張曦寧,董振華,趙震宇,彭娜姿,胡志希,李琳
〔摘要〕 目的 檢測(cè)真武湯對(duì)慢性心力衰竭大鼠腸道菌群的影響,探討真武湯治療慢性心力衰竭的作用機(jī)制。方法 24只大鼠分為空白組、模型組、真武湯組、美托洛爾組,每組6只,模型組、真武湯組及美托洛爾組采用腹腔注射阿霉素(3 mg/kg,每周1次,連續(xù)7周)的方法制備心力衰竭模型,造模成功后,真武湯組進(jìn)行真武湯18 g/(kg·d)灌胃治療,美托洛爾組用美托洛爾溶液10 mg/(kg·d)灌胃治療,空白組和模型組進(jìn)行蒸餾水10 mL/(kg·d)灌胃,每天1次,連續(xù)21 d。干預(yù)結(jié)束后采集黏膜刮片,進(jìn)行Miseq高通量測(cè)序。結(jié)果 治療后,模型組左室射血分?jǐn)?shù)(left ventricular ejection fraction, LVEF)和左心室短軸縮短率(left ventricular ejection fractional shortening, LVFS)均明顯低于空白組(P<0.01),真武湯組LVEF、LVFS均明顯高于模型組(P<0.01)。與空白組相比,模型組大鼠腸道菌群Chao、Shannon、ACE指數(shù)顯著升高(P<0.05,P<0.01),Simpson指數(shù)顯著下降(P<0.05);與模型組相比,真武湯組各項(xiàng)指標(biāo)出現(xiàn)回調(diào)。與空白組相比,模型組變形菌顯著減少(P<0.01),脫硫桿菌顯著增加(P<0.01),擬桿菌門、疣微菌門、酸桿菌門、螺旋菌門增加(P<0.05);與模型組相比,真武湯組變形菌、脫硫桿菌、疣微菌、酸桿菌及蛭弧菌門出現(xiàn)回調(diào)(P<0.05)。與空白組比較,模型組大腸志賀菌屬、瘤胃球菌科顯著下降(P<0.05,P<0.01),未分類的絨毛桿菌屬、羅姆布茨菌屬、杜氏桿菌、狹義梭菌屬、顫螺旋菌科、雙歧桿菌屬、普雷沃菌屬顯著增加(P<0.05,P<0.01);與模型組比較,真武湯組大腸志賀菌屬、乳酸桿菌屬、杜氏桿菌呈顯著回調(diào)趨勢(shì)(P<0.05,P<0.01)。結(jié)論 真武湯可有效改善慢性心力衰竭大鼠腸道菌群多樣性及豐富度,調(diào)節(jié)腸黏膜細(xì)菌組成與結(jié)構(gòu),這或?yàn)檎嫖錅委熉孕牧λソ叩臐撛谧饔脵C(jī)制。
〔關(guān)鍵詞〕 心力衰竭;真武湯;腸黏膜細(xì)菌;中醫(yī)藥;16S rRNA;高通量測(cè)序;生物信息學(xué)
〔中圖分類號(hào)〕R285.5? ? ? ? 〔文獻(xiàn)標(biāo)志碼〕A? ? ? ? ?〔文章編號(hào)〕doi:10.3969/j.issn.1674-070X.2023.08.005
Effects of Zhenwu Decoction on bacterial diversity of intestinal mucosa in rats with doxorubicin-induced chronic heart failure
ZHANG Xining1, DONG Zhenhua1, ZHAO Zhenyu1, PENG Nazi1, HU Zhixi1,2*, LI Lin1,2*
1. Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; 2. Institute of TCM Diagnostics,
Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
〔Abstract〕 Objective To investigate the effects of Zhenwu Decoction on the intestinal flora of rats with chronic heart failure (HF), and to explore the mechanism of action of Zhenwu Decoction in treating this disease. Methods Twenty-four rats were divided into blank group, model group, Zhenwu Decoction group, and metoprolol group, with six rats in each group, and HF models in model group, Zhenwu Decoction group, and metoprolol group were established by intraperitoneal injection of doxorubicin (3 mg/kg, once a week, for 7 consecutive weeks). After successful modeling, Zhenwu Decoction group was given Zhenwu Decoction 18 g/(kg·d) by gavage, metoprolol group metoprolol solution 10 mg/(kg·d), and blank group and model group distilled water 10 mL/(kg·d), once a day, for 21 consecutive days. After the intervention, the intestinal mucosal scrapings of the rats were collected for high-throughput sequencing of Miseq. Results After treatment, the left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) of rats in model group were significantly lower than those in blank group (P<0.01); compared with model group, LVEF and LVFS of rats in Zhenwu Decoction group were significantly higher (P<0.01). Compared with blank group, the Chao, Shannon and ACE indexes of rat intestinal flora in model group were significantly higher (P<0.05, P<0.01), while Simpson index was significantly lower (P<0.05); compared with model group, those indexes in Zhenwu Decoction group showed a callback. Compared with blank group, the intestinal flora of rats in model group showed a significant decrease in the abundance of Proteobacteria (P<0.01), a significant increase in the abundance of Desulfobacterota (P<0.01), and an increase in the abundance of Bacteroidetes, Verrucomicr?鄄obia, Acidobacteria, and Spirochaetes (P<0.05); compared with model group, the abundance of Proteobacteria, Desulfobacterota, Verrucomicrobia, Acidobacteria, and Bdellovibrionota in Zhenwu Decoction group showed a callback (P<0.05). Compared with blank group, the intestinal flora of rats in model group showed a significant decrease in the abundance of Escherichia-Shigella and norank_f__Ruminococcaceae (P<0.05, P<0.01), and a significant increase in the abundance of norank_f__Muribaculaceae, Romboutsia, Dubosiella, Clostridium_sensu_stricto_1, norank_f__Oscillospiraceae, Bifidobacterium, and Prevotella (P<0.05, P<0.01); compared with model group, the abundance of Escherichia-Shigella, Lactobacillus, and Dubosiella showed a significant callback in Zhenwu Decoction group (P<0.05, P<0.01). Conclusion Zhenwu Decoction can effectively improve the diversity and abundance of intestinal flora in rats with chronic HF, and regulate the composition and structure of intestinal mucosal bacteria, which may be the potential mechanism of Zhenwu Decoction in treating chronic HF.
