王浩川,李紅芳
脂聯(lián)素與腦小血管病相關(guān)性的研究進(jìn)展
王浩川1,李紅芳2
1.濟(jì)寧醫(yī)學(xué)院臨床醫(yī)學(xué)院,山東濟(jì)寧 272067;2.濟(jì)寧醫(yī)學(xué)院附屬醫(yī)院神經(jīng)內(nèi)科,山東濟(jì)寧 272007
腦小血管病是指各種病因影響腦內(nèi)小動(dòng)脈、微動(dòng)脈、毛細(xì)血管、微靜脈和小靜脈所導(dǎo)致的一系列臨床、影像、病理綜合征。脂聯(lián)素是一種由脂肪細(xì)胞分泌的單體糖蛋白。研究表明,脂聯(lián)素對(duì)心血管具有一定的保護(hù)作用。本文對(duì)脂聯(lián)素與腦小血管病相關(guān)性的研究進(jìn)展進(jìn)行綜述,以強(qiáng)化人們對(duì)腦小血管病發(fā)病機(jī)制的認(rèn)識(shí)。
腦小血管??;脂聯(lián)素;脂聯(lián)素受體;腦卒中
腦小血管?。╟erebral small vessel disease,CSVD)是指各種病因影響腦內(nèi)小動(dòng)脈、微動(dòng)脈、毛細(xì)血管、微靜脈和小靜脈所導(dǎo)致的一系列臨床、影像、病理綜合征,是復(fù)雜且具有較強(qiáng)異質(zhì)性的一大類腦血管綜合征?;颊叩难芎湍X實(shí)質(zhì)結(jié)構(gòu)會(huì)發(fā)生改變,從而表現(xiàn)出不同的臨床及神經(jīng)影像學(xué)特征。近年來(lái),CSVD在人群中所占比例逐年升高,造成患者運(yùn)動(dòng)功能喪失、認(rèn)知能力下降,甚至導(dǎo)致殘疾。脂聯(lián)素(adiponectin,APN)是一種由脂肪細(xì)胞分泌的單體糖蛋白,其對(duì)心血管具有一定的保護(hù)作用。本文對(duì)APN與CSVD相關(guān)性的研究進(jìn)展進(jìn)行綜述,以強(qiáng)化人們對(duì)CSVD發(fā)病機(jī)制的認(rèn)識(shí)。
CSVD是一組由不同病理因素導(dǎo)致的腦部小血管病變的總稱,因CSVD受累血管體積較小,無(wú)法在體內(nèi)單獨(dú)觀察,臨床主要通過(guò)病理檢查或顱腦磁共振成像等方法對(duì)其進(jìn)行診斷[1]。CSVD的常見(jiàn)發(fā)病原因和危險(xiǎn)因素包括年齡、高血壓、分支動(dòng)脈粥樣硬化、腦淀粉樣血管病、腦靜脈膠原病、輻射暴露、血管炎、感染及遺傳疾病等,其發(fā)病通常是多因素共同作用的結(jié)果[2]。CSVD的臨床表現(xiàn)主要為腦卒中、認(rèn)知功能障礙及情感障礙等;其影像學(xué)特征主要表現(xiàn)為腔隙性腦梗死、腦萎縮、腦白質(zhì)病變、血管周圍間隙擴(kuò)大及腦微出血等[3]。研究表明,約25%的急性缺血性腦卒中由CSVD造成,CSVD引起的腦卒中起病更迅速,且短期預(yù)后較其他類型腦卒中更差[4]。目前,CSVD導(dǎo)致的癡呆占全球癡呆病例總數(shù)的45%,是導(dǎo)致癡呆的第二大危險(xiǎn)因素[5]。
