廖遠(yuǎn)行 舒英格 王昌敏 蔡華 李雪梅 羅秀龍 龍慧
DOI:10.3969/j.issn.2095-1191.2023.06.017
摘要:【目的】研究喀斯特地區(qū)不同植被類型下土壤微生物量磷(MBP)、堿性磷酸酶(ALP)和植酸酶(PHY)的變化特征,以及土壤磷有效性變化,為改善喀斯特地區(qū)磷脅迫現(xiàn)狀提供參考依據(jù)?!痉椒ā恳钥λ固氐貐^(qū)的耕地、草地、園地、灌木和林地5種植被類型為研究對象,比較不同植被類型及不同土層(0~5 cm、5~10 cm、10~20 cm、20~30 cm和30~40 cm)的MBP含量及ALP和PHY活性,通過建立回歸方程及冗余分析揭示三者與速效磷及土壤環(huán)境因子的相關(guān)性。【結(jié)果】不同植被類型土壤MBP含量、ALP和PHY活性均隨土壤深度的增加而逐漸降低。灌木土壤0~5 cm土層MBP含量為25.08 mg/kg,顯著高于除林地0~5 cm土層MBP含量(23.63 mg/kg)外的其他植被類型(P<0.05,下同);5種植被類型中林地土壤0~5 cm土層ALP活性最高,為101.96 mg/(g·d),各植被類型在20~40 cm土層間土壤ALP活性無顯著差異(P>0.05);灌木、草地和園地土壤在0~5 cm和20~40 cm土層PHY活性有顯著差異。不同植被類型影響下,土壤MBP、ALP和PHY均與土壤速效磷呈正相關(guān)。土壤MBP、ALP和PHY均與土壤全氮、有機(jī)質(zhì)、堿解氮、全磷和砂粒呈極顯著正相關(guān)(P<0.01,下同),其中有機(jī)質(zhì)貢獻(xiàn)率最高;與容重和黏粒呈顯著或極顯著負(fù)相關(guān)?!窘Y(jié)論】喀斯特地區(qū)土壤MBP含量、ALP和PHY活性及分布受植被類型及土壤生態(tài)環(huán)境的影響,灌木和林地土壤磷素利用率高且磷素來源豐富,耕地磷素利用率較低且來源單一。MBP、ALP和PHY是表征土壤磷素有效性變化的敏感因子,喀斯特地區(qū)有機(jī)質(zhì)是影響土壤MBP、ALP和PHY的關(guān)鍵環(huán)境因子。
關(guān)鍵詞:植被類型;微生物量磷;堿性磷酸酶;植酸酶;土壤環(huán)境因子;喀斯特地區(qū)
中圖分類號:S154.4? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼:A 文章編號:2095-1191(2023)06-1762-09
Change characteristics of soil microbial phosphorus,alkaline phosphatase and phytase under different vegetation types in karst area
LIAO Yuan-hang, SHU Ying-ge*,WANG Chang-min, CAI Hua, LI Xue-mei,
LUO Xiu-long, LONG Hui
(College of Agriculture,Guizhou University,Guiyang,Guizhou? 550025,China)
Abstract:【Objective】To study the changes of phosphorus(MBP),alkaline phosphatase(ALP)and phytase(PHY) in soil microorganisms under different vegetation types in karst areas, and the change of soil phosphorus availability, in order to provide a reference for improving the current situation of phosphorus stress in karst area. 【Method】The five planting cover types of cultivated land, grassland, garden, shrub, forest and different soil layers (0-5 cm, 5-10 cm, 10-20 cm, 20-30 cm and 30-40 cm) in karst area were taken as the research object. The content of MBP and activities of ALP and PHY in microbial biomass of different vegetation types were compared, the correlation between the three factors and available phosphorus and soil environmental factors was revealed by establishing regression equation and redundancy ana-lysis. 【Result】The MBP content, ALP and PHY activities of different vegetation types decreased gradually with the increase of soil depth. The results showed that, the MBP content in 0-5 cm soil layer of shrub soil (25.08 mg/kg) was significantly higher than that of other vegetation types except 0-5 cm layer of forest soil(23.63 mg/kg)(P<0.05, the same below). Among the 5 vegetation types, the highest ALP activity was 101.96 mg/(g·d) in the 0-5 cm soil layer of forest soil, and there were no significant differences among vegetation types in the 20-40 cm soil layer(P>0.05). There were significant differences in PHY activity of shrub, grassland and garden soils in 0-5 cm and 20-40 cm soil layers. Under the influence of different vegetation types, soil MBP, ALP and PHY were positively correlated with soil available phosphorus. Soil MBP, ALP and PHY were extremely significantly positively correlated with total nitrogen, organic matter, alkali-hydrolyzed nitrogen, total phosphorus and sand (P<0.01, the same below), and the contribution rate of organic matter was the highest. There was significant or extremely significant negative correlation with bulk density and clay particles.【Conclusion】The content of MBP, activities of ALP and PHY and their distribution in soil are affected by vegetation restoration type and ecological environment in karst area. Shrub and forest soils have high phosphorus utilization rate and rich phosphorus sources, while cultivated land has low phosphorus utilization rate and the source was single, which are positively correlated with soil available phosphorus. Organic matter are the key environmental factors affecting soil MBP, ALP and PHY in karst area.
