趙立軍 趙晗
文章編號:1003?6180(2023) 03?0005?03
摘? 要:給出[L]-fuzzy子逆半群和[L]-fuzzy弱逆子半群的定義,借助[L]-Fuzzy集的截集給出其等價(jià)刻畫.
關(guān)鍵詞:[L]-fuzzy子半群;[L]-fuzzy正則子半群;[L]-fuzzy逆子半群;[L]-fuzzy弱逆子半群
[? ?中圖分類號? ? ]O159 [? ? 文獻(xiàn)標(biāo)志碼? ?]? A
L-fuzzy Inverse Subsemigroups
ZHAO Lijun1,ZHAO Han2
(1.College of Mathematics and Statistics ,Shaoguan College,Shaoguan 512005 ,China;
2.Mathematics Group, Guangdong Nanxiong School, Nanxiong 512400, China)
Abstract:In this paper, the concept of L-fuzzy inverse subsemigroup and L-fuzzy weak inverse subsemigroup are given. The characterizations of L-fuzzy inverse subsemigroup and L-fuzzy weak inverse subsemigroup are presented by means of cut sets of L-fuzzy sets.
Key words: L-fuzzy subsemigroup; L-fuzzy regular subsemigroup; L-fuzzy inverse
subsemigroup;L-fuzzy weak inverse subsemigroup
1 引言及預(yù)備知識
本文給出[L]-fuzzy逆子半群及[L]-fuzzy弱逆子半群的定義,給出[L]-fuzzy逆子半群與[L]-fuzzy正則子半群及[L]-fuzzy弱正則子半群之間的關(guān)系,并借助[L]-Fuzzy集的截集給出[L]-fuzzy逆子半群的等價(jià)刻畫.
本文[L]恒為完全分配格,[M(L)]表示[L]中所有非零并既約元之集,[P(L)]表示[L]中所有非單位素元之集.[X,S]表示非空通常集.[LX]表示[X]上的所有[L]-Fuzzy集的全體 .本文不區(qū)別分明集與其特征函數(shù).對空集[??L],定義[∧?=1]和[∨?=0].根據(jù)參考文獻(xiàn)[1], [L]中的每一個(gè)元素[a]都有最大極大族和最大極小族,分別記作[α(a)]和[β(a)].記[α*(a)=α(a)?P(L)],對于[A∈LX]與[a∈L],沿用參考文獻(xiàn)[2]的記號.
[A[a]=x∈XA(x)≥a],? ? ? ? ? [A(a)=x∈Xa∈β(A(x))],
[A[a]=x∈Xa?α(A(x))],? ? ?[A(a)=][x∈XA(x)?a].
定理1[2,3] 設(shè)[A∈LX],則:
(1)[A=∨a∈La∧A[a]]=[∨a∈M(L)a∧A[a]];
(2)[A=∧a∈La∨A[a]]=[∧a∈P(L)a∨A(a)].
定義1[4] 設(shè)[S]是半群,[A∈LS].若[A]滿足
[?x,? ? ? ?y∈S,? ? ? ? A(xy)≥A(x)∧A(y)],
則稱為[A]為[S]的[L]-fuzzy子半群.
定理2[[3]]? 設(shè)[S]是半群,[A∈LS].則下列條件等價(jià):
(1)[A]是[S]的[L]-fuzzy子半群;
(2)[?a∈L,A[a]]是[S]的子半群;
(3)[?a∈M(L),A[a]]是[S]的子半群;
(4)[?a∈L,A[a]]是[S]的子半群;
(5)[?a∈P(L),A[a]]是[S]的子半群;
(6)[?a∈P(L),A(a)]是[S]的子半群.
定義3[7]? 設(shè)[S]是半群,若[?x∈S,]都存在[x∈S],使得[xxx=x],則稱[S]是正則半群.記[R(x)={x∈Sxxx=x}].
定義4[7]? 設(shè)[A]是半群[S]的[L]-fuzzy子半群,若[?x∈A(0),]都存在[x∈R(x)],使得[A(x)≥A(x)],則稱[A]是[S]的[L]-fuzzy正則子半群.
定義5[7]? 設(shè)[A]是半群[S]的[L]-fuzzy子半群,若[?x∈A(0),R(x)≠?]且[∨x∈R(x)A(x)≥A(x)].則稱[A]是[S]的[L]-fuzzy弱正則子半群.
2 L-fuzzy子逆半群及等價(jià)刻畫
定義6[6]? 設(shè)[S]是半群,若[?x∈S,]都存在唯一[x-1∈S],使得[xx-1x=x,x-1xx-1=x-1],則稱[S]是逆半群.記[I(x)={x-1∈Sxx-1x=x,x-1xx-1=x-1}].
定義7 設(shè)[A]是半群[S]的[L]-fuzzy子半群,若[?x∈A(0),]都存在[x-1∈I(x)],使得[A(x-1)≥A(x)],則稱[A]是[S]的[L]-fuzzy逆子半群.
定理3 設(shè)[A]是半群[S]的[L]-fuzzy子半群,則下列條件等價(jià):
(1)[A]是[S]的[L]-fuzzy逆子半群;
(2)[?a∈M(L),A[a]]是[S]的子逆半群;
(3)[?a∈P(L),A(a)]是[S]的子逆半群;
(4)[?a∈α(0),A[a]]是[S]的子逆半群;
(5)[?a∈α*(0),A[a]]是[S]的子逆半群.