Wardlaw等[6]將CSVD分為小動(dòng)脈硬化CSVD、散發(fā)性和遺傳性腦淀粉樣血管病、不同于腦淀粉樣血管病的遺傳性或非遺傳性小血管疾病、炎癥和免疫介導(dǎo)的CSVD、腦靜脈膠原病及其他CSVD等。研究發(fā)現(xiàn),CSVD可導(dǎo)致腦實(shí)質(zhì)損傷、彌漫性軸突損傷、脫髓鞘及少突膠質(zhì)細(xì)胞丟失,亦會(huì)造成腦血流減少、大腦自我調(diào)節(jié)受損及血–腦脊液屏障通透性增加[7]。Di等[8]通過(guò)蛋白質(zhì)組學(xué)和生化分析研究發(fā)現(xiàn),不同類型的單基因疾病之間共享疾病途徑,通常涉及細(xì)胞外基質(zhì)功能的損害。遺傳研究表明,散發(fā)性CSVD高度遺傳,特別是在年輕的腦卒中患者中,推測(cè)單基因疾病基因的常見(jiàn)變異可能促進(jìn)某些CSVD亞型的疾病進(jìn)程[9]。炎癥因子在CSVD的發(fā)病中起重要作用。段雅鑫等[10]研究推測(cè),炎癥可能通過(guò)破壞緊密連接蛋白、重塑細(xì)胞外基質(zhì)、激活膠質(zhì)細(xì)胞等途徑參與CSVD的發(fā)生發(fā)展。人體內(nèi)C反應(yīng)蛋白和超敏C反應(yīng)蛋白可促進(jìn)動(dòng)脈粥樣硬化的炎癥反應(yīng),其可與脂蛋白結(jié)合激活補(bǔ)體系統(tǒng),產(chǎn)生大量的攻擊復(fù)合體,損傷血管內(nèi)膜和血–腦脊液屏障。C反應(yīng)蛋白也能直接通過(guò)誘導(dǎo)途徑增加CSVD的發(fā)病風(fēng)險(xiǎn)[11]。Mu等[12]對(duì)CSVD患者的血清白細(xì)胞介素6(interleukin-6,IL-6)、腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)等進(jìn)行檢測(cè)并分析其相關(guān)性,結(jié)果發(fā)現(xiàn)血清IL-6、TNF-α水平升高與CSVD患者認(rèn)知功能障礙風(fēng)險(xiǎn)增加顯著相關(guān)。
APN是一種分子量為28~30kDa的單體糖蛋白,由244個(gè)氨基酸構(gòu)成,主要由脂肪細(xì)胞分泌,巨噬細(xì)胞、淋巴細(xì)胞、內(nèi)皮細(xì)胞和上皮細(xì)胞等也會(huì)產(chǎn)生APN。人體血漿中的APN濃度為5~30μg/ml,占血漿蛋白總量的0.01%~0.05%[13]。APN包含一個(gè)N端信號(hào)序列、一個(gè)非同源或高變區(qū)、一個(gè)包含22個(gè)膠原重復(fù)序列的膠原結(jié)構(gòu)域及一個(gè)C端c1q樣球形結(jié)構(gòu)域,其經(jīng)翻譯后修飾為低分子量三聚體、中分子量六聚體和高分子量多聚體等不同的多聚體[14]。研究表明,具有二硫鍵氧化還原酶活性的A-類蛋白的內(nèi)質(zhì)網(wǎng)定位功能是APN多聚化的關(guān)鍵[15]。APN主要存在于外周循環(huán)中,最初認(rèn)為其不能通過(guò)血–腦脊液屏障。但Gagliardi等[16]研究證實(shí),人腦脊液中存在APN,但濃度極低,約為血清濃度的1‰。Qi等[17]給予C57Bl/6J小鼠靜脈注射APN,發(fā)現(xiàn)在其腦脊液中存在APN,表明有極少量的APN通過(guò)循環(huán)系統(tǒng)穿過(guò)血–腦脊液屏障到達(dá)腦脊液,調(diào)節(jié)各種生理功能,其中以三聚體和六聚體較多。近年來(lái),研究發(fā)現(xiàn)APN受體在許多大腦區(qū)域高度表達(dá),尤其是在下丘腦中表達(dá)最高,大腦中的APN在飲食調(diào)節(jié)和能量平衡中起關(guān)鍵作用,但其在顱內(nèi)的確切作用機(jī)制尚不明確,推測(cè)可能具有保護(hù)血管和神經(jīng)、抗炎、調(diào)節(jié)脂質(zhì)、抗動(dòng)脈粥樣硬化及葡萄糖代謝等功能[18]。