Key words: vegetation type; microbial biomass phosphorus; alkaline phosphatase; phytase; soil environmental factors; karst area
Foundation items: Guizhou Major Science and Technology Project(QKHJC〔2019〕1106)
0 引言
【研究意義】土壤微生物量磷(MBP)、堿性磷酸酶(ALP)和植酸酶(PHY)在有機(jī)磷酸鹽的礦化過程中起重要作用(高照琴等,2018),是土壤磷循環(huán)及轉(zhuǎn)化為有效磷的主要載體。土壤中的磷循環(huán)封閉,土壤磷轉(zhuǎn)化微生物或酶通過溶解和礦化作用可補(bǔ)償被植物吸收或降水淋溶損失的可溶性磷(薛巧云,2013)。土壤中有機(jī)磷雖占土壤全磷的40%~90%,但有效性低(蘇奇倩等,2022),需通過ALP和PHY的礦化及微生物作用轉(zhuǎn)化為無機(jī)磷后才能成為有效磷(Fraser et al.,2015)。MBP在土壤中僅占總磷庫的1.6%(Xu et al.,2013),能隨微生物自身不斷更新周轉(zhuǎn)釋放出來,供植物和其他微生物吸收利用(Dinh et al.,2017;Chen et al.,2018),轉(zhuǎn)化為土壤中較穩(wěn)定的有機(jī)磷(劉軼等,2013);PHY通過對總有機(jī)磷中占比最高的植酸進(jìn)行酶促反應(yīng)(Hilda and Reynaldo,1999;Yadav and Tarafdar,2003,2007),依次水解成肌醇磷酸鹽和無機(jī)磷酸鹽,為植物提供磷源;ALP在土壤有效磷含量過低的情況下由植物釋放,通過水解土壤中的中度可利用磷源釋放有效磷供植物吸收利用。土壤MBP、ALP和PHY對有機(jī)磷礦化過程十分關(guān)鍵。因此,研究土壤MBP含量、ALP和PHY活性,對了解不同植被類型的土壤磷有效性變化及土壤質(zhì)量情況具有重要意義?!厩叭搜芯窟M(jìn)展】農(nóng)業(yè)生產(chǎn)過程施用大量無機(jī)磷肥會(huì)轉(zhuǎn)化為植酸有機(jī)磷,造成土壤植酸積累(Lim et al.,2007),PHY對土壤磷素供應(yīng)必不可少。Chen等(2002)研究發(fā)現(xiàn)土壤植酸礦化分解與PHY數(shù)量和活性顯著相關(guān),大于60%土壤有機(jī)磷可被酶水解,其中被PHY釋放的磷占80%(Bünemann,2008)。Tarafdar等(2001)研究發(fā)現(xiàn),微生物PHY能有效水解土壤植酸,從而釋放無機(jī)磷酸鹽,對提高土壤有機(jī)磷的利用率具有重要作用。不同植被類型下土壤MBP、ALP和PHY變化較大。研究表明,土壤ALP和PHY活性及MBP均對有機(jī)質(zhì)(Pan et al.,2013)、水熱變化(Steinweg et al.,2013;Fayez and Soroosh,2018)、養(yǎng)分變化(Bi et al.,2018;劉秉儒等,2019)及植被類型(張迪等,2020)等十分敏感。由于植被類型差異帶來的凋落物質(zhì)和量、根系分泌物及營養(yǎng)吸收不同,影響土壤微生物群落及土壤酶活性,進(jìn)而影響土壤MBP循環(huán)(Priha et al.,2001; Waldrop et al.,2012)。不同植被類型土壤微生物特性差異可能是影響土壤磷有效性的重要驅(qū)動(dòng)因素(Hou et al.,2014;Dan et al.,2017)。王長庭等(2010)對退化土壤生態(tài)系統(tǒng)進(jìn)行研究,發(fā)現(xiàn)土壤酶活性與土壤類型、植被特征、微生物數(shù)量、土壤動(dòng)物類群和數(shù)量有關(guān);Reiner等(2012)研究表明,不同植被類型下土壤MBP、ALP等存在顯著差異;Hou等(2014)對亞熱帶成熟林進(jìn)行研究,發(fā)現(xiàn)闊葉林土壤MBP含量高于針葉林和針闊混交林;賈國梅等(2016)研究表明,MBP在不同植被類型(菜地、柏樹和橘樹)之間差異顯著;曾曉敏等(2018)研究發(fā)現(xiàn),不同植被類型下土壤MBP含量和ALP活性存在顯著差異,主要通過增加土壤ALP活性來礦化有機(jī)磷,從而提高有效磷含量供植物吸收利用;李黃維等(2022)研究發(fā)現(xiàn)次生林轉(zhuǎn)變?yōu)槿斯ち诌^程中,ALP不僅改變土壤中總磷含量,還影響不同磷形態(tài)之間的轉(zhuǎn)化?!颈狙芯壳腥朦c(diǎn)】由于地質(zhì)背景制約,石灰土的高鈣和高pH導(dǎo)致有效磷與土壤礦物緊密結(jié)合而降低生物有效性,造成喀斯特地區(qū)大面積磷脅迫(劉方等,2005)。目前有關(guān)喀斯特地區(qū)不同植被類型磷素的研究主要集中在有機(jī)和無機(jī)磷分組(陳夢軍等,2019;蔡鑫淋等,2020)、土壤ALP與土壤質(zhì)量的相關(guān)性(黃玙璠等,2020)、MBP含量變化(黃娟等,2022)等方面,而關(guān)于不同植被類型下土壤MBP、ALP和PHY變化特征及其與速效磷的關(guān)系研究鮮見報(bào)道。【擬解決的關(guān)鍵問題】研究喀斯特地區(qū)不同植被類型土壤MBP含量、PHY和ALP活性,分析三者與土壤速效磷及土壤環(huán)境因子的關(guān)系,為改善喀斯特地區(qū)磷脅迫現(xiàn)狀提供參考依據(jù)。
1 材料與方法
1. 1 研究區(qū)概況
研究區(qū)地處貴陽市南部,屬黔中腹地,全區(qū)地貌以山地和丘陵為主,處云貴高原東斜坡和苗嶺山脈中段,為典型喀斯特地貌。屬亞熱帶季風(fēng)濕潤氣候,年平均溫度15.6 ℃,年平均降水量1450.8 mm。境內(nèi)主要出露石灰?guī)r、白云巖和碎屑巖(頁巖、砂巖、紫紅色砂頁巖等),發(fā)育的土壤主要有石灰土、黃壤、水稻土和紫色土等,植被類型多樣,以灌木、耕地、林地和草地為主,植被以火棘、蒿草、樹莓、楸樹、樸樹和白茅為主。
1. 2 樣地設(shè)置及取樣方法
選取石灰土研究區(qū)內(nèi)陽坡、海拔基本一致的典型地塊,設(shè)置不同植被(林地、草地、耕地、灌木和園地)土壤剖面,分別在每個(gè)樣地選取3個(gè)等面積樣方。采集土壤樣品時(shí)去除樣方內(nèi)地表可見凋落物后挖取土壤剖面,由于研究區(qū)土層較薄,土壤磷素在土壤表面富集及喀斯特地區(qū)水分的差異,故將剖面土層分為5個(gè)深度(0~5 cm、5~10 cm、10~20 cm、20~30 cm和30~40 cm)進(jìn)行采樣,同層混合為1個(gè)土壤樣品。每份樣品分成2份,自封袋封裝,一份用保溫箱運(yùn)回實(shí)驗(yàn)室過2 mm篩保存于4 ℃冰箱,用于MBP測定;另一份帶回實(shí)驗(yàn)室自然風(fēng)干,挑出可見的殘根、石頭及凋落物等,分別過2和0.149 mm篩,用于土壤理化性質(zhì)、ALP和PHY活性測定。同時(shí),采集環(huán)刀樣品用于容重、含水率和孔隙度等物理指標(biāo)的測定。