〔Keywords〕 heart failure; Zhenwu Decoction; intestinal mucosal bacteria; Chinese medicine; 16S rRNA; high-throughput sequencing; bioinformatics
心力衰竭(heart failure, HF)是一種復(fù)雜的臨床綜合征,常繼發(fā)于心臟結(jié)構(gòu)或功能異常,其特征主要為心室功能受損和外周血供不足[1-2],臨床主要表現(xiàn)為呼吸困難、液體潴留等,嚴(yán)重威脅患者生命安全[3]。目前,HF患者的治療用藥多低于有效劑量,并且大部分患者未接受可改善HF預(yù)后的藥物治療,這或許是出于對(duì)不良反應(yīng)的擔(dān)憂[4],HF的臨床治療仍具有局限性。中國(guó)傳統(tǒng)醫(yī)藥運(yùn)用天然藥物治療疾病,其多種成分對(duì)多靶點(diǎn)發(fā)揮同時(shí)和/或協(xié)同治療作用,具有廣泛的有益作用及毒副作用小等特點(diǎn)[5]。有研究表明,中醫(yī)藥可以在HF患者中發(fā)揮對(duì)血管的保護(hù)作用及血管生成作用[6]。真武湯作為中醫(yī)藥經(jīng)方之一,被證實(shí)可通過(guò)激活Nrf2信號(hào)減輕心臟內(nèi)皮損傷[7],通過(guò)AGE-RAGE信號(hào)通路影響HF的進(jìn)展[8]。
近年來(lái),腸黏膜細(xì)菌及其代謝產(chǎn)物被證實(shí)在心血管疾病中起到重要作用[9]。同時(shí),中醫(yī)藥通過(guò)胃腸達(dá)到對(duì)腸黏膜細(xì)菌的作用被發(fā)現(xiàn)[10],中藥復(fù)方對(duì)腸道菌群具有調(diào)節(jié)作用,改善人體疾病狀態(tài)。利用細(xì)菌基因測(cè)序、生物信息學(xué)分析等方法,研究疾病與治療中腸黏膜細(xì)菌變化,中醫(yī)藥對(duì)疾病治療作用將更加清楚地觀測(cè)。因此,本實(shí)驗(yàn)基于16S rRNA高通量測(cè)序的方法,探討阿霉素誘導(dǎo)HF大鼠腸黏膜細(xì)菌變化及真武湯治療HF的作用機(jī)制。
1 實(shí)驗(yàn)材料
1.1? 實(shí)驗(yàn)動(dòng)物
SPF級(jí)SD雄性大鼠24只,體質(zhì)量(200±20) g,購(gòu)自湖南斯萊克景達(dá)實(shí)驗(yàn)動(dòng)物有限公司(動(dòng)物合格證號(hào):ZS-202101160013)。本實(shí)驗(yàn)經(jīng)湖南中醫(yī)藥大學(xué)動(dòng)物實(shí)驗(yàn)中心動(dòng)物實(shí)驗(yàn)倫理委員會(huì)審批(審批號(hào):LLBH-201912160001),并按照實(shí)驗(yàn)動(dòng)物倫理學(xué)標(biāo)準(zhǔn)執(zhí)行。
1.2? 實(shí)驗(yàn)材料
真武湯遵循原方由茯苓、白芍、生姜、白術(shù)、附子組成,比例為3∶3∶3∶2∶1。茯苓(批號(hào):CX20091402)、白芍(批號(hào):TH20080602)、白術(shù)(批號(hào):NG20090401)均購(gòu)自湖南中醫(yī)藥大學(xué)第一附屬醫(yī)院;附子(批號(hào):DX200201)購(gòu)自安徽亳藥千草中藥飲片有限公司。將藥材用紗布袋包好置于不銹鋼桶中,注水至淹沒藥材2~3 cm,大火燒開,小火慢煮,煎煮2次,合并藥液繼續(xù)煎煮至生藥含量1 g/mL。注射用鹽酸阿霉素(APExBIO公司,批號(hào):A39662337769),以0.9%氯化鈉溶液配制為2 mg/mL濃度備用。美托洛爾(AstraZeneca公司,批號(hào):0902066),以0.9%氯化鈉溶液配制為2 mg/mL濃度備用。戊巴比妥鈉(美國(guó)SIGMA公司,批號(hào):P3761);4%多聚甲醛(長(zhǎng)沙威舍生物科技有限公司,批號(hào):WB03004A)。SonoScape-S2N超聲系統(tǒng)(深圳市開立科技有限公司);PCR儀(美國(guó)ABI公司,型號(hào):ABI GeneAmp■ 9700 型);電泳儀(北京六一儀器廠,型號(hào):DYY-6C)。
2 實(shí)驗(yàn)方法
2.1? 動(dòng)物分組及模型制備
24只大鼠分為8籠,每籠3只,飼養(yǎng)于湖南中醫(yī)藥大學(xué)動(dòng)物實(shí)驗(yàn)中心,室溫23~25 ℃,相對(duì)濕度40%~70%,適量給食,自由飲水。適應(yīng)性培養(yǎng)1周,隨機(jī)分為空白組(6只)、造模組(18只)。根據(jù)前期研究復(fù)制慢性HF大鼠模型[11],進(jìn)行腹腔注射阿霉素(2 mg/L,1.5 mL/kg),每周1次,連續(xù)7周。將造模成功后的大鼠隨機(jī)分為美托洛爾組、真武湯組、模型組,每組6只。