人APN受體分為脂聯(lián)素受體(adiponectin receptor,AdipoR)1、AdipoR2和T-鈣黏蛋白受體。AdipoR1和AdipoR2在人的大腦、肝臟、肌肉和脂肪組織中表達(dá)較高,是介導(dǎo)球狀和全長(zhǎng)APN的主要受體[19];而T-鈣黏蛋白受體主要分布于心臟及血管平滑肌細(xì)胞上,目前相關(guān)研究較少。AdipoR1和AdipoR2屬于7次跨膜(7TM)受體家族,具有細(xì)胞外羧基末端和細(xì)胞內(nèi)氨基末端,且含有一個(gè)由3個(gè)組胺殘基配位的鋅結(jié)合催化位點(diǎn),位于質(zhì)膜內(nèi)表面附近[20]。APN與AdipoR1和AdipoR2結(jié)合后可引發(fā)一系列組織依賴性信號(hào)傳導(dǎo),從而調(diào)節(jié)機(jī)體代謝[21]。有研究者在循環(huán)APN水平中觀察到性二態(tài)現(xiàn)象,其中男性低于女性;但腦脊液中的APN與受體沒(méi)有性二態(tài)性,其在中樞神經(jīng)系統(tǒng)的能量調(diào)節(jié)中起關(guān)鍵作用[22]。
APN激活的信號(hào)分子主要包括AMP活化蛋白激酶(AMP-activated protein kinase,AMPK)、p38絲裂原激活的蛋白激酶(p38 mitogen-activated proteinkinase,p38 MAPK)、胞外信號(hào)調(diào)節(jié)激酶(extracellular signal-regulated kinase,ERK)1/2、蛋白激酶B(protein kinase B,PKB,又稱AKT)和過(guò)氧化物酶體增殖物激活受體α(peroxisome proliferator-activated receptor α,PPARa)等[23]。一種包含pleckstrin同源結(jié)構(gòu)域、磷酸酪氨酸結(jié)合結(jié)構(gòu)域和亮氨酸拉鏈基序的銜接蛋白APPL1是APN信號(hào)傳導(dǎo)的關(guān)鍵蛋白,其既能與APN受體結(jié)合,又能作為受體與其下游信號(hào)分子連接[24]。研究表明,APN受體的C端胞外結(jié)構(gòu)域與APN發(fā)生相互作用,N端胞質(zhì)結(jié)構(gòu)域與APPL1發(fā)生相互作用[25];APPL1是APN誘導(dǎo)AMPK、p38 MAPK及ERK1/2-MAPK信號(hào)通路之必需。在動(dòng)物模型中,AdipoR1通過(guò)AMPK信號(hào)通路發(fā)揮作用,而AdipoR2通過(guò)PPARa信號(hào)通路發(fā)揮作用,二者雖不同但也有密切關(guān)聯(lián)。AMPK、PKB等信號(hào)分子通過(guò)與AdipoR1和AdipoR2的鋅結(jié)合基序結(jié)合,在靶向組織中啟動(dòng)一系列下游信號(hào)傳導(dǎo),介導(dǎo)并增加AMPK和p38 MAPK的磷酸化,增加PPARa配體活性,調(diào)控脂肪酸氧化、能量消耗及代謝控制[19]。APN也能通過(guò)AMPK途徑激活一氧化氮的生成,通過(guò)環(huán)磷酸鳥(niǎo)苷依賴性途徑發(fā)揮作用。