1. 3 測定項(xiàng)目及方法
土壤MBP含量采用氯仿熏蒸0.5 mol/L碳酸氫鈉溶液浸提—鉬銻抗比色法測定(Brookes et al.,1982),ALP活性采用磷酸苯二鈉比色法測定(沈桂琴,1987),PHY活性采用釩鉬法測定(朱蕓蕓等,2016);土壤速效磷含量采用NH4F-HCl法測定,pH測定采用水土比2.5∶1,有機(jī)質(zhì)采用重鉻酸鉀容量法—外加熱法測定,堿解氮采用1.0 mol/L NaOH水解—堿解擴(kuò)散法測定;土壤全氮采用凱氏消煮法測定;土壤含水率采用烘干法測定,總孔隙度、毛管孔隙度和非毛管孔隙度采用比重法進(jìn)行測定,容重采用環(huán)刀法測定,機(jī)械組成采用比重計(jì)法測定;土壤全磷采用NaOH熔融法測定,全鉀采用火焰光度法測定,速效鉀采用醋酸銨浸提—火焰光度法測定。
1. 4 統(tǒng)計(jì)分析
采用Excel 2019和SPSS 26.0對試驗(yàn)數(shù)據(jù)進(jìn)行整理、單因素方差分析及Duncan’s多重比較,以O(shè)rigin 2018分析相關(guān)性及繪圖,采用Canoco 5.0進(jìn)行冗余分析。
2 結(jié)果與分析
2. 1 不同植被類型土壤MBP含量的變化特征
由圖1可知,不同植被類型MBP含量差異明顯,灌木土壤0~5 cm土層MBP含量為25.08 mg/kg,與林地土壤(23.63 mg/kg)無顯著差異(P>0.05,下同),顯著高于其他3種植被類型(P<0.05,下同)。灌木0~10 cm土層MBP含量顯著高于耕地、草地和園地;耕地0~20 cm土層MBP含量最低,與其他植被類型差異顯著;20~30 cm土層園地與耕地間土壤MBP含量差異顯著,其余植被類型間土壤MBP含量均無顯著差異。同一植被類型下,隨土壤深度的增加,MBP含量逐漸降低,耕地和草地0~5 cm土層MBP含量分別為10.98和17.77 mg/kg,均顯著高于5~40 cm土層;灌木和園地MBP含量在0~10 cm土層顯著高于10~40 cm土層;林地土壤MBP含量主要表現(xiàn)為0~20 cm土層顯著高于30~40 cm土層,林地剖面土壤MBP含量與灌木剖面變化規(guī)律相似,耕地剖面0~20 cm土層MBP變化有顯著差異。說明灌木微生物活性較頻繁,耕地微生物活性較弱,可能由于灌木有機(jī)質(zhì)含量較高,人為活動(dòng)較少,適宜微生物生長;而耕地人為活動(dòng)較頻繁,土壤環(huán)境易遭受破壞,微生物活動(dòng)較弱??傮w上土壤MBP含量表現(xiàn)為灌木>林地>園地>草地>耕地。
2. 2 不同植被類型土壤ALP活性的變化特征
由圖2可知,不同植被類型土壤ALP活性均隨土壤深度的增加而逐漸降低。林地、灌木、園地、草地和耕地的土壤ALP活性分別為43.84~101.96 mg/(g·d)、32.34~99.68 mg/(g·d)、26.92~97.96 mg/(g·d)、25.01~74.27 mg/(g·d)和31.41~65.15 mg/(g·d)。不同植被類型下,0~5 cm土層,林地ALP活性顯著高于耕地和草地,園地ALP活性顯著高于耕地;5~10 cm土層,園地ALP活性為80.76 mg/(g·d),顯著高于耕地和草地;10~40 cm土層,不同植被類型下ALP活性均無顯著差異。同一植被類型下,草地、灌木、園地和林地剖面ALP活性變化規(guī)律相似,均表現(xiàn)為0~5 cm土層顯著高于5~40 cm。耕地的ALP活性表現(xiàn)為0~10 cm土層顯著高于20~40 cm土層。5種植被類型在20~40 cm土層的ALP活性均無顯著差異。ALP活性總體表現(xiàn)為林地較高,耕地較低,變化規(guī)律與土壤MBP含量相似。
2. 3 不同植被類型土壤PHY活性的變化特征
由圖3可知,不同植被類型土壤PHY活性均隨土壤深度的增加呈降低趨勢。不同植被類型下,0~5 cm土層,灌木土壤PHY活性最高,為33.80 mg/(g·min),耕地PHY活性最低,為30.09 mg/(g·min),二者間差異顯著;5~20 cm土層,各植被類型土壤PHY活性均無顯著差異;20~30 cm土層,園地PHY活性顯著低于其他植被類型;30~40 cm土層,草地和灌木PHY活性顯著高于園地。同一植被類型下,草地、灌木和園地0~10 cm土層PHY活性均顯著高于20~40 cm土層,相同植被類型20~30 cm與30~40 cm土層PHY活性均無顯著差異;耕地與林地0~20 cm土層PHY活性顯著高于30~40 cm土層??傮w來看,不同植被類型土壤PHY活性表現(xiàn)為灌木>草地>園地>林地>耕地。
2. 4 不同植被類型土壤MBP、ALP、PHY與土壤速效磷的關(guān)系
速效磷含量是土壤磷素有效性的直觀表現(xiàn)。由圖4可知,除灌木土壤MBP、林地土壤ALP和草地土壤PHY外,其他各植被類型土壤速效磷均與MBP、ALP和PHY呈顯著正相關(guān),且變化趨勢相似。不同植被類型影響下,土壤MBP、ALP和PHY與土壤速效磷的相關(guān)性大小不同。林地和灌木均表現(xiàn)為土壤速效磷與土壤ALP相關(guān)性最強(qiáng),與PHY相關(guān)性較弱,耕地、園地和草地土壤速效磷與土壤MBP相關(guān)性最強(qiáng),與PHY相關(guān)性較弱,總體來看,不同植被類型下土壤MBP和ALP對土壤速效磷的貢獻(xiàn)率較大,PHY的貢獻(xiàn)率較小。
2. 5 不同植被類型土壤MBP、ALP和PHY與土壤環(huán)境因子相關(guān)分析結(jié)果
土壤MBP、ALP和PHY與土壤理化性質(zhì)的相關(guān)分析結(jié)果(圖5)顯示,土壤MBP與土壤pH、含水率和黏粒呈顯著負(fù)相關(guān),與容重呈極顯著負(fù)相關(guān)(P<0.01,下同),與土壤全氮、有機(jī)質(zhì)、堿解氮、ALP、PHY、全磷、速效鉀和砂粒呈極顯著正相關(guān),與非毛管孔隙度呈顯著正相關(guān)。土壤ALP與土壤容重呈極顯著負(fù)相關(guān),與PHY、飽和含水量、毛管含水量、有機(jī)質(zhì)、全氮、堿解氮、全磷、速效磷、速效鉀和砂粒呈極顯著正相關(guān)。土壤PHY與容重、黏粒和含水率呈極顯著負(fù)相關(guān),與全氮、有機(jī)質(zhì)、速效磷、堿解氮、全磷、砂粒和粉粒呈極顯著正相關(guān)。由冗余分析結(jié)果(圖6)可知,土壤有機(jī)質(zhì)解釋度為46.6%,貢獻(xiàn)率最高,為61.6%。綜上所述,土壤MBP、ALP和PHY均與土壤全氮、有機(jī)質(zhì)、堿解氮、全磷和砂粒呈極顯著正相關(guān),與容重和黏粒呈顯著或極顯著負(fù)相關(guān),表明在不同植被類型中土壤MBP、PHY和ALP能作為反映土壤養(yǎng)分變化的生物指標(biāo),且三者間呈極顯著正相關(guān),關(guān)系緊密。