2.2? 給藥方法
模型制備后次日,給與實(shí)驗(yàn)組藥物治療。真武湯組進(jìn)行真武湯18 g/(kg·d)治療[12],美托洛爾組進(jìn)行美托洛爾10 mg/(kg·d)治療,模型組和空白組均給予同體積蒸餾水10 mg/(kg·d),灌胃操作每天1次,連續(xù)3周。
2.3? 超聲心動(dòng)圖檢測(cè)
使用戊巴比妥鈉致大鼠完全麻醉,并將其仰臥位置固定于鼠板上,予以胸部脫毛處理并均勻涂抹超聲耦合劑,使用SonoScape-S2N超聲系統(tǒng)進(jìn)行超聲心動(dòng)圖檢查,得到各組大鼠左室射血分?jǐn)?shù)(left ventricular ejection fraction, LVEF)及左心室短軸縮短率(left ventricular ejection fractional shortening, LVFS)。
2.4? 樣本收集
各組大鼠禁食12 h,使用戊巴比妥鈉致大鼠完全麻醉后,用手術(shù)鑷剝離部分回腸部黏膜,放至凍存管,于-80 ℃冰箱中低溫保存?zhèn)溆谩H〔糠中募〗M織,于4%多聚甲醛溶液中固定保存,經(jīng)乙醇脫水、二甲苯透明后,將其浸蠟、包埋、切片、烘干、染色,并置于光鏡下觀察心肌病理學(xué)改變。
2.5? PCR擴(kuò)增和16s rRNA測(cè)序
擴(kuò)增程序:(1)預(yù)變性95 ℃ 3 min;(2)27個(gè)循環(huán)(95 ℃變性 30 s,55 ℃退火 30 s,72 ℃延伸30 s);(3)穩(wěn)定延伸72 ℃ 10 min;(4)在4 ℃進(jìn)行保存。PCR產(chǎn)物經(jīng)2%瓊脂糖凝膠電泳檢測(cè),純化后的產(chǎn)品利用上海美吉生物醫(yī)藥科技有限公司Miseq PE300/NovaSeq PE250平臺(tái)進(jìn)行測(cè)序。
2.6? 數(shù)據(jù)處理
使用fastp[13]軟件對(duì)原始測(cè)序序列進(jìn)行質(zhì)控,使用FLASH[14]軟件進(jìn)行操作,過(guò)程包括過(guò)濾、拼接、拼接篩選、修正、分析。
2.7? 統(tǒng)計(jì)學(xué)分析
實(shí)驗(yàn)數(shù)據(jù)均采用SPSS 25.0統(tǒng)計(jì)軟件進(jìn)行處理,采用“x±s”表示:若數(shù)據(jù)滿足正態(tài)性和方差齊性,則兩組間比較采用t檢驗(yàn),多組間比較采用單因素方差分析;若不滿足,則采用秩和檢驗(yàn)。均以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
3 結(jié)果
3.1? 真武湯對(duì)慢性HF大鼠心功能影響
治療后,與空白組相比,模型組大鼠LVEF、LVFS值下降,差異有統(tǒng)計(jì)學(xué)意義(P<0.05),提示HF造模成功;與模型組比較,真武湯組、美托洛爾組大鼠LVEF、LVFS值均上升(P<0.05)。詳見表1、圖1。
空白組大鼠心肌纖維排列整齊,結(jié)構(gòu)完整,橫紋清晰,細(xì)胞形態(tài)大小正常,細(xì)胞質(zhì)染色均勻清晰;模型組大鼠心肌纖維排列紊亂,橫紋不清晰,出現(xiàn)溶解、斷裂,心肌細(xì)胞形態(tài)不規(guī)整,走形紊亂,出現(xiàn)水腫、肥大,細(xì)胞質(zhì)染色不均勻,炎性細(xì)胞浸潤(rùn)明顯;與模型組大鼠相比,經(jīng)過(guò)真武湯和美托洛爾治療后的大鼠心肌纖維排列、心肌細(xì)胞形態(tài)及炎性浸潤(rùn)均出現(xiàn)改善。詳見圖2。
3.2? 真武湯對(duì)慢性HF大鼠腸道菌群多樣性的影響
每組選擇6只小鼠,共24個(gè)大鼠腸黏膜樣本,通過(guò)16S rRNA高通量測(cè)序分析,共獲得1 108 375條有效檢測(cè)序列。稀釋曲線可用來(lái)說(shuō)明樣本的測(cè)序數(shù)據(jù)量是否合理,圖3曲線趨向平坦,說(shuō)明測(cè)序數(shù)據(jù)量合理。
Alpha多樣性反映不同樣本中物種的豐富度和均勻度。與空白組相比,模型組Chao、Shannon指數(shù)升高(P<0.05),ACE指數(shù)顯著升高(P<0.01),Simpson指數(shù)下降(P<0.05);與模型組相比,美托洛爾組及真武湯組各值雖有改變,但變化差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。與美托洛爾組相比,真武湯組各數(shù)值呈回調(diào)趨勢(shì),與空白組水平接近。詳見表2。
3.3? 真武湯對(duì)慢性HF大鼠腸道菌群結(jié)構(gòu)的影響