APN對(duì)心血管系統(tǒng)具有保護(hù)作用。研究表明,與CSVD發(fā)生有關(guān)的APN相關(guān)途徑包括cAMP/cAMP依賴性蛋白激酶信號(hào)通路、cAMP反應(yīng)元件結(jié)合蛋白/腦源性神經(jīng)營(yíng)養(yǎng)因子信號(hào)通路[26]。Wang等[27]研究發(fā)現(xiàn),APN可通過(guò)Janus激酶、JAK-STAT信號(hào)通路減輕海馬HT22細(xì)胞中的氧和葡萄糖剝奪,保護(hù)其免受線粒體氧化應(yīng)激和凋亡,減輕腦部損害。APN作為一種具有抗糖尿病、抗動(dòng)脈粥樣硬化、抗炎和調(diào)脂等多種作用的血漿蛋白,可能與AdipoR1和AdipoR2降低細(xì)胞內(nèi)固有的神經(jīng)酰胺酶活性有關(guān)[28]。
低脂聯(lián)素血癥是腦血管疾病的獨(dú)立危險(xiǎn)因素。低脂聯(lián)素血癥患者在遭受缺血性損傷時(shí),其死亡風(fēng)險(xiǎn)增大。研究表明,晚期顱內(nèi)動(dòng)脈粥樣硬化患者在缺血6~12h時(shí)表現(xiàn)出較低的血漿APN水平[29]。Song等[30]研究證實(shí),在大鼠缺血-再灌注后,APN能夠提高1型糖尿病大鼠的神經(jīng)評(píng)分,并減少梗死面積,提示在缺血早期促進(jìn)AdipoR1表達(dá)及在晚期補(bǔ)充APN可減輕糖尿病患者的缺血性腦損傷。Zhang等[31]通過(guò)APN細(xì)胞治療分析基因修飾在大鼠神經(jīng)元中的作用,證實(shí)APN可改善微血管的行為功能和密度,減少梗死面積,降低腦細(xì)胞的凋亡率。研究發(fā)現(xiàn),APN基因敲除組大鼠在大腦缺血-再灌注后白細(xì)胞黏附明顯高于對(duì)照組,黏附于內(nèi)皮的活化白細(xì)胞釋放毒性介質(zhì),損害周圍血管或?qū)嵸|(zhì)細(xì)胞,或誘導(dǎo)血液流變學(xué)改變和加速血栓形成,導(dǎo)致血小板聚集[32]。此外,APN似乎可通過(guò)降低C反應(yīng)蛋白、IL-6、TNF-α等炎癥標(biāo)志物水平發(fā)揮保護(hù)神經(jīng)的作用。相反,高水平的炎癥級(jí)聯(lián)因子能抑制APN的產(chǎn)生,提示其具有雙向調(diào)節(jié)作用[33]。在腦缺血大鼠中,APN的保護(hù)作用與炎癥小體NLRP3水平降低有關(guān)。另有研究證實(shí),基因敲除小鼠表現(xiàn)出與β淀粉樣蛋白增加、Tau蛋白磷酸化、神經(jīng)炎癥和神經(jīng)變性相關(guān)的記憶衰退,有典型的癡呆癥改變,推測(cè)APN可能與認(rèn)知改變相關(guān)[34]。
近年來(lái),隨著人類壽命不斷提高,CSVD發(fā)病率也逐年升高,增加患癡呆、腦卒中及殘疾的風(fēng)險(xiǎn)。目前,人們對(duì)CSVD發(fā)病機(jī)制和危險(xiǎn)因素的認(rèn)識(shí)越來(lái)越多,但仍有諸多內(nèi)容尚未明確。APN是CSVD發(fā)病機(jī)制和危險(xiǎn)因素研究的熱點(diǎn)之一;但就目前而言,仍需更多的基礎(chǔ)及臨床研究證實(shí)大腦中的APN受體傳導(dǎo)及特異性受體在CSVD發(fā)病、治療中的作用,從而盡可能早發(fā)現(xiàn)、早治療CSVD,降低患者的致殘率,提高其生存率。
[1] MISHRA A, CHAUHAN G, VIOLLEAU M H, et al. Association of variants in HTRA1 and NOTCH3 with MRI-defined extremes of cerebral small vessel disease in older subjects[J]. Brain, 2019, 142(4): 1009–1023.
