定的印跡基因之一,在肝臟病理狀態(tài)下被激活,參與多種肝臟細(xì)胞的增殖、凋亡、炎癥、纖維化、物質(zhì)和能量代謝等病理生理過(guò)程,通過(guò)多種調(diào)控機(jī)制參與膽汁淤積、HCC和NAFLD等肝臟疾病的發(fā)生發(fā)展。但是肝臟疾病的發(fā)生機(jī)制是多因素的且基因本身的作用機(jī)制較為復(fù)雜,目前仍有很多問題亟待解決。近年來(lái)/基因組印跡在人類肝臟疾病中的作用受到廣泛關(guān)注。/基因印跡異??梢鹨幌盗胁±砩韺W(xué)的改變,甚至導(dǎo)致腫瘤的發(fā)生。人體微環(huán)境、基因上游印跡調(diào)控區(qū)的甲基化狀態(tài)和印記丟失等均會(huì)影響H19的表達(dá)水平;的單核苷酸多態(tài)性變異還可能改變H19的二級(jí)結(jié)構(gòu),進(jìn)而影響H19與miRNA的相互作用等多種生物學(xué)功能。這方面的研究提示未來(lái)H19不僅有望作為一種新的診斷標(biāo)志物和治療靶點(diǎn),還將有助于肝臟疾病的個(gè)體化治療。此外,與相鄰的印跡基因也可能參與了肝臟疾病進(jìn)展,基因位點(diǎn)還能編碼miR-675,并產(chǎn)生兩種反義RNA 91H和HOTS,使得H19在肝臟疾病中的作用機(jī)制變得更復(fù)雜。深入探討單核苷酸多態(tài)性變異對(duì)H19功能與人群易感性的影響,甲基化水平對(duì)H19致病機(jī)制的影響,H19與IGF2、miR-675、91H和HOTS之間的調(diào)控關(guān)系,以及H19的這三種轉(zhuǎn)錄產(chǎn)物在肝臟疾病的不同階段發(fā)揮的作用,對(duì)肝臟疾病的診斷和治療具有重要意義。

      [1] ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome[J]. Nature, 2012, 489(7414):57-74.

      [2]張毅, 馮康倪, 陳鑒濤, 等. 非編碼RNA在腦缺血再灌注損傷中的作用[J]. 中國(guó)病理生理雜志, 2021, 37(2):347-355.

      Zhang Y, Feng KN, Chen JT, et al. Role of noncoding RNA in cerebral ischemia-reperfusion injury[J]. Chin J Pathophysiol, 2021, 37(2):347-355.

      [3] Struhl K. Transcriptional noise and the fidelity of initiation by RNA polymerase II[J]. Nat Struct Mol Biol, 2007, 14(2):103-105.

      [4] Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions[J]. Nat Rev Genet, 2009, 10(3):155-159.

      [5] Song Y, Liu C, Liu X, et al. H19 promotes cholestatic liver fibrosis by preventing ZEB1-mediated inhibition of epithelial cell adhesion molecule[J]. Hepatology, 2017, 66(4):1183-1196.

      [6] Yang J, Qi M, Fei X, et al. LncRNA H19: a novel oncogene in multiple cancers[J]. Int J Biol Sci, 2021, 17(12):3188-3208.

      [7] Wang H, Cao Y, Shu L, et al. Long non-coding RNA (lncRNA) H19 induces hepatic steatosis through activating MLXIPL and mTORC1 networks in hepatocytes[J]. J Cell Mol Med, 2020, 24(2):1399-1412.

      [8] Brannan CI, Dees EC, Ingram RS, et al. The product of the H19 gene may function as an RNA[J]. Mol Cell Biol, 1990, 10(1):28-36.

      [9] Cai X, Cullen BR. The imprinted H19 noncoding RNA is a primary microRNA precursor[J]. RNA, 2007, 13(3):313-316.

      [10] Berteaux N, Aptel N, Cathala G, et al. A novel H19 antisense RNA overexpressed in breast cancer contributes to paternal IGF2 expression[J]. Mol Cell Biol, 2008, 28(22):6731-6745.

      [11] Onyango P, Feinberg AP. A nucleolar protein, H19 opposite tumor suppressor (HOTS), is a tumor growth inhibitor encoded by a human imprinted H19 antisense transcript[J]. Proc Natl Acad Sci U S A, 2011, 108(40):16759-16764.