主坐標(biāo)分析(principal co-ordinates analysis, PCoA)可用來(lái)研究樣本的相似性或差異性,樣品的群落組成越相似,在圖中距離越接近?;赽ray_curtis距離算法,ANOSIM組間差異檢驗(yàn)繪制圖4。橫坐標(biāo)PC1對(duì)總體菌群代表性為24.11%,縱坐標(biāo)PC2為10.81%。基于PC1軸可見,模型組與空白組點(diǎn)位差距較大。與模型組相比,美托洛爾組點(diǎn)位與模型組相近,而真武湯組點(diǎn)位與空白組相近,說(shuō)明真武湯組與空白組大鼠腸道菌群結(jié)構(gòu)更為相近,這提示HF可一定程度上影響大鼠腸道菌群結(jié)構(gòu),而真武湯可調(diào)整其結(jié)構(gòu)接近正常。
3.4? 真武湯對(duì)慢性HF大鼠腸道菌群組成的影響
4組大鼠腸道微生物群落構(gòu)成及其相對(duì)豐度的門水平分析中,所有樣本均包含10種菌門:厚壁菌門(Firmicutes)、變形菌門(Proteobacteria)、unclassified_k_norank_d_Bacteria、擬桿菌門(Bacteroidetes)、放線菌門(Actinobacteria)、脫硫桿菌門(Desulfob?鄄acterota)、疣微菌門(Verrucomicrobia)、彎曲桿菌門(Campilobacterota)、酸桿菌門(Acidobacteria)和其他。4組中占比最高的為厚壁菌門,與空白組相比,模型組中厚壁菌占比升高;與模型組相比,美托洛爾組厚壁菌占比進(jìn)一步升高,而經(jīng)真武湯治療后其占比下降。詳見圖5。
與模型組相比,厚壁菌/擬桿菌比值在經(jīng)真武湯治療后出現(xiàn)回調(diào)(P<0.05),且回調(diào)趨勢(shì)較美托洛爾組更為顯著。詳見圖6。
與空白組比較,模型組變形菌顯著減少(P<0.01),脫硫桿菌顯著增加(P<0.01),擬桿菌門、疣微菌門、酸桿菌門、螺旋菌門(Spirochaetes)增加(P<0.05);與模型組比較,真武湯組大鼠腸道中變形菌、脫硫桿菌、疣微菌、酸桿菌及蛭弧菌門(Bdellovibrionota)數(shù)量出現(xiàn)回調(diào)(P<0.05);而美托洛爾治療后,未出現(xiàn)各菌群回調(diào)。詳見圖7—8。
屬水平上,空白組優(yōu)勢(shì)菌群為大腸志賀菌屬(Escherichia-Shigella)40.27%、未分類的瘤胃球菌(norank_f__Ruminococcaceae)29.02%、羅爾斯通菌屬(Ralstonia)6.28%;模型組的優(yōu)勢(shì)菌群為unclassified_
k__norank_d__Bacteria 21.77%、乳酸桿菌屬(Lacto?鄄bacillus)11.24%、未分類的絨毛桿菌屬(norank_f__
Muribaculaceae)6.66%;真武湯組優(yōu)勢(shì)菌群為大腸志賀菌屬(Escherichia-Shigella)12.81%、嗜冷桿菌屬(Psychrobacter)8.04%、葡萄球菌屬(Staphylococcus)8.24%;美托洛爾組優(yōu)勢(shì)菌群為乳酸桿菌屬(Lactobacillus)26.03%、未分類的絨毛桿菌屬(norank_f__
Muribaculaceae)7.55%、urkholderia-Caballeronia-Para?鄄
burkholderia 4.89%。與空白組比較,模型組大腸志賀氏桿菌屬(Escherichia-Shigella)、未分類的瘤胃球菌(norank_f__Ruminococcaceae)含量明顯降低(P<0.01,P<0.05),norank_f__Muribaculaceae、羅姆布茨菌屬(Romboutsia)、杜氏桿菌(Dubosiella)、狹義梭菌屬(Clostridium_sensu_stricto_1)、未分類的顫螺旋菌科(norank_f__Oscillospiraceae)、雙歧桿菌屬(Bifidobacterium)、普雷沃菌屬(Prevotella)含量增加顯著(P<0.01,P<0.05),同時(shí)乳酸桿菌屬(Lactobacillus)也出現(xiàn)了增長(zhǎng)。與模型組比較,真武湯組大腸志賀菌屬(Escherichia-Shigella)、乳酸桿菌屬(Lactobacillus)、杜氏桿菌(Dubosiella)呈顯著回調(diào)趨勢(shì)(P<0.01,P<0.05),提示真武湯可調(diào)節(jié)HF大鼠腸道菌群趨近正常大鼠。詳見圖9—11。
選定LDA>4為標(biāo)準(zhǔn),進(jìn)行線性判別分析(linear discriminant analysis effect size, LefSe),檢驗(yàn)各組菌群屬水平豐富度,可見各組顯著差異菌群??瞻捉M以γ-變形菌(Gammaproteobacteria)、腸桿菌(Enterobacterales)、大腸志賀菌屬(Escherichia-Shigella)、變形菌(Proteobacteria)等為主;模型組以芽孢菌(Blastocatellaceae)、Peptostreptococcales-Tissierellales、普雷沃菌(Prevotellaceae)等有害菌或條件致病菌為主;真武湯組以莫拉氏菌(Moraxellaceae)、葡萄球菌、羅姆布茨菌(Romboutsia)、Blautia、UCG-005等為主;美托洛爾組以Bacilli、乳酸桿菌等為主。詳見圖12—13。