證明? [(1)?(2)] [?a∈M(L)], 若[x∈A[a]],則[A(x)≥a>0],故[0∈β(A(x))],從而[x∈A(0)].由(1)知存在[x-1∈I(x)],使得[A(x-1)≥A(x)≥a],從而[x-1∈A[a]],故[A[a]]是[S]的子逆半群.
[(2)?(1)] [?a∈M(L),x∈A(0)].若[A(x)≥a,]則[x∈A[a]].由(2)知存在[x-1∈I(x)],使得[x-1∈A[a]],從而[A(x-1)≥a,][A(x-1)≥A(x).]故[A]是[S]的[L]-fuzzy逆子半群.
[(1)?(3)?a∈P(L),]若[x∈A(a)],則[A(x)?a],所以,[A(x)>0],從而[x∈A(0)].由(1)知存在[x-1∈I(x)],使得[A(x-1)≥A(x)],所以,[A(x-1)?a],即[x-1∈A(a)].故[A(a)]是[S]的子逆半群.
[(3)?(1)?a∈P(L),x∈A(0)].若[A(x)?a],則[x∈A(a)].由(3)知存在[x-1∈I(x)],使得[x-1∈A(a)],所以,[A(x-1)?a],從而[A(x-1)≥A(x).]故[A]是[S]的[L]-fuzzy逆子半群.
[(1)?(4)?a∈α(0).]若[x∈A[a]],則[a?α(A(x))],從而[A(x)≠0],故[0∈β(A(x))],所以,[x∈A(0)].由(1)知存在[x-1∈I(x)],使得[A(x-1)≥A(x)],故[α(A(x-1))?α(A(x))],從而[a?α(A(x-1))],所以,[x-1∈A[a]],故[A[a]]是[S]的子逆半群.
[(4)?(5)]顯然.
[(5)?(1)]若[x∈A(0)],即[0∈β(A(x))],則[A(x)>0].[?a∈α*(0)],若[a?α*(A(x))],由于[a∈P(L)],從而[a?α(A(x))],即[x∈A[a]].由(5)知存在[x-1∈I(x)],使得[x-1∈A[a]],所以,[a?α(A(x-1))],[A(x-1)≥A(x)].故[A]是[S]的[L]-fuzzy逆子半群.
定義8? 設(shè)[A]是半群[S]的[L]-fuzzy子半群,若[?x∈A(0),I(x)≠?],且[∨x-1∈I(x)A(x-1)≥A(x)].則稱[A]是[S]的[L]-fuzzy弱逆子半群.
定理4 設(shè)[A]是半群[S]的[L]-fuzzy子半群,則下列條件等價(jià):
(1)[A]是[S]的[L]-fuzzy弱逆子半群;
(2)[?a∈P(L),A(a)]是[S]的子逆半群.
證明? [(1)?(2)] [?a∈P(L)], 若[x∈A(a)],則[A(x)?a],從而[A(x)≠0],故[0∈β(A(x))],所以,[x∈A(0)].由(1)知存在[x-1∈I(x)],使得[A(x-1)≥A(x)],從而[A(x-1)?a],即[x-1∈A(a)],故[A(a)]是[S]的子逆半群.
[(2)?(1)] [?a∈P(L),x∈A(0)].若[A(x)?a,]則[x∈A(a)].由(2)知存在[x-1∈I(x)],使得[x-1∈A(a)],從而[A(x-1)?a]且[I(x)≠?],所以,[A(x-1)≥A(x).]從而[∨x-1∈I(x)A(x-1)≥A(x)].故[A]是[S]的[L]-fuzzy弱逆子半群. 顯然有定理5.
定理5 (1)若[A]是半群[S]的[L]-fuzzy逆子半群,則[A]是[S]的[L]-fuzzy正則子半群,反之不一定成立;
(2)若[A]是半群[S]的[L]-fuzzy逆子半群,則[A]是[S]的[L]-fuzzy弱逆子半群,反之不一定成立;
(3)若[A]是半群[S]的[L]-fuzzy弱逆子半群,則[A]是[S]的[L]-fuzzy弱正則子半群,反之不一定成立.
參考文獻(xiàn)
[1]Wang G J. Theory of topological molecular latticces[J].Fuzzy Sets and Systems,1992,47:351-376.
[2]史福貴.[Lβ-]集合套與[Lα-]集合套理論極其應(yīng)用[J].模糊系統(tǒng)與數(shù)學(xué), 1995,9(4):65-72.
[3]Shi F G.L-Fuzzy Relations and L-Fuzzy Subgroups[J].The Journal of Fuzzy Mathematics,2000,8(2):491-499.
[4]Wang G J. Theory of topological molecular latticces[J].Fuzzy Sets and Systems, 1992,47:351-376.
[5] 趙立軍. L-Fuzzy子群的L-Fuzzy同態(tài)[J].數(shù)學(xué)雜志,2003,23(4):503-506.
[6] 史福貴,王國民. L-Fuzzy子群與L-Fuzzy正規(guī)子群的表現(xiàn)定理[J]. 煙臺師范學(xué)院學(xué)報(bào):自然科學(xué)版,1995,11(1):16-19.
[7] 趙立軍. L-Fuzzy正則子半群的刻畫[J].韶關(guān)學(xué)院學(xué)報(bào),2009(9):1-3.
編輯:琳莉