      [12] Thorvaldsen JL, Duran KL, Bartolomei MS. Deletion of thedifferentially methylated domain results in loss of imprinted expression ofand[J]. Genes Dev, 1998, 12(23):3693-3702.

      [13] Li X, Liu R. Long non-coding RNA H19 in the liver-gut axis: a diagnostic marker and therapeutic target for liver diseases[J]. Exp Mol Pathol, 2020, 115:104472.

      [14] Xu J, Cao X. Long noncoding RNAs in the metabolic control of inflammation and immune disorders[J]. Cell Mol Immunol, 2019, 16(1):1-5.

      [15] Onofrio FQ, Hirschfield GM. The pathophysiology of cholestasis and its relevance to clinical practice[J]. Clin Liver Dis, 2020, 15(3):110-114.

      [16] Xiao Y, Liu R, Li X, et al. Long noncoding RNA H19 contributes to cholangiocyte proliferation and cholestatic liver fibrosis in biliary atresia[J]. Hepatology, 2019, 70(5):1658-1673.

      [17] Liu R, Li X, Zhu W, et al. Cholangiocyte-derived exosomal long noncoding RNA H19 promotes hepatic stellate cell activation and cholestatic liver fibrosis[J]. Hepatology, 2019, 70(4):1317-1335.

      [18] Yang Z, Zhang T, Han S, et al. Long noncoding RNA H19: a new player in the pathogenesis of liver diseases[J]. Transl Res, 2021, 230:139-150.

      [19] 鄒步, 唐瑩, 楊文玲, 等. 腸道菌群-FXR軸在代謝性疾病中的作用[J]. 中國(guó)病理生理雜志, 2019, 35(9):1716-1720.

      Zou B, Tang Y, Yang WL, et al. Role of intestinal microbiota-farnesoid X receptor axis in metabolic diseases[J]. Chin J Pathophysiol, 2019, 35(9):1716-1720.

      [20] Zhang Y, Liu C, Barbier O, et al. Bcl2 is a critical regulator of bile acid homeostasis by dictating Shp and lncRNA H19 function[J]. Sci Rep, 2016, 6(1):20559.

      [21] Li X, Liu R, Huang Z, et al. Cholangiocyte-derived exosomal long noncoding RNA H19 promotes cholestatic liver injury in mouse and humans[J]. Hepatology, 2018, 68(2):599-615.

      [22] Li X, Liu R, Yang J, et al. The role of long noncoding RNA H19 in gender disparity of cholestatic liver injury in multidrug resistance 2 gene knockout mice[J]. Hepatology, 2017, 66(3):869-884.

      [23] 陳瑞玲, 馬雄. 膽汁淤積導(dǎo)致肝纖維化的機(jī)制及其阻斷策略[J]. 臨床肝膽病雜志, 2019, 35(2):247-251.

      Chen RL, Ma X. Pathogenesis of cholestasi-induced liver fibrosis and thoughts for blockade[J]. J Clin Hepatol, 2019, 35(2):247-251.

      [24] Zhang L, Yang Z, Huang W, et al. H19 potentiates let-7 family expression through reducing PTBP1 binding to their precursors in cholestasis[J]. Cell Death Dis, 2019, 10(3):168.

      [25] Li X, Liu R, Wang Y, et al. Cholangiocyte-derived exosomal lncRNA H19 promotes macrophage activation and hepatic inflammation under cholestatic conditions[J]. Cells, 2020, 9(1):190.

      [26] Tian X, Wang Y, Lu Y, et al. Conditional depletion of macrophages ameliorates cholestatic liver injury and fibrosis via lncRNA-H19[J]. Cell Death Dis, 2021, 12(7):646.

      [27] van Nieuwerk CM, Groen AK, Ottenhoff R, et al. The role of bile salt composition in liver pathology of-/-mice: differences between males and females[J]. J Hepatol, 1997, 26(1):138-145.

      [28] Tietze L, Kessler SM. The good, the bad, the question: H19 in hepatocellular carcinoma[J]. Cancers, 12(5):E1261.

      [29] Hernandez JM, Elahi A, Clark CW, et al. miR-675 mediates downregulation of Twist1 and Rb in AFP-secreting hepatocellular carcinoma[J]. Ann Surg Oncol, 2013, 20(Suppl 3):S625-S635.