4 討論
胃腸黏膜負(fù)責(zé)營(yíng)養(yǎng)吸收與廢物分泌[15],其作用是由定植在黏膜上的大量微生物實(shí)現(xiàn)的,這些微生物群被稱為腸道微生物群(gut microbiota, GM),具有消化食物、合成必需維生素、調(diào)節(jié)免疫系統(tǒng)、支持腸道功能等功能,在維持宿主代謝穩(wěn)態(tài)和健康方面有著重要作用[16-17]。其中,腸道細(xì)菌被稱為腸道菌群,大部分被歸類為厚壁菌門和擬桿菌門。研究認(rèn)為,腸道菌群與HF有密切的關(guān)系。HF患者因靜脈充血會(huì)出現(xiàn)腸壁水腫,導(dǎo)致腸道內(nèi)細(xì)菌的過(guò)度生長(zhǎng)[18]。
超聲心動(dòng)圖結(jié)果表示,與空白組相比,模型組大鼠的LVEF、LVFS顯著下降(P<0.01);通過(guò)心肌組織HE染色可見,與空白組大鼠心肌組織相比,模型組大鼠心肌組織發(fā)生病理學(xué)異常改變,提示模型組大鼠心功能可能出現(xiàn)了損傷。經(jīng)真武湯、美托洛爾治療后,大鼠LVEF、LVFS值均顯著升高(P<0.01),心肌組織心肌細(xì)胞形態(tài)及炎性浸潤(rùn)均改善,提示真武湯、美托洛爾可恢復(fù)大鼠心肌組織及心臟功能,從而改善HF。本實(shí)驗(yàn)采用16S rRNA高通量測(cè)序技術(shù)探究真武湯對(duì)慢性HF大鼠腸黏膜細(xì)菌多樣性的影響。Alpha多樣性中,Chao、ACE指數(shù)代表豐富度,其值越高代表豐富度越高;Shannon、Simpson指數(shù)代表多樣性,Shannon值越高、Simpson值越低代表多樣性越低。與空白組相比,模型組的大鼠Chao、Shannon值升高(P<0.05),ACE值顯著升高(P<0.01),Simpson值下降(P<0.05),提示與空白組相比較,模型組大鼠腸道菌群豐富度與多樣性升高。有害菌的過(guò)度生長(zhǎng)也可以引起多樣性的升高,這與前人研究一致[19]。經(jīng)真武湯治療后,Chao、Shannon、ACE值下降,Simpson值升高,盡管其變化差異無(wú)統(tǒng)計(jì)學(xué)意義,但結(jié)合β多樣性PCoA圖可見,與模型組相比,真武湯組點(diǎn)位更接近于空白組,而美托洛爾組更接近于模型組,說(shuō)明經(jīng)治療后的大鼠腸黏膜細(xì)菌豐富度及多樣性出現(xiàn)回調(diào),相較于美托洛爾組,真武湯引起的回調(diào)更接近于空白組。
進(jìn)一步研究發(fā)現(xiàn),各組HF大鼠腸黏膜細(xì)菌組成發(fā)生變化。在門水平上,厚壁菌門、擬桿菌門占比最大[20],其余優(yōu)勢(shì)菌門為變形菌門、放線菌門、梭桿菌門和疣狀桿菌門。本研究結(jié)果顯示,模型組大鼠腸黏膜細(xì)菌中出現(xiàn)了厚壁菌和擬桿菌數(shù)量的增加,但厚壁菌/擬桿菌比例出現(xiàn)了下降。厚壁菌/擬桿菌相對(duì)豐度的比例變化,成為決定健康與疾病的生物標(biāo)記物[21]。其比例的下降可導(dǎo)致短鏈脂肪酸(short-chain fatty acid, SCFA)的減少,促進(jìn)炎癥發(fā)展[22]。SCFA是代謝產(chǎn)物之一,在免疫與體循環(huán)方面有積極作用,被應(yīng)用于壓力過(guò)載引起的心臟損傷,而HF患者中生產(chǎn)其能力降低[23-24]。厚壁菌的增加可見于酒精性脂肪肝大鼠體內(nèi)[25],同時(shí),擬桿菌中許多物種被認(rèn)為是腸道外條件致病菌,其可激活激肽釋放酶-激肽系統(tǒng),增加緩激肽的生成,從而導(dǎo)致血管滲漏[26]。除此以外,模型組大鼠腸黏膜中出現(xiàn)脫硫菌、放線菌的增加,脫硫弧菌被證實(shí)可以促進(jìn)腸道炎癥[27],放線菌的增加可見于強(qiáng)直性脊柱炎,可能與體內(nèi)炎癥狀態(tài)有關(guān)[28]。在屬水平上,各組大鼠腸黏膜菌群比例發(fā)生變化。與空白組相比,模型組中大腸志賀菌、瘤胃球菌減少,Muribaculaceae、羅姆布茨菌、杜氏桿菌、普雷沃菌及雙歧桿菌增加。大腸志賀菌屬豐度與血脂水平呈正相關(guān)[29],管腔內(nèi)的長(zhǎng)鏈脂肪酸(long-chain fatty acid, LCFA)或許與其有關(guān)。