3 討論
3. 1 不同植被類型對土壤MBP的影響
不同植被類型可代表不同的演替階段,由于地表覆蓋狀況與物種組成不同,影響生態(tài)過程及養(yǎng)分循環(huán),決定著植被演替的發(fā)展方向與速度,從而導(dǎo)致生態(tài)系統(tǒng)結(jié)構(gòu)功能的改變(Jia et al.,2005;韋體等,2021)。微生物作為生態(tài)系統(tǒng)的重要組成部分,其群落結(jié)構(gòu)和數(shù)量必然會(huì)受影響。本研究中,不同植被類型MBP在表層(0~5 cm)和次表層(5~10 cm)差異顯著,但隨著土壤深度的增加,差異不顯著;在垂直方向上,也呈現(xiàn)出表層(0~5 cm)顯著高于底層(30~40 cm)的趨勢,與前人研究結(jié)果(李靈等,2007;李萬年等,2020)一致。本研究中,不同植被類型下土壤MBP總體排序?yàn)楣嗄?gt;林地>園地>草地>耕地。究其原因,可能由于耕地常年施肥造成磷含量較高,土壤結(jié)構(gòu)遭破壞導(dǎo)致水熱條件不穩(wěn)定,土壤微生物活動(dòng)較弱,土壤MBP含量較低;灌木與林地人為活動(dòng)較少,凋落物多,土壤有機(jī)質(zhì)較高,土壤MBP含量較高,且相關(guān)分析結(jié)果表明土壤有機(jī)質(zhì)與土壤MBP呈極顯著正相關(guān);草地由于凋落物較少,放牧等可能導(dǎo)致草地土壤MBP含量較低。鄭華等(2004)、梁月明等(2010)研究表明土壤微生物量隨植被的恢復(fù)而增大,表現(xiàn)為喬木>灌叢>草叢,本研究結(jié)果與之一致。土壤MBP庫是一個(gè)巨大的活性磷養(yǎng)分儲(chǔ)庫,在補(bǔ)充土壤速效磷庫和調(diào)控植物磷有效性再分配過程中扮演著重要角色。
3. 2 不同植被類型對土壤ALP和PHY活性的影響
不同植被類型對土壤ALP活性具有較大影響。土壤ALP活性受土壤理化性質(zhì)、植被類型、土壤微生物活動(dòng)等多種因素的影響(王黎明等,2004;向澤宇等,2011;張艾明等,2016)。楊文娜等(2022)研究表明,分泌ALP是植物和微生物在低磷脅迫下增加有效磷供給的重要方式,土壤ALP可促進(jìn)土壤有機(jī)磷的水解,使其轉(zhuǎn)化為能被植物和微生物直接吸收利用的磷素形態(tài),而當(dāng)土壤中存在較高含量的可利用磷時(shí),植物根系會(huì)直接利用這一部分磷,減少ALP的分泌,造成ALP活性下降。本研究中,林地0~5 cm土層ALP活性最高,ALP與土壤有機(jī)質(zhì)含量呈極顯著正相關(guān),推測林地凋落物含量較高是導(dǎo)致ALP活性高的原因;ALP活性總體表現(xiàn)為林地>灌木>園地>草地>耕地,耕地ALP活性最低,可能是因?yàn)槿斯な┓实却胧┰黾油寥揽衫昧缀?,緩解植物和微生物的磷脅迫(鄭棉海等,2015),使得ALP分泌減少,造成土壤ALP活性下降。
植酸作為土壤有機(jī)磷的主要形態(tài),是土壤肥力中磷的重要提供者(賀建華,2005),土壤PHY就是將土壤中的植酸降解為可被植物直接利用的速效磷的一把鑰匙。土壤PHY在自然界廣泛存在,主要由植物、土壤動(dòng)物和微生物分泌(Turner et al.,2002)。本研究發(fā)現(xiàn),不同植被類型下PHY的變化規(guī)律與土壤MBP和ALP十分相似,表現(xiàn)為灌木PHY活性較高,耕地PHY活性較低,表明灌木地植酸態(tài)磷有效化過程較強(qiáng)烈。在曲博等(2015)、曲博(2015)的研究中,也發(fā)現(xiàn)PHY能促進(jìn)穩(wěn)定性較高的有機(jī)磷進(jìn)行水解礦化。耕地PHY活性較低,可能是表層土壤不利于土壤微生物生長繁殖,有關(guān)不同植被退耕年限對土壤PHY的影響尚需進(jìn)一步研究。
3. 3 土壤磷生物轉(zhuǎn)化與環(huán)境因子間的關(guān)系
土壤微生物、酶與土壤養(yǎng)分關(guān)系緊密。本研究的相關(guān)分析結(jié)果表明,土壤MBP、ALP和PHY均與土壤全氮、有機(jī)質(zhì)、堿解氮、全磷、砂粒、容重和黏粒呈顯著或極顯著相關(guān),與賈偉等(2008)的研究結(jié)果一致。土壤有機(jī)質(zhì)貢獻(xiàn)率最大,說明土壤MBP、ALP和PHY可作為衡量土壤養(yǎng)分的敏感性指標(biāo),表征土壤的質(zhì)量和土壤肥力(黃宗勝等,2012)。土壤MBP、ALP和PHY之間均呈極顯著正相關(guān),表明三者關(guān)系十分緊密,是衡量土壤有機(jī)磷礦化過程的關(guān)鍵因子。楊恒山等(2009)研究發(fā)現(xiàn),不同生長年限苜蓿地各土層土壤pH與土壤ALP活性均呈負(fù)相關(guān),土壤pH降低有利于土壤ALP活性提高;本研究也發(fā)現(xiàn),喀斯特地區(qū)土壤MBP、ALP和PHY均與pH呈一定程度負(fù)相關(guān),說明土壤pH增加不利于土壤酶活性及微生物的生長繁殖。
4 結(jié)論
在受磷素限制較嚴(yán)重的喀斯特地區(qū),土壤MBP含量、ALP和PHY活性及分布受植被類型及土壤生態(tài)環(huán)境的影響,MBP、ALP和PHY在不同植被類型及土層間差異明顯,灌木和林地土壤磷素利用率高且磷素來源豐富,耕地磷素利用率較低且來源單一。MBP、ALP和PHY是表征土壤磷素有效性變化的敏感因子,喀斯特地區(qū)有機(jī)質(zhì)是影響土壤MBP、ALP和PHY的關(guān)鍵環(huán)境因子。
參考文獻(xiàn):
陳夢軍,舒英格,肖盛楊. 2019. 喀斯特山區(qū)土壤有機(jī)無機(jī)磷分級方法的比較研究[J]. 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào),36(4):462-470. [Chen M J, Shu Y G, Xiao S Y. 2019. Methods of soil organic and inorganic phosphorus fractionation in karst areas[J].Journal of Agricultural Resources and Environment,36(4):462-470.] doi:10.13254/j.jare. 2018.0279.