      [30] Zhou Y, Fan RG, Qin CL, et al. LncRNA-H19 activates CDC42/PAK1 pathway to promote cell proliferation, migration and invasion by targeting miR-15b in hepatocellular carcinoma[J]. Genomics, 2019, 111(6):1862-1872.

      [31] Lv J, Yu YQ, Li SQ, et al. Aflatoxin B1 promotes cell growth and invasion in hepatocellular carcinoma HepG2 cells through H19 and E2F1[J]. Asian Pac J Cancer Prev, 2014, 15(6):2565-2570.

      [32] Sun Z, Xue S, Zhang M, et al. Aberrant NSUN2-mediated m5C modification of H19 lncRNA is associated with poor differentiation of hepatocellular carcinoma[J]. Oncogene, 2020, 39(45):6906-6919.

      [33] Wei LQ, Li L, Lu C, et al. Involvement of H19/miR-326 axis in hepatocellular carcinoma development through modulating TWIST1[J]. J Cell Physiol, 2019, 234(4):5153-5162.

      [34] Wang D, Xing N, Yang T, et al. Exosomal lncRNA H19 promotes the progression of hepatocellular carcinoma treated with Propofol via miR-520a-3p/LIMK1 axis[J]. Cancer Med, 2020, 9(19):7218-7230.

      [35] Li H, Li J, Jia S, et al. miR675 upregulates long noncoding RNA H19 through activating EGR1 in human liver cancer[J]. Oncotarget, 2015, 6(31):31958-31984.

      [36] Xu Y, Liu Y, Li Z, et al. Long non?coding RNA H19 is involved in sorafenib resistance in hepatocellular carcinoma by upregulating miR?675[J]. Oncol Rep, 2020, 44(1):165-173.

      [37] Ye Y, Guo J, Xiao P, et al. Macrophages-induced long noncoding RNA H19 up-regulation triggers and activates the miR-193b/MAPK1 axis and promotes cell aggressiveness in hepatocellular carcinoma[J]. Cancer Lett, 2020, 469:310-322.

      [38] Zhang J, Han C, Ungerleider N, et al. A transforming growth factor-β and H19 signaling axis in tumor-initiating hepatocytes that regulates hepatic carcinogenesis[J]. Hepatology, 2019, 69(4):1549-1563.

      [39] Conigliaro A, Costa V, Lo Dico A, et al. CD90+liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA[J]. Mol Cancer, 2015, 14:155.

      [40] Ding K, Liao Y, Gong D, et al. Effect of long non-coding RNA H19 on oxidative stress and chemotherapy resistance of CD133+cancer stem cells via the MAPK/ERK signaling pathway in hepatocellular carcinoma[J]. Biochem Biophys Res Commun, 2018, 502(2):194-201.

      [41] Zhang L, Yang F, Yuan JH, et al. Epigenetic activation of the MiR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma[J]. Carcinogenesis, 2013, 34(3):577-586.

      [42] Schultheiss CS, Laggai S, Czepukojc B, et al. The long non-coding RNA H19 suppresses carcinogenesis and chemoresistance in hepatocellular carcinoma[J]. Cell Stress, 2017, 1(1):37-54.

      [43] Eslam M, Valenti L, Romeo S. Genetics and epigenetics of NAFLD and NASH: clinical impact[J]. J Hepatol, 2018, 68(2):268-279.

      [44] 閻春英, 張蓉, 王雪, 等. 非酒精性脂肪性肝病患者血清LncRNA H19表達(dá)變化及臨床意義[J]. 中國(guó)中西醫(yī)結(jié)合消化雜志, 2021, 29(8):545-549.

      Yan CY, Zhang R, Wang X, et al. Change of serum LncRNA H19 expression in patients with non-alcoholic fatty liver disease and its clinical significance[J]. Chin J Integr Tradit West Med Dig, 2021, 29(8):545-549.

      [45] Chen Q, Wang T, Li J, et al. Effects of natural products on fructose-induced nonalcoholic fatty liver disease (NAFLD)[J]. Nutrients, 2017, 9(2):E96.

      [46] Liu J, Tang T, Wang GD, et al. LncRNA-H19 promotes hepatic lipogenesis by directly regulating miR-130a/PPARγ axis in non-alcoholic fatty liver disease[J]. Biosci Rep, 2019, 39(7):BSR20181722.

      [47] Watanabe M, Houten SM, Wang L, et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c[J]. J Clin Invest, 2004, 113(10):1408-1418.