LCFA包括飽和脂肪酸與不飽和脂肪酸,其豐度與宿主飲食、微生物代謝、膽汁酸分泌等有關(guān),其氧化過(guò)程是大多數(shù)心臟的能量來(lái)源[24, 30]。同時(shí),瘤胃球菌是SCFA產(chǎn)生菌,在模型組大鼠中減少,這與前人研究結(jié)果相同[31],這種現(xiàn)象也與腸易激綜合征的發(fā)生發(fā)展相關(guān)聯(lián)[32]。雙歧桿菌可以抑制脂多糖(lipopolysaccharides, LPS)[33],LPS可以通過(guò)上調(diào)IL-1α、HIF-α等炎癥因子誘導(dǎo)炎癥發(fā)生[34]。乳酸桿菌可以產(chǎn)生乳酸改善腸道環(huán)境,阻止有害細(xì)菌的黏附[35],羅姆布茨菌可能通過(guò)調(diào)節(jié)脂肪酸合成、糾正脂質(zhì)代謝紊亂和減少炎癥發(fā)生來(lái)發(fā)揮作用[36]。這些益生菌的升高或許是機(jī)體對(duì)炎癥反應(yīng)的代償性反應(yīng),尤其是雙歧桿菌,其升高被認(rèn)為與抗吲哚酚酸鹽相關(guān)[37]。Muribaculaceae的豐度與炎癥細(xì)胞因子水平呈負(fù)相關(guān)[38];杜氏桿菌被認(rèn)為與飲食中高糖基化終產(chǎn)物有關(guān),并最終導(dǎo)致炎癥[39];普雷沃菌被發(fā)現(xiàn)在黏膜部位的增加與疾病之間存在相關(guān)性,如代謝紊亂及全身低度炎癥等[40]。由LDA判別表可見,與空白組相比,模型組大鼠腸黏膜細(xì)菌仍主要以有害菌或條件致病菌為主,除普雷沃菌外,Peptostreptococcales-Tissierellales在牙周炎患者中數(shù)量增加[41]。經(jīng)過(guò)真武湯治療后,HF大鼠腸黏膜優(yōu)勢(shì)菌群發(fā)生顯著改變。有研究表明,莫拉氏菌在川崎病患者體內(nèi)減少[42]。Blautia與體內(nèi)IL-10水平呈正相關(guān)[43],而IL-10是公認(rèn)的炎癥抑制因子。UCG-005是屬于瘤胃球菌的有益菌,是預(yù)防糖尿病的關(guān)鍵細(xì)菌[44]。由此推測(cè),差異菌群可以通過(guò)誘導(dǎo)炎癥發(fā)生、促進(jìn)氧化損傷、降低脂質(zhì)代謝等促進(jìn)HF的發(fā)生發(fā)展,而這些過(guò)程或許與腸道菌群對(duì)免疫細(xì)胞組成、遷移和功能的調(diào)控作用及腸道菌群的易位有關(guān)[45];在HF發(fā)生發(fā)展過(guò)程中,TNF-α、IL-6、血管緊張素Ⅱ等炎癥因子及TLR4/NF-κB等信號(hào)通路起到了重要作用[46],真武湯能夠恢復(fù)腸道菌群,被恢復(fù)的腸道菌群或許對(duì)以上炎癥因子及信號(hào)通路具有正向調(diào)節(jié)作用,從而實(shí)現(xiàn)真武湯對(duì)HF的治療作用。
綜上所述,真武湯對(duì)阿霉素誘導(dǎo)的HF大鼠腸黏膜細(xì)菌具有調(diào)節(jié)作用,使其組成與結(jié)構(gòu)更接近于正常大鼠。同時(shí),真武湯可以促使HF大鼠腸黏膜優(yōu)勢(shì)菌發(fā)生改變,促進(jìn)有益菌增長(zhǎng),使菌群重新恢復(fù)穩(wěn)定,從而達(dá)到治療作用。通過(guò)16S rRNA測(cè)序技術(shù),腸黏膜細(xì)菌與HF之間的相互作用被認(rèn)識(shí),同時(shí)也逐漸了解中醫(yī)藥對(duì)調(diào)節(jié)腸黏膜細(xì)菌、治療HF的作用原理,這對(duì)疾病的預(yù)防、診斷與治療以及中醫(yī)的進(jìn)步發(fā)展都有著深遠(yuǎn)的意義。隨著基因測(cè)序技術(shù)的完善與發(fā)展,越來(lái)越多的腸道微生物被發(fā)現(xiàn)與分類,但它們的作用尚待討論。同時(shí),中醫(yī)藥對(duì)獨(dú)立菌群的影響被不斷證實(shí),但仍然缺乏對(duì)腸黏膜整體作用的闡述。在未來(lái),應(yīng)進(jìn)行更多驗(yàn)證性實(shí)驗(yàn),以確定真武湯通過(guò)恢復(fù)腸黏膜菌群治療HF的具體作用機(jī)制。
參考文獻(xiàn)
[1] NHFA CSANZ HEART FAILURE GUIDELINES WORKING GROUP, ATHERTON J J, SINDONE A, et al. National heart foundation of Australia and cardiac society of Australia and New Zealand: Guidelines for the prevention, detection, and management of heart failure in Australia 2018[J]. Heart, Lung & Circulation, 2018, 27(10): 1123-1208.