蔡鑫淋,舒英格,陳夢軍. 2020. 喀斯特山區(qū)生態(tài)恢復(fù)中土壤剖面無機(jī)磷形態(tài)分布特征及其影響因素[J]. 水土保持通報(bào),40(2):107-114. [Cai X L,Shu Y G,Chen M J. 2020. Distribution characteristics and influencing factors of inorganic phosphorus in soil profile during ecological restoration in karst mountain area[J]. Bulletin of Soil and Water Conservation,40(2):107-114.] doi:10.13961 10.13961/j.cnki.stbctb.2020.02.015.
高照琴,白軍紅,溫曉君,盧瓊瓊,葉曉飛. 2018. 珠江河口不同類型濕地土壤有機(jī)磷礦化過程及其影響因素研究[J]. 北京師范大學(xué)學(xué)報(bào)(自然科學(xué)版),54(1):131-136. [Gao Z Q,Bai J H,Wen X J,Lu Q Q,Ye X F. 2018. Processes and influencing factors of ogranic phosphorus mineralization in various wetland soils in the Pearl River Eatuary,China[J].Journal of Beijing Normal University (Natural Science),54(1):131-136.] doi:10.16360/j.cnki.jbnuns. 2018.01.018.
賀建華. 2005. 植酸磷和植酸酶研究進(jìn)展[J]. 動(dòng)物營養(yǎng)學(xué)報(bào),(1):1-6. [He J H. 2005. Recent advance in phytate and phytase studies[J]. Chinese Journal of Animal Nutrition,(1):1-6.] doi:10.3969/j.issn.1006-267X.2005.01.001.
黃娟,鄧羽松,韋慧,林立文,黃海梅,付智勇. 2022. 喀斯特峰叢洼地不同植被類型土壤微生物量碳氮磷和養(yǎng)分特征[J]. 土壤通報(bào),53(3):605-612. [Huang J,Deng Y S,Wei H,Lin L W,Huang H M,F(xiàn)u Z Y. 2022. Characteristics of soil microbial biomass carbon, nitrogen and phosphorus,and nutrients in different vegetation types in karst peak-cluster depression[J].Chinese Journal of Soil Science,53(3):605-612.] doi:10.19336/j.cnki.trtb. 2021081302.
黃玙璠,舒英格,肖盛楊,陳夢軍. 2020. 喀斯特山區(qū)不同草地土壤養(yǎng)分與酶活性特征[J]. 草業(yè)學(xué)報(bào),29(6):93-104. [Huang Y F,Shu Y G, Xiao S Y,Chen M J. 2020. Quantification of soil nutrient levels and enzyme activities in different grassland categories in karst mountains [J]. Journal of Pratacultural Science,29(6):93-104.] doi:10.11686/cycxb2019519.
黃宗勝,符裕紅,喻理飛. 2012. 喀斯特森林自然恢復(fù)中土壤微生物生物量碳與水溶性有機(jī)碳特征[J]. 應(yīng)用生態(tài)學(xué)報(bào),23(10):2715-2720. [Huang Z S,F(xiàn)u Y H,Yu L F. 2012. Characteristics of soil microbial biomass carbon and soil water soluble organic carbon in the process of natural restoration of karst forest[J]. Chinese Journal of Applied Ecology,23(10):2715-2720.] doi:10.13287/j. 1001-9332.2012.0374.
賈國梅,何立,程虎,王世彤,向翰宇,張雪飛,席穎. 2016. 三峽庫區(qū)不同植被土壤微生物量碳氮磷生態(tài)化學(xué)計(jì)量特征[J]. 水土保持研究,23(4):23-27. [Jia G M,He L,Cheng H,Wang S T,Xiang H Y,Zhang X F,Xi Y. 2016. Ecological stoichiometry of carbon,nitrogen and phosphorus in soil microbial biomass of different vegetation in the Three Gorges Reservoir area[J]. Research of Soil and Water Conservation,23(4):23-27.] doi:10.13869/j.cnki.rswc.20160518.001.
賈偉,周懷平,解文艷,關(guān)春林,郜春花,石彥琴. 2008. 長期有機(jī)無機(jī)肥配施對褐土微生物生物量碳、氮及酶活性的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào),(4):700-705. [Jia W,Zhou H P,Xie W Y,Guan C L,Gao C H, Shi Y Q. 2008. Effects of long-term inorganic fertilizer combined with organic manure on microbial biomass C、N and enzyme activity in cinnamon soil[J]. Journal of Plant Nutrition and Fertilizers,(4):700-705.] doi:10.7666/d.Y2677970.