[2] PANTONI L. Cerebral small vessel disease: From pathogenesis and clinical characteristics to therapeutic challenges[J]. Lancet Neurol, 2010, 9(7): 689–701.
[3] CANNISTRARO R J, BADI M, EIDELMAN B H, et al. CNS small vessel disease: A clinical review[J]. Neurology, 2019, 92(24): 1146–1156.
[4] DEBETTE S, SCHILLING S, DUPERRON M G, et al. Clinical significance of magnetic resonance imaging markers of vascular brain injury: A systematic review and Meta-analysis[J]. JAMA Neurol, 2019, 76(1): 81–94.
[5] ROST N S, ETHERTON M. Cerebral small vessel disease[J]. Continuum (Minneap Minn), 2020, 26(2): 332–352.
[6] WARDLAW J M, SMITH C, DICHGANS M. Mechanisms of sporadic cerebral small vessel disease: Insights from neuroimaging[J]. Lancet Neurol, 2013, 12(5): 483–497.
[7] LI Q, YANG Y, REIS C, et al. Cerebral small vessel disease[J]. Cell Transplant, 2018, 27(12): 1711–1722.
[8] DI DONATO I, BIANCHI S, DE STEFANO N, et al. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) as a model of small vessel disease: Update on clinical, diagnostic, and management aspects[J]. BMC Med, 2017, 15(1): 41.
[9] WANG M M. Cadasil[J]. Handb Clin Neurol, 2018, 148: 733–743.
[10] 段雅鑫, 裴晗蕾, 趙巖, 等. 炎癥與腦小血管病相關(guān)性研究進(jìn)展[J]. 神經(jīng)損傷與功能重建, 2021, 16(12): 722–725.
[11] WALKER K A, WINDHAM B G, POWER M C, et al. The association of mid-to late-life systemic inflammation with white matter structure in older adults: The atherosclerosis risk in communities study[J]. Neurobiol Aging, 2018, 68: 26–33.
[12] MU L, JIANG L, CHEN J, et al. Serum inflammatory factors and oxidative stress factors are associated with increased risk of frailty and cognitive frailty in patients with cerebral small vessel disease[J]. Front Neurol, 2022, 12: 786277.
[13] FANG H, JUDD R L. Adiponectin regulation and function[J]. Compr Physiol, 2018, 8(3): 1031–1063.
[14] FIASCHI T. Mechanisms of adiponectin action[J]. Int J Mol Sci, 2019, 20(12): 2894.
[15] LIU M, CHEN H, WEI L, et al. Endoplasmic reticulum (ER) localization is critical for DsbA-L protein to suppress ER stress and adiponectin down-regulation in adipocytes[J]. J Biol Chem, 2015, 290(16): 10143–10148.
[16] GAGLIARDI D, MENERI M, SACCOMANNO D, et al. Diagnostic and prognostic role of blood and cerebrospinal fluid and blood neurofilaments in amyotrophic lateral sclerosis: A review of the literature[J]. Int J Mol Sci, 2019, 20(17): 4152.
[17] QI Y, TAKAHASHI N, HILEMAN S M, et al. Adiponectin acts in the brain to decrease body weight[J]. Nat Med, 2004, 10(5): 524–529.
[18] LI C, LI Q, LI J, et al. Expression and localization of adiponectin and its receptors (AdipoR1 and AdipoR2) in the hypothalamic-pituitary-ovarian axis of laying hens[J]. Theriogenology, 2021, 159: 35–44.