      [48] Liu C, Yang Z, Wu J, et al. Long noncoding RNA H19 interacts with polypyrimidine tract‐binding protein 1 to reprogram hepatic lipid homeostasis[J]. Hepatology, 2018, 67(5):1768-1783.

      [49] Wang Y, Tai YL, Way G, et al. RNA binding protein HuR protects against NAFLD by suppressing long noncoding RNA H19 expression[J]. Cell Biosci, 2022, 12(1):172.

      [50] Zhang N, Geng T, Wang Z, et al. Elevated hepatic expression of H19 long noncoding RNA contributes to diabetic hyperglycemia[J]. JCI Insight, 2018, 3(10):e120304.

      [51] Cheng XW, Chen ZF, Wan YF, et al. Long non-coding RNA H19 suppression protects the endothelium against hyperglycemic-induced inflammation via inhibiting expression of miR-29b target gene vascular endothelial growth factor a through activation of the protein kinase B/endothelial nitric oxide synthase pathway[J]. Front Cell Dev Biol, 2019, 7:263.

      Progress in role of lncRNA H19 in liver diseases

      HOU Mengzhen1,2, YU Yun1, WANG Jianqing1,2△

      (1,,230012,;2,,230032,)

      Long noncoding RNAs (lncRNAs) refer to a class of special RNAs having more than 200 nucleotides in their transcripts but featuring no protein-coding function. They play significant roles in epigenetic, transcriptional, and post-transcriptional regulation. H19 is the first identified imprinted lncRNA. It participates in the biological process of hepatocytes, cholangiocytes, immune cells and other cells, and has gradually become a new hotspot in the study of liver diseases. In this review, we introduce the characteristics of H19 and summarize its effect and molecular mechanism in 3 common liver diseases including cholestasis, hepatocellular carcinoma, and non-alcoholic fatty liver disease. We hope this review can provide new insights for related research and lead to potential therapeutic targets for liver disease treatment.

      long noncoding RNA H19; cholestasis; hepatocellular carcinoma; non-alcoholic fatty liver disease

      1000-4718(2023)07-1289-07

      2022-11-04

      2023-02-28

      0551-66330208; E-mail: Jianqingwang81@126.com

      R575; R363

      A

      10.3969/j.issn.1000-4718.2023.07.016

      [基金項(xiàng)目]國(guó)家自然科學(xué)基金資助項(xiàng)目(No. 82073566);安徽省高校優(yōu)秀青年人才支持計(jì)劃項(xiàng)目重點(diǎn)項(xiàng)目(No. gxyq2019014);安徽省高等學(xué)校省級(jí)質(zhì)量工程項(xiàng)目(No. 2020xsxxkc246);臨床藥學(xué)與藥理學(xué)共建項(xiàng)目

      (責(zé)任編輯:宋延君,羅森)

      猜你喜歡
      淤積膽汁膽管
      淤積性皮炎知多少
      妊娠期肝內(nèi)膽汁淤積癥
      肝博士(2020年5期)2021-01-18 02:50:28
      超聲引導(dǎo)下經(jīng)皮穿刺置管引流術(shù)在膽汁瘤治療中的應(yīng)用
      淤積與浚疏:清朝時(shí)期福州西湖的治理史
      膽汁淤積性肝病問題解答
      肝博士(2015年2期)2015-02-27 10:49:51
      IL-21在原發(fā)性膽汁性肝硬化發(fā)病機(jī)制中的作用
      腹腔鏡膽囊切除術(shù)膽管損傷12例
      膽管支氣管瘺1例
      肝左外葉切除大口膽腸內(nèi)引流治療肝內(nèi)膽管結(jié)石合并膽管狹窄的療效
      左半肝切除治療肝內(nèi)膽管結(jié)石并狹窄的療效觀察
      滨海县| 库车县| 信阳市| 古丈县| 宁德市| 高密市| 从化市| 蒙自县| 远安县| 墨脱县| 铜陵市| 绥阳县| 上饶市| 丘北县| 普安县| 瓦房店市| 鹿邑县| 平凉市| 尼勒克县| 义马市| 牙克石市| 屏边| 北碚区| 休宁县| 博乐市| 当雄县| 忻城县| 澳门| 锦屏县| 虎林市| 日喀则市| 光山县| 二连浩特市| 香港 | 淮北市| 青河县| 饶阳县| 罗定市| 孟津县| 湄潭县| 苗栗县|