佘衛(wèi)強
點故障增廣立方體中2條點不交覆蓋路
佘衛(wèi)強
(漳州職業(yè)技術(shù)學院 通識教育學院,福建 漳州 363000)
增廣立方體;點容錯;點不交路;網(wǎng)絡(luò)拓撲
證明采用數(shù)學歸納法對定理加以證明.
[1]Hsu H C,Chiang L C,Tan J J.et al.Fault Hamiltonicity of augmented cubes[J].Parallel Computing,2005,31(1):131-145.
[2]Duh D R,Lin Y C,Lai C N,et al.Two spanning disjoint paths with required length in generalized hypercubes[J].Theoretical Computer Science,2013,506:55-78.
[3]Lai Chengnan.An efficient construction of one-to-many node-disjoint paths in folded hypercubes[J].J Parallel Distrib Comput,2014,74:2310-2316.
[4]Chen X B.Many-to-many disjoint paths in faulty hypercubes[J].Inform Sci,2009,179(18):3110-3115.
[5]Chen C C,Chen J.Nearly optimal one-to-many parallel routing in star networks[J].IEEE TransParallel Distrib Syst,1997,8 (12):1196-1202.
[6]Dietzfelbinger M S,Madhavapeddy S,Sudborough I H.Three disjoint path paradigms in star networks[J].Proceedings of the Third IEEE Symposium on Parallel and Distributed Processing,1991,31(2):400-406.
[8]佘衛(wèi)強.增廣立方體中的一對三條點不交路[J].大學數(shù)學,2018,34(6):15-18.
[10]Liu Hongmei,Tang Maozeng.Fault-Tolerant Cycles Embedding in Folde Hypercubes[J].Wuhan University Journal of Natural Sciences,2016,21(3):191-198.
[12]Bondy J A,Murty U S R.Graph Theorywith Applications[M].New York:Macmillan Press,1976.
[17]Wang W Q,Chen X B.A faulty free Hamilton cycle passing through prescribed edges in Hypercubes with faulty edges[J].Inform Process Lett,2007,107(2):211- 215.
Two vertex-disjoint covering paths in augmented cube with faulty vertices
SHE Weiqiang
(School of General Education,Zhangzhou Institute of Technology,Zhangzhou 363000,China)
augmented cube;vertex-fault-tolerant;vertex-disjoint path;network topology
1007-9831(2023)10-0001-04
O157.6
A
10.3969/j.issn.1007-9831.2023.10.001
2022-11-04
國家自然科學基金項目(61603174);福建省自然科學基金項目(2020J01793)
佘衛(wèi)強(1981-),男,福建東山人,副教授,碩士,從事組合網(wǎng)絡(luò)理論研究.E-mail:swq238@163.com