李黃維,吳小紅,劉婷,何金松,王鈞,閆文德. 2022. 不同林分土壤磷形態(tài)與磷酸酶特征[J/OL]. 生態(tài)學(xué)報(bào). https://kns.cnki.net/kcms/detail/11.2031.Q.20221008.1219.004.html. [Li H W,Wu X H,Liu T,He J S,Wang J,Yan W D. 2022. Characteristics of soil phosphorus fractions and phosphatases activity in different[J/OL]. Acta Ecologica Sinica,https://kns.cnki.net/kcms/detail/11.2031.Q.20221008. 1219.004.html.]
李靈,張玉,王利寶,王麗梅. 2007. 不同林地土壤微生物生物量垂直分布及相關(guān)性分析[J]. 中南林業(yè)科技大學(xué)學(xué)報(bào),(2):52-56. [Li L,Zhang Y,Wang L B,Wang L M. 2007. Vertical changes of the soil microbial biomass and the correlation analysis in different forests[J]. Journal of Central South University of Forestry & Technology,(2):52-56.] doi:10.14067/j.cnki.1673-923x.2007.02.011.
李萬年,黃則月,趙春梅,楊梅. 2020. 望天樹人工幼林土壤微生物量碳氮及養(yǎng)分特征[J]. 北京林業(yè)大學(xué)學(xué)報(bào),42(12):51-62. [Li W N,Huang Z Y,Zhao C M,Yang M. 2020. Characteristics of soil microbial biomass C,N and nutrients in young plantations of Parashorea chinensis[J]. Journal of Beijing Forestry University,42(12):51-62.] doi:10.12171/j.1000?1522.20200191.
梁月明,何尋陽,蘇以榮,王克林,梁士楚. 2010. 喀斯特峰叢洼地植被恢復(fù)過程中土壤微生物特性[J]. 生態(tài)學(xué)雜志,29(5):917-922. [Liang Y M,He X Y,Su Y R,Wang K L,Liang S C. 2010. Dynamic changes of soilm icrob al properties in karst peak tchister depression area during vegetation restoration[J]. Chinese Journal of Ecology,29(5):917-922.] doi:10.13292/j.1000-4890.2010.0148.
劉秉儒,牛宋芳,張文文. 2019. 荒漠草原區(qū)土壤粒徑組成對檸條根際土壤微生物數(shù)量及酶活性的影響[J]. 生態(tài)學(xué)報(bào),39(24):9171-9178. [Liu B R,Niu S F,Zhang W W. 2019. Effects of soil particle size on enzyme activities and the amount of soil mieroorganism in rhizosphere of Caragana korshinskii in desert steppe[J]. Acta Ecologica Sinica,39(24):9171-9178.] doi:10.5846/stxb20181025 2309.
劉方,王世杰,劉元生,何騰兵,羅海波,龍健. 2005. 喀斯特石漠化過程土壤質(zhì)量變化及生態(tài)環(huán)境影響評價(jià)[J]. 生態(tài)學(xué)報(bào),(3):639-644. [Liu F,Wang S J,Liu Y S,He T B,Luo H B,Long J. 2005. Changes of soil quality in the process of karst rocky desertification and evaluation of impact on ecological environment[J]. Journal of Ecology,(3):639-644.] doi:10.3321/j.issn:1000-0933.2005.03. 035.
劉軼,周健,李曉品,張永勝,肖龍. 2013. 磷酸鹽生物還原系統(tǒng)構(gòu)建過程中磷形態(tài)的轉(zhuǎn)化研究[J]. 中國給水排水,29(13):105-108. [Liu Y,Zhou J,Li X P,Zhang Y S,Xiao L. 2013. Transformation of phosphorus forms during construction of phosphate reduction system[J]. China Water & Wastewater,29(13):105-108.] doi:10.3969/j.issn.1000-4602.2013.13.026.
曲博,李敏,其美,朱蕓蕓,趙暾,孫曉建. 2015. 外源植酸酶對野鴨湖濕地土壤有機(jī)磷轉(zhuǎn)化的影響研究[J]. 生態(tài)環(huán)境學(xué)報(bào),24(2):250-254. [Qu B,Li M,Qi M,Zhu Y Y,Zhao T,Sun X J. 2015. Effects of soil organic phosphorus transformation on fertilizing outside source of phytase in Yeyahu wetland[J]. Ecology and Environmental Sciences,24(2):250-254.] doi:10.16258/j.cnki.1674-5906.2015.02.011.
曲博. 2015. 濕地土壤堿性磷酸酶活性對土壤有機(jī)磷形態(tài)轉(zhuǎn)化的影響研究[D]. 北京:北京林業(yè)大學(xué). [Qu B. 2015. Researches for influence of phosphatase activity on transformation of organic phosphorus in wetland soil[D].Beijing Beijing Forestry University.]
沈桂琴. 1987. 土壤中堿性磷酸酶活性的測定方法[J]. 土壤肥料,(1):40-42. [Shen G Q. 1987. Determination of alkaline phosphataseactivity in soil[J]. Soil and Fertilizer Sciences in China,(1):40-42.]
蘇奇倩,丁豪杰,李曉鋒,李林,Rensing C,劉雪. 2022. 微生物植酸酶及其對土壤植酸的礦化作用綜述[J/OL]. 環(huán)境化學(xué). https://kns.cnki.net/kcms/detail/11.1844.X.20221103. 1043.014.html. [Su Q Q,Ding H J,Li X F,Li L,Rensing C,Liu X. 2022. Microbial phytase and its role in phytate mineralization in soils: A review[J/OL]. Environmental Chemistry.https://kns.cnki.net/kcms/detail/11. 1844.X.20221103.1043.014.html.]
王黎明,徐冬梅,陳波,劉廣深. 2004. 外來污染物對土壤堿性磷酸酶影響的研究進(jìn)展[J]. 環(huán)境污染治理技術(shù)與設(shè)備,(5):11-17. [Wang L M,Xu D M,Chen B,Liu G S. 2004. Efects of external contannts on soil phosphatase [J]. Technology and Equipment for Environmental Pollution Control,(5):11-17.]
王長庭,龍瑞軍,王根緒,劉偉,王啟蘭,張莉,吳鵬飛. 2010. 高寒草甸群落地表植被特征與土壤理化性狀、土壤微生物之間的相關(guān)性研究[J]. 草業(yè)學(xué)報(bào),19(6):25-34. [Wang C T,Long R J,Wang G X, Liu W,Wang Q L,Zhang L,Wu P F. 2010. Relationship between plant communities,characters,soil physical and chemical properties,and soil microbiology in alpine meadows[J]. Acta Prataculturae Sinica,19(6):25-34.]