[2] ABASSI Z, KHOURY E E, KARRAM T, et al. Edema formation in congestive heart failure and the underlying mechanisms[J]. Frontiers in Cardiovascular Medicine, 2022, 9: 933215.
[3] GEDELA M, KHAN M, JONSSON O. Heart failure[J]. South Dakota Medicine, 2015, 68(9): 403-405, 407-409.
[4] ABDIN A, BAUERSACHS J, SOLTANI S, et al. A practical approach to the guideline-directed pharmacological treatment of heart failure with reduced ejection fraction[J]. ESC Heart Failure, 2023, 10(1): 24-31.
[5] MENG T W, LI X H, LI C J, et al. Natural products of traditional Chinese medicine treat atherosclerosis by regulating inflammatory and oxidative stress pathways[J]. Frontiers in Pharmacology, 2022, 13: 997598.
[6] WU C N, CHEN F, HUANG S, et al. Progress on the role of traditional Chinese medicine in therapeutic angiogenesis of heart failure[J]. Journal of Ethnopharmacology, 2023, 301: 115770.
[7] LIU X, LI Y, NI S H, et al. Zhen-Wu Decoction and lactiflorin, an ingredient predicted by in silico modelling, alleviate uremia induced cardiac endothelial injury via Nrf2 activation[J]. Journal of Ethnopharmacology, 2022, 298: 115579.
[8] MA C Y, MA Y Q, DENG M. Mechanism of Zhen Wu decoction in the treatment of heart failure based on network pharmacology and molecular docking[J]. Evidence-Based Complementary and Alternative Medicine, 2022, 2022: 4877920.
[9] HUANG Y, ZHANG H, FAN X, et al. The role of gut microbiota and trimethylamine N-oxide in cardiovascular diseases[J]. Journal of Cardiovascular Translational Research, 2023, 16(3): 581-589.
[10] LIN T L, LU C C, LAI W F, et al. Role of gut microbiota in identification of novel TCM-derived active metabolites[J]. Protein & Cell, 2021, 12(5): 394-410.
[11] 趙震宇, 胡炎芝, 董振華, 等. 參附注射液對(duì)阿霉素誘導(dǎo)的心力衰竭大鼠腸道細(xì)菌多樣性的影響[J]. 中成藥, 2022, 44(7): 2334-2340.
[12] 劉中勇, 李? 林, 方? 家. 真武湯對(duì)心力衰竭模型大鼠心室重構(gòu)及心肌細(xì)胞凋亡、纖維化的影響[J]. 中醫(yī)雜志, 2017, 58(14): 1218-1223.
[13] CHEN S F, ZHOU Y Q, CHEN Y R, et al. Fastp: An ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): i884-i890.
[14] MAGO■ T, SALZBERG S L. FLASH: Fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21): 2957-2963.
[15] SODERHOLM A T, PEDICORD V A. Intestinal epithelial cells: At the interface of the microbiota and mucosal immunity[J]. Immunology, 2019, 158(4): 267-280.
[16] FAN Y, PEDERSEN O. Gut microbiota in human metabolic health and disease[J]. Nature Reviews Microbiology, 2021, 19(1): 55-71.
[17] LONG D, MAO C H, ZHANG X Y, et al. Coronary heart disease and gut microbiota: A bibliometric and visual analysis from 2002 to 2022[J]. Frontiers in Cardiovascular Medicine, 2022, 9: 949859.
[18] FP P, DVOROKOV?M, VACHALCOV?譧 M, et al. Gut microbiome in heart failure and aortic stenosis[J]. Vnitrni Lekarstvi, 2022, 68(E-2): 4-10.
[19] ZHAO Z Y, LIU J H, HU Y Z, et al. Bacterial diversity in the intestinal mucosa of heart failure rats treated with Sini Decoction[J]. BMC Complementary Medicine and Therapies, 2022, 22(1): 93.
[20] HUTTENHOWER C, GEVERS D, KNIGHT R, et al. Structure, function and diversity of the healthy human microbiome[J]. Nature, 2012, 486(7402): 207-214.
[21] VAISERMAN A, ROMANENKO M, PIVEN L, et al. Differences in the gut Firmicutes to Bacteroidetes ratio across age groups in healthy Ukrainian population[J]. BMC Microbiology, 2020, 20(1): 221.
[22] CAI X S, DENG L, MA X G, et al. Altered diversity and composition of gut microbiota in Wilson's disease[J]. Scientific Reports, 2020, 10: 21825.
[23] PAKHOMOV N, BAUGH J A. The role of diet-derived short-chain fatty acids in regulating cardiac pressure overload[J]. American Journal of Physiology Heart and Circulatory Physiology, 2021, 320(2): H475-H486.
[24] PALM C L, NIJHOLT K T, BAKKER B M, et al. Short-chain fatty acids in the metabolism of heart failure-rethinking the fat stigma[J]. Frontiers in Cardiovascular Medicine, 2022, 9: 915102.