[19] YOU J, SUN L, WANG J, et al. Role of adiponectin- Notch pathway in cognitive dysfunction associated with depression and in the therapeutic effect of physical exercise[J]. Aging Cell, 2021, 20(6): e13387.
[20] STRAUB L G, SCHERER P E. Metabolic messengers: Adiponectin[J]. Nat Metab, 2019, 1(3): 334–339.
[21] JUNG D, BUCHER F, RYU S, et al. An adiponectin receptor agonist antibody stimulates glucose uptake and fatty-acid oxidation by activating AMP-activated protein kinase[J]. Cytokine, 2020, 126: 154863.
[22] SHKLYAEV S S, MELNICHENKO G A, VOLEVODZ N N, et al. Adiponectin: A pleiotropic hormone with multifaceted roles[J]. Probl Endokrinol (Mosk), 2022, 67(6): 98–112.
[23] 任超, 張勇, 梁家立, 等. 脂聯(lián)素發(fā)揮生物學(xué)效應(yīng)的信號(hào)傳導(dǎo)機(jī)制[J]. 河北醫(yī)學(xué), 2022, 28(1): 173–176.
[24] GASPAR R C, MU?OZ V R, KUGA G K, et al. Acute physical exercise increases APPL1/PI3K signaling in the hypothalamus of lean mice[J]. Eur J Neurosci, 2019, 50(7): 3181–3190.
[25] YAMAUCHI T, KADOWAKI T. Adiponectin receptor as a key player in healthy longevity and obesity-related diseases[J]. Cell Metab, 2013, 17(2): 185–196.
[26] BAI H, ZHAO L, LIU H, et al. Adiponectin confers neuroprotection against cerebral ischemia-reperfusion injury through activating the cAMP/PKA-CREB-BDNF signaling[J]. Brain Res Bull, 2018, 143: 145–154.
[27] WANG B, GUO H, LI X, et al. Adiponectin attenuates oxygen-glucose deprivation-induced mitochondrial oxidative injury and apoptosis in hippocampal HT22 cells via the JAK2/STAT3 pathway[J]. Cell Transplant, 2018, 27(12): 1731–1743.
[28] ALJAFARY M A, AL-SUHAIMI E A. Adiponectin system (rescue hormone): The missing link between metabolic and cardiovascular diseases[J]. Pharmaceutics, 2022, 14(7): 1430.
[29] JUNG Y S, HA S K, KIM S D, et al. The role of adiponectin in secondary inflammatory reaction in cerebral ischemia[J]. J Cerebrovasc Endovasc Neurosurg, 2013, 15(3):171–176.
[30] SONG W, GUO F, ZHONG H, et al. Therapeutic window of globular adiponectin against cerebral ischemia in diabetic mice: The role of dynamic alteration of adiponectin/adiponectin receptor expression[J]. Sci Rep, 2015, 5: 17310.
[31] ZHANG R, XIE X, YU Q, et al. Constitutive expression of adiponectin in endothelial progenitor cells protects a rat model of cerebral ischemia[J]. Neural Plast, 2017, 2017:6809745.
[32] LI X, GUO H, ZHAO L, et al. Adiponectin attenuates NADPH oxidase-mediated oxidative stress and neuronal damage induced by cerebral ischemia-reperfusion injury[J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(12): 3265–3276.
[33] RIZZO M R, FASANO R, PAOLISSO G. Adiponectin and cognitive decline[J]. Int J Mol Sci, 2020, 21(6): 2010.
[34] NG R C, CHENG O Y, JIAN M, et al. Chronic adiponectin deficiency leads to Alzheimer’s disease-like cognitive impairments and pathologies through AMPK inactivation and cerebral insulin resistance in aged mice[J]. Mol Neurodegener, 2016, 11(1): 71.
(2022–11–07)
(2023–07–19)
R743
A
10.3969/j.issn.1673-9701.2023.22.029
山東省濟(jì)寧市重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022YXNS051)
李紅芳,電子信箱:malin-lhf@163.com