韋體,卜磊,吳登宇,陳宏福,高丹丹,劉紅海,徐紅偉,蔡勇,楊具田,郭鵬輝. 2021. 甘肅省榆中盆地不同人工植被類型下的土壤養(yǎng)分時(shí)空特征[J]. 河南農(nóng)業(yè)科學(xué),50(11): 79‐86. [Wei T,Bu L,Wu D Y,Chen H F,Gao D D,Liu H H,Xu H W,Cai Y,Yang J T,Guo P H. 2021. Temporal and spatial characteristics of soil nutrients under different artificial vegetation types in Yuzhong Basin,Gansu Province[J]. Journal of Henan Agricultural Sciences,50(11):79‐86.] doi:10.15933/j.cnki.1004‐3268.2021.11.010.
向澤宇,王長庭,宋文彪,四郎生根,呷絨仁青,達(dá)瓦澤仁,扎西羅布. 2011. 草地生態(tài)系統(tǒng)土壤酶活性研究進(jìn)展[J].草業(yè)科學(xué),(10):1801-1806. [Xiang Z Y,Wang C T,Song W B,Silangshenggen,Garongrenqing,Dawazeren,Zhaxiluobu. 2011. Advance on soil enzymatic activities in grassland ecosystem[J]. Pratacultural Science,(10):1801-1806.]
薛巧云. 2013. 農(nóng)藝措施和環(huán)境條件對土壤磷素轉(zhuǎn)化和淋失的影響及其機(jī)理研究[D]. 杭州:浙江大學(xué). [Xue Q Y. 2013. Effects of agronomic practices and environmental factors on soil ransformation and loss and corresponding mechanism[D]. Hangzhou:Zhejiang University.]
楊恒山,張慶國,邰繼承,葛選良,王娜娜. 2009. 種植年限對紫花苜蓿地土壤pH值和堿性磷酸酶活性的影響[J]. 中國草地學(xué)報(bào),31(1):32-35. [Yang H S,Zhang Q G,Tai J C,Ge X L,Wang N N. 2009. Effects of growth years on soil pH and phosphatase activities in alfalfa field[J]. Chinese Journal of Grassland,31(1):32-35.]
楊文娜,余濼,羅東海,熊子怡,王鎣燕,徐曼,王子芳,高明. 2022. 化肥和有機(jī)肥配施生物炭對土壤堿性磷酸酶活性和微生物群落的影響[J]. 環(huán)境科學(xué),43(1):540-549. [Yang W N,Yu L,Luo D H,Xiong Z Y,Wang Y Y,Xu M,Wang Z F,Gao M. 2022. Effect of combined application of biochar with chemical fertilizer and organic fertilizer on soil phosphatase activity and microbial community[J]. Environmental Science, 43(1): 540-549.] doi:10.13227/j.hjkx. 202105279.
曾曉敏,范躍新,林開淼,袁萍,趙盼盼,陳怡然,徐建國,陳岳民. 2018. 亞熱帶不同植被類型土壤磷組分特征及其影響因素[J]. 應(yīng)用生態(tài)學(xué)報(bào),29(7):2156-2162. [Zeng X M,F(xiàn)an Y X,Lin K M,Yuan P,Zhao P P,Chen Y R,Xu J G,Chen Y M. 2018. Characteristics of soil phosphorus fractions of different vegetation types in subtropical forests and their driving factor[J]. Chinese Journal of Applied Ecology,29(7):2156-2162.] doi:10.13287/j.1001-9332. 201807.019.
張艾明,劉云超,李曉蘭,陳鳳臻,莎茹拉. 2016. 水肥耦合對紫花苜蓿土壤堿性磷酸酶活性的影響[J]. 生態(tài)學(xué)雜志,35(11):2896-2902. [Zhang A M,Liu Y C,Li X L,Chen F Z,Sha R L. 2016. Coupling effect of water and fertilizer on phosphatase activities of alfalfa soil[J]. Chinese Journal of Ecology,35(11):2896-2902.] doi:10.13292/j.1000-4890. 201611.034.
張迪,鄧旭,張青,李思澤,梁運(yùn)江. 2020. 不同栽植年限、土層深度蘋果梨園土壤中堿性磷酸酶與磷素變化研究[J]. 延邊大學(xué)農(nóng)學(xué)學(xué)報(bào),42(1):8-14. [Zhang D,Deng X,Zhang Q,Li S Z,Liang Y J. 2020. Changes of phosphatase and phosphorus in apple-pear orchard soils with different planting years and soil layer[J]. Agricultural Science Journal of Yanbian University,42(1):8-14.] doi:10.13478/j.cnki.jasyu.2020.01.002.
鄭華,歐陽志云,王效科,方治國,趙同謙,苗鴻. 2004. 不同森林恢復(fù)類型對土壤微生物群落的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),(11):2019-2024. [Zheng H,Ouyang Z Y,Wang X K,F(xiàn)ang Z G,Zhao T Q,Miao H. 2004. Effects of forest restoration patterns on soil microbial communities[J]. Chinese Journal of Applied Ecology,(11):2019-2024.] doi:10.13287/j.1001-9332.2004.0417.
鄭棉海,黃娟,陳浩,王暉,莫江明. 2015. 氮、磷添加對不同林型土壤堿性磷酸酶活性的影響[J]. 生態(tài)學(xué)報(bào),35(20):6703-6710. [Zheng M H,Huang J,Chen H,Wang H,Mo J M. 2015. Effects of nitrogen and phosphorus addition on soil phosphatase activity in different forest types[J]. Acta Ecologica Sinica,35(20):6703-6710.] doi:10.5846/stxb201405120970.
朱蕓蕓,李敏,曲博,趙暾,滕澤棟. 2016. 濕地植物根際土壤磷酸酶活性變化規(guī)律研究[J]. 環(huán)境科學(xué)與技術(shù),39(10):106-112. [Zhu Y Y, Li M,Qu B,Zhao T,Teng Z D. 2016. Study on variation of phosphatase activity in rhizosphere soil of wetland plants[J]. Environmental Science & Technology,39(10):106-112.] doi:10.3969/j.issn.1003-6504. 2016.10.020.
Bi Q F,Zheng B X,Lin X Y,Li K J,Liu X P,Hao X L,Zhang H,Zhang J B,Jaisi D P,Zhu Y G. 2018. The microbial cycling of phosphorus on long-term fertilized soil:Insights from phosphate oxygen isotope ratios[J].Chemical Geology,483(20):56-64.] doi:10.1016/j.chemgeo.2018.02.013.