[25] LIU J Y, KONG L Z, SHAO M T, et al. Seabuckthorn polysaccharide combined with astragalus polysaccharide ameliorate alcoholic fatty liver by regulating intestinal flora[J]. Frontiers in Endocrinology, 2022, 13: 1018557.
[26] WANG X, CAO Y, ZHI Y X. Throat microbiota alterations in patients with hereditary angioedema[J]. The World Allergy Organization Journal, 2022, 15(10): 100694.
[27] ZHANG Y W, CHEN L Y, HU M J, et al. Dietary type 2 resistant starch improves systemic inflammation and intestinal permeability by modulating microbiota and metabolites in aged mice on high-fat diet[J]. Aging, 2020, 12(10): 9173-9187.
[28] LIU B, DING Z H, XIONG J H, et al. Gut microbiota and inflam?鄄
matory cytokine changes in patients with ankylosing spondylitis[J]. BioMed Research International, 2022, 2022: 1005111.
[29] VAVRECKOVA M, GALANOVA N, KOSTOVCIK M, et al. Specific gut bacterial and fungal microbiota pattern in the first half of pregnancy is linked to the development of gestational diabetes mellitus in the cohort including obese women[J]. Frontiers in Endocrinology, 2022, 13: 970825.
[30] MITCHELL M K, ELLERMANN M. Long chain fatty acids and virulence repression in intestinal bacterial pathogens[J]. Frontiers in Cellular and Infection Microbiology, 2022, 12: 928503.
[31] SUN W J, DU D B, FU T Z, et al. Alterations of the gut microbiota in patients with severe chronic heart failure[J]. Frontiers in Microbiology, 2021, 12: 813289.
[32] BLAD C C, TANG C, OFFERMANNS S. G protein-coupled receptors for energy metabolites as new therapeutic targets[J]. Nature Reviews Drug Discovery, 2012, 11(8): 603-619.
[33] HORWAT P, KOPE■ S, GARCZYK A, et al. Influence of enteral nutrition on gut microbiota composition in patients with Crohn's disease: A systematic review[J]. Nutrients, 2020, 12(9): 2551.
[34] WEI Y Z, WANG K, ZHANG Y F, et al. Potent anti-inflammatory responses: Role of hydrogen in IL-1α dominated early phase systemic inflammation[J]. Frontiers in Pharmacology, 2023, 14: 1138762.
[35] HUI H Y, WU Y, ZHENG T, et al. Bacterial characteristics in intestinal contents of antibiotic-associated diarrhea mice treated with qiweibaizhu powder[J]. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 2020, 26: e921771.
[36] ZHANG F Q, WU J S, RUAN H N, et al. ZeXie Decoction alleviates non-alcoholic fatty liver disease in rats: The study of genes, lipids, and gut microbiotas[J]. Biochemical and Biophysical Research Communications, 2022, 632: 129-138.
[37] SHENG Y, ZHENG S J, MA T S, et al. Mulberry leaf alleviates streptozotocin-induced diabetic rats by attenuating NEFA signaling and modulating intestinal microflora[J]. Scientific Reports, 2017, 7: 12041.
[38] WANG K, LI W C, WANG K, et al. Litchi thaumatin-like protein induced the liver inflammation and altered the gut microbiota community structure in mice[J]. Food Research International, 2022, 161: 111868.
[39] VAN DONGEN K C W, LINKENS A M A, WETZELS S M W, et al. Dietary advanced glycation endproducts (AGEs) increase their concentration in plasma and tissues, result in inflammation and modulate gut microbial composition in mice; evidence for reversibility[J]. Food Research International, 2021, 147: 110547.
[40] LARSEN J M. The immune response to Prevotella bacteria in chronic inflammatory disease[J]. Immunology, 2017, 151(4): 363-374.
[41] KAWAMOTO D, BORGES R, RIBEIRO R A, et al. Oral dysbiosis in severe forms of periodontitis is associated with gut dysbiosis and correlated with salivary inflammatory mediators: A preliminary study[J]. Frontiers in Oral Health, 2021, 2: 722495.
[42] S?魣NCHEZ-MANUBENS J, HENARES D, MU?譙OZ-ALMAGRO C, et al. Characterization of the nasopharyngeal microbiome in patients with Kawasaki disease[J]. Anales De Pediatria, 2022, 97(5): 300-309.
[43] CHEN Q X, YIN Q L, XIE Q G, et al. 2'-fucosyllactose promotes the production of short-chain fatty acids and improves immune function in human-microbiota-associated mice by regulating gut microbiota[J]. Journal of Agricultural and Food Chemistry, 2022, 70(42): 13615-13625.
[44] LI Q Q, HU J L, NIE Q X, et al. Hypoglycemic mechanism of polysaccharide from Cyclocarya paliurus leaves in type 2 diabetic rats by gut microbiota and host metabolism alteration[J]. Science China Life Sciences, 2021, 64(1): 117-132.
[45] ZHAO J X, ZHANG Q, CHENG W, et al. Heart-gut microbiota communication determines the severity of cardiac injury after myocardial ischaemia/reperfusion[J]. Cardiovascular Research, 2023, 119(6): 1390-1402.
[46] ZHANG Z, CHEN F, WAN J J, et al. Potential traditional Chinese medicines with anti-inflammation in the prevention of heart failure following myocardial infarction[J]. Chinese Medicine, 2023, 18(1): 28.
(本文編輯? 匡靜之)