Brookes P C,Powlson D S,Jenkinson D S. 1982. Measurement of microbial biomass phosphorus in soil[J]. Soil Biology and Biochemistry,14(4):319-329. doi:10.1016/0038-0717(82)90001-3.
Bünemann E K. 2008. Enzyme additions as a tool to assess the potential bioavailability of organically bound nutrients[J].Soil Biology and Biochemistry,40(9):2116-2129. doi:10.1016/j.soilbio.2008.03.001.
Chen C R,Condron L M,Davis M R,Sherlock R R. 2002. Phosphorus dynamics in the rhizosphere of perennial ryegrass(Lolium perenne L.) and radiata pine(Pinus radiata D. Don.)[J]. Soil Biology and Biochemistry,34(4):487-499. doi:10.1016/s0038-0717(01)00207-3.
Chen H,Zhao X R,Chen X J,Lin Q M,Li G T. 2018. Seasonal changes of soil microbial C,N,P and associated nutrient dynamics in a semiarid grassland of north China[J].Applied Soil Ecology,128:89-97. doi:10.1016/j.apsoil. 2018. 04.008.
Dan P Z,Ulrike T,Marie S,Rainer G J. 2017. Microbial biomass phosphorus and c/n/p stoichiometry in forest floor and a horizons as affected by tree species[J]. Soil Biology and Biochemistry,111:166-175. doi:10.1016/j.soilbio.2017.04.009.
Dinh M V,Guhr A,Spohn M,Matzner E. 2017. Release of phosphorus from soil bacterial and fungal biomass following drying/rewetting[J]. Soil Biology and Biochemistry,110:1-7. doi:10.1016/j.soilbio.2017.02.014.
Fayez R,Soroosh S G. 2018. The potential activity of soil extracellular enzymes as an indicator for ecological restoration of rangeland soils after agricultural abandonment[J]. Applied Soil Ecology,126:140-147. doi:10.1016/j.apsoil. 2018.02.022.
Fraser T,Lynch D H,Entz M H,Dunfield K E. 2015. Linking alkaline phosphatase activity with bacterial phod gene abundance in soil from a long-term management trial[J]. Geoderma,257-258:115-122. doi:10.1016/j.geoderma. 2014. 0.016.
Hilda R,Reynaldo F. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion[J].Biotechnology Advances,17(4-5):319-339. doi:10.1016/s0734-9750(99)00014-2.
Hou E,Chen C R,Wen D Z,Liu X. 2014. Relationships of phosphorus fractions to organic carbon content in surface soils in mature subtropical forests,dinghushan,China[J].Soil Research,52(1):53-63.
Jia G M,Cao J,Wang C Y,Wang G. 2005. Microbial biomass and nutrients in soil at the different stages of secondary forest succession in ziwulin,northwest China[J]. Forest Ecology and Management,217(1):117-125. doi:10.1016/j.foreco.2005.05.055.
Lim B L,Yeung P,Cheng C W,Hill J E. 2007. Distribution and diversity of phytate-mineralizing bacteria[J].The ISME Journal,1:321-330.
Priha Q,Grayston S J,Hiukka,Pennanen T,Smolander A. 2001. Microbial community structure and characteristics of the organic matter in soils under pinus sylvestris,picea abies and betula pendula at two forest sites[J]. Biology and Fertility of Soils,33:17-24.
Pan C C,Liu C A,Zhao H L,Wang Y. 2013. Changes of soil physico-chemical properties and enzyme activities in relation to grassland salinization[J].European Journal of Soil Biology,55:13-19. doi:10.1016/j.ejsobi.2012.09.009.
Reiner G,Camilla E,Anna L,Bente J G. 2012. Phosphorus availability and microbial respiration across different tundra vegetation types[J]. Biogeochemistry,108:429-445. doi:10.1007/s10533-011-9609-8.
Steinweg J M,Dukes J S,Paul E A,Wallenstein M D. 2013. Microbial responses to multi-factor climate change:Effects on soil enzymes[J]. Frontiers in Microbiology,4:146. doi: 10.3389/fmicb.2013.00146.
Tarafdar J C,Yadav R S,Meena S C. 2001. Comparative efficiency of acid phosphatase originated from plant and fungal sources[J]. Journal of Plant Nutrition and Soil Scice,164(3):279-282. doi:10.1002/1522-2624(200106)164:3<279:AID-JPLN279>3.0.CO;2-L.
Turner B L,Papházy M J,Haygarth P M,Mckelvle I D. 2002. Inositol phosphates in the environment[J]. Philosophical Transactions of the Royal Society of London. Series B:Biological Sciences,357(1420):449-469. doi:10.1098/rstb.2001.0837.
Waldrop M P,Harden J W,Turetsky M R,Petersen D G,McGuire A D,Briones M J I,Churchill A C,Doctor D H, Pruett L E. 2012. Bacterial and enchytraeid abundance accelerate soil carbon turnover along a lowland vegetation gradient in interior alaska[J]. Soil Biology and Biochemistry,50:188-198. doi:10.1016/j.soilbio.2012.02.032.
Xu X F,Thornton P E,Post W M. 2013. A global analysis of soil microbial biomass carbon,nitrogen and phosphorus in terrestrial ecosystems[J]. Global Ecology and Biogeo-graphy,22(6):737-749.
Yadav B K,Tarafdar J C. 2007. Ability of emericella rugulosa to mobilize unavailable P compounds during pearl millet [Pennisetum glaucum (L.) R. Br.] crop under arid condition[J]. Indian Journal of Microbiology,47(1):57-63. doi:10.1007/s12088-007-0011-0.
Yadav R S,Tarafdar J C. 2003. Phytase and phosphatase producing fungi in arid and semi-arid soils and their efficiency in hydrolyzing different organic P compounds[J]. Soil Biology and Biochemistry,35(6):745-751. doi:10. 1016/s0038-0717(03)00089-0.
(責(zé)任編緝 羅 麗)
收稿日期:2022-12-29
基金項(xiàng)目:貴州省重大科技專項(xiàng)(黔科合基礎(chǔ)〔2019〕1106)
通訊作者:舒英格(1973-),https://orcid.org/0000-0002-7445-5070,教授,主要從事農(nóng)業(yè)資源與環(huán)境及土地利用管理研究工作,E-mail:maogen958@163.com
第一作者:廖遠(yuǎn)行(1997-),https://orcid.org/0009-0000-6891-3787,研究方向?yàn)橥寥懒姿仞B(yǎng)分,E-mail:791849349